Home-Based Exergaming on Preschoolers’ Energy Expenditure, Cardiovascular Fitness, Body Mass Index and Cognitive Flexibility: A Randomized Controlled Trial
Abstract
1. Introduction
2. Methods
2.1. Research Design
2.2. Participants
2.3. Outcome Measures
2.4. Intervention
2.5. Procedures
2.6. Data Analysis
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Vierola, A.; Suominen, A.L.; Lindi, V.; Viitasalo, A.; Ikävalko, T.; Lintu, N.; Väistö, J.; Kellokoski, J.; Närhi, M.; Lakka, T.A. Associations of sedentary behavior, physical activity, cardiorespiratory fitness, and body fat content with pain conditions in children: The physical activity and nutrition in children study. J. Pain 2016, 17, 845–853. [Google Scholar] [CrossRef]
- Geiss, L.S.; Kirtland, K.; Lin, J.; Shrestha, S.; Thompson, T.; Albright, A.; Gregg, E.W. Changes in diagnosed diabetes, obesity, and physical inactivity prevalence in US counties, 2004–2012. PLoS ONE 2017, 3, e0173428. [Google Scholar] [CrossRef]
- Blanca, M.C.; Gonz, R.E.; Schmidt-riovalle, J. Associations between body composition, nutrition, and physical activity in young adults. Am. J. Hum. Biol. 2017, 29, e22903. [Google Scholar] [CrossRef]
- Taylor, R.W.; Murdoch, L.; Carter, P.; Gerrard, D.F.; Williams, S.M.; Taylor, B.J. Longitudinal study of physical activity and inactivity in preschoolers: The FLAME study. Med. Sci. Sports Exerc. 2009, 41, 96–102. [Google Scholar] [CrossRef]
- Berry, D. Early Childhood Health Disparities, Biological Embedding, and Life-Course Health. In The Wiley Handbook of Early Childhood Development Programs, Practices, and Policies; Votruba-Drzal, E., Dearing, E., Eds.; Wiley: Hoboken, NJ, USA, 2017; pp. 35–65. [Google Scholar]
- Gordon-Larsen, P.; Laska, M.; Page, P.; Popkin, B.M. Inequality in the Built Environment Underlies Key Health Disparities in Physical Activity and Obesity. Pediatrics 2006, 117, 417–424. [Google Scholar] [CrossRef]
- Moore, L.V.; Roux, A.V.D.; Evenson, K.R.; McGinn, A.P.; Brines, S.J. Availability of recreational resources in minority and low socioeconomic status areas. Am. J. Prev. Med. 2008, 34, 16–22. [Google Scholar] [CrossRef]
- Xiong, S.; Li, X.; Tao, K. Effects of Structured Physical Activity Program on Chinese Young Children’s Executive Functions and Perceived Physical Competence in a Day Care Center. BioMed Res. Int. 2017, 2017, 1–6. [Google Scholar] [CrossRef]
- Nyström, C.D.; Sandin, S.; Henriksson, P.; Henriksson, H.; Maddison, R.; Löf, M. A 12-month follow-up of a mobile-based (mHealth) obesity prevention intervention in pre-school children: The MINISTOP randomized controlled trial. BMC Public Health 2018, 18, 658. [Google Scholar]
- Luybli, M.; Schmillen, H.; Sotos-Prieto, M. School-Based Interventions in Low Socioeconomic Settings to Reduce Obesity Outcomes among Preschoolers: A Scoping Review. Nutrients 2019, 11, 1518. [Google Scholar] [CrossRef]
- Handel, M.N.; Larsen, S.C.; Rohde, J.F.; Stougaard, M.; Olsen, N.J.; Heitmann, B.L. Effects of the Healthy Start randomized intervention trial on physical activity among normal weight preschool children predisposed to overweight and obesity. PLoS ONE 2017, 12, e0185266. [Google Scholar] [CrossRef]
- Hacke, C.; Ketelhut, S.; Wendt, U.; Müller, G.; Schlesner, C.; Ketelhut, K. Effectiveness of a physical activity intervention in preschoolers: A cluster-randomized controlled trial. Scand. J. Med. Sci. Sports 2019, 29, 742–752. [Google Scholar] [CrossRef]
- Henriksson, P.; Nystro, C.D.; Leppa, M.H.; Lo, M. Longitudinal physical activity, body composition, and physical fitness in preschoolers. Med. Sci. Sports Exerc. 2017, 49, 2078–2085. [Google Scholar] [CrossRef]
- Puder, J.J.; Schindler, C.; Zahner, L.; Kriemler, S. Body mass index, fitness and metabolic risk in children: A cross-sectional and longitudinal study. Int. J. Pediatr. Obes. 2011, 6, 297–306. [Google Scholar] [CrossRef]
- Davy, B.M.; Harrell, K.; Stewart, J.; King, D.S. Body weight status, dietary habits, and physical activity levels of middle school-aged children in rural Mississippi. South. Med. J. 2004, 97, 571–577. [Google Scholar] [CrossRef]
- Grundy, S.M.; Blackburn, G.; Higgins, M.; Lauer, R.; Perri, M.G.; Ryan, D. Physical activity in the prevention and treatment of obesity and its comorbidities: Evidence report of independent panel to assess the role of physical activity in the treatment of obesity and its comorbidities. Med. Sci. Sports Exerc. 1999, 31, 1493–1500. [Google Scholar] [CrossRef]
- Fan, X.; Cao, Z.-B.; Chen, P. Physical activity among Chinese school-aged children: National prevalence estimates from the 2016 Physical Activity and Fitness in China—The Youth Study. J. Sport Health Sci. 2017, 6, 388–394. [Google Scholar] [CrossRef]
- Malina, R.M. Physical Activity: Relationship to Growth, Maturation, and Physical Fitness. In Physical Activity, Fitness, & Health; Bouchard, C., Shephard, R., Stephens, T., Eds.; Human Kinetics: Champaign, IL, USA, 1994; pp. 918–930. [Google Scholar]
- Sharpe, P.A.; Granner, M.L.; Hutto, B.; Ainsworth, B.E.; Cook, A. Association of body mass index to meeting physical activity recommendations. Am. J. Health Behav. 2004, 28, 522–530. [Google Scholar] [CrossRef]
- Sallis, J.F.; McKenzie, T.L.; Alcaraz, J.E. Habitual Physical Activity and Health-Related Physical Fitness in Fourth-Grade Children. Arch. Pediatr. Adolesc. Med. 1993, 147, 890–896. [Google Scholar] [CrossRef]
- Fairclough, S.J.; Dumuid, D.; Taylor, S.; Curry, W.; McGrane, B.; Stratton, G.; Maher, C.; Olds, T. Fitness, fatness and the reallocation of time between children’s daily movement behaviours: An analysis of compositional data. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 64. [Google Scholar] [CrossRef]
- Davis, C.L.; Tomporowski, P.D.; McDowell, J.E.; Austin, B.P.; Miller, P.H.; Yanasak, N.E.; Allison, J.D.; Naglieri, J.A. Exercise improves executive function and achievement and alters brain activation in overweight children: A randomized, controlled trial. Health Psychol. 2011, 30, 91–98. [Google Scholar] [CrossRef]
- Kamijo, K.; Pontifex, M.B.; O’Leary, K.C.; Scudder, M.R.; Wu, C.T.; Castelli, D.M.; Hillman, C.H. The effects of an afterschool physical activity program on working memory in preadolescent children. Dev. Sci. 2011, 14, 1046–1058. [Google Scholar] [CrossRef]
- Niederer, I.; Kriemler, S.; Gut, J.; Hartmann, T.; Schindler, C.; Barral, J.; Puder, J.J. Relationship of aerobic fitness and motor skills with memory and attention in preschoolers (Ballabeina): A cross-sectional and longitudinal study. BMC Pediatr. 2011, 11, 34. [Google Scholar] [CrossRef]
- Pesce, C.; Garrido-miguel, M. Academic achievement and physical activity: A meta-analysis. Pediatrics 2019, 140, e20171498. [Google Scholar]
- Gao, Z.; Zeng, N.; Pope, Z. Active Video Games and Physical Activity Promotion. In Technology in Physical Activity and Health Promotion; Routledge: Abingdon, UK, 2017; pp. 165–203. [Google Scholar]
- Biddiss, E.; Irwin, J. Active video games to promote physical activity in children and youth: A systematic review. Arch. Pediatr. Adolesc. Med. 2010, 164, 664–672. [Google Scholar] [CrossRef]
- Graf, D.L.; Pratt, L.V.; Hester, C.N.; Short, K.R. Playing Active Video Games Increases Energy Expenditure in Children. Pediatrics 2009, 124, 534–540. [Google Scholar] [CrossRef]
- Gao, Z.; Chen, S. Are field-based exergames useful in preventing childhood obesity? A systematic review. Obes. Rev. 2014, 15, 676–691. [Google Scholar] [CrossRef]
- Gao, Z.; Chen, S.; Pasco, D.; Pope, Z. Effects of active video games on physiological and psychological outcomes among children and adolescents: A meta-analysis. Obes. Rev. 2015, 16, 783–794. [Google Scholar] [CrossRef]
- Baranowski, T.; Baranowski, J.; Thompson, D.; Buday, R.; Jago, R.; Griffith, M.J.; Islam, N.; Nguyen, N.; Watson, K.B. Video game play, child diet, and physical activity behavior change a randomized clinical trial. Am. J. Prev. Med. 2011, 40, 33–38. [Google Scholar] [CrossRef]
- Gao, Z.; Hannon, J.C.; Newton, M.; Huang, C. The effects of curricular activity on students’ situational motivation and physical activity levels. Res. Q. Exerc. Sport 2011, 82, 536–544. [Google Scholar] [CrossRef]
- Gao, Z.; Hannan, P.F.; Xiang, P.; Stodden, D.; Valdez, V. Effect of active video game based exercise on urban Latino children’s physical health and academic performance. Am. J. Prev. Med. 2013, 44, s240–s246. [Google Scholar] [CrossRef]
- Gao, Z.; Pope, Z.; Lee, J.E.; Stodden, D.; Roncesvalles, N.; Pasco, D.; Huang, C.C.; Feng, D. Impact of exergaming on young children’s school day energy expenditure and moderate-to-vigorous physical activity levels. J. Sport Health Sci. 2017, 6, 11–16. [Google Scholar] [CrossRef]
- Staiano, A.E.; Beyl, R.A.; Hsia, D.S.; Katzmarzyk, P.T.; Newton, R.L., Jr. Twelve weeks of dance exergaming in overweight and obese adolescent girls: Transfer effects on physical activity, screen time, and self-efficacy. J. Sport Health Sci. 2017, 6, 4–10. [Google Scholar] [CrossRef]
- Edwards, J.; Jeffrey, S.; May, T.; Rinehart, N.J.; Barnett, L.M. Does playing a sports active video game improve object control skills of children with autism spectrum disorder? J. Sport Health Sci. 2017, 6, 17–24. [Google Scholar] [CrossRef]
- Pasco, D.; Roure, C.; Kermarrec, G.; Pope, Z.; Gao, Z. The effects of a bike active video game on players’ physical activity and motivation. J. Sport Health Sci. 2017, 6, 25–32. [Google Scholar] [CrossRef]
- Gao, Z.; Podlog, L.; Huang, C. Associations among children’s situational motivation, physical activity participation, and enjoyment in an interactive dance game. J. Sport Health Sci. 2012, 2, 122–128. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, T.; Stodden, D.F. Children’s physical activity levels and their psychological correlated in interactive dance versus aerobic dance. J. Sport Health Sci. 2013, 2, 146–151. [Google Scholar] [CrossRef]
- Gao, Z. Motivated but Not Active: The Dilemmas of Incorporating Interactive Dance into Gym Class. J. Phys. Act. Health 2012, 9, 794–800. [Google Scholar] [CrossRef]
- LeapTV Education Gaming System. Available online: https://www.leapfrog.com/en-us/products/leaptv (accessed on 1 May 2019).
- Foley, L.; Maddison, R. Use of Active Video Games to Increase Physical Activity in Children: A (Virtual) Reality? Pediatr. Exerc. Sci. 2010, 22, 7–20. [Google Scholar] [CrossRef]
- Ni Mhurchu, C.; Maddison, R.; Jiang, Y.; Jull, A.; Prapavessis, H.; Rodgers, A. Couch potatoes to jumping beans: A pilot study of the effect of active video games on physical activity in children. Int. J. Behav. Nutr. Phys. Act. 2008, 5, 8–12. [Google Scholar] [CrossRef]
- Gao, Z.; Huang, C.; Liu, T.; Xiong, W. Impact of interactive dance games on urban children’s physical activity correlates and behavior. J. Exerc. Sci. Fitness 2012, 10, 107–112. [Google Scholar] [CrossRef]
- Peng, W.; Crouse, J.C.; Lin, J.H. Using active video games for physical activity promotion: A systematic review of the current state of research. Health Educ. Behav. 2013, 40, 171–192. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Zeng, N.; Pope, Z.C.; Wang, R.; Yu, F. Effects of Exergaming on Motor Skill Competence, Perceived Competence, and Physical Activity in Preschool Children. Med. Sci. Sports Exerc. 2019, 8, 106–113. [Google Scholar]
- Guy, S.; Ratzki-Leewing, A.; Gwadry-Sridhar, F. Moving Beyond the Stigma: Systematic Review of Video Games and Their Potential to Combat Obesity. Int. J. Hypertens. 2011, 2011, 179124. [Google Scholar] [CrossRef] [PubMed]
- Staiano, A.E.; Beyl, R.A.; Guan, W.; Hendrick, C.A.; Hsia, D.S.; Newton, R.L. Home-based exergaming among children with overweight and obesity: A randomized clinical trial. Pediatr. Obes. 2018, 13, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Baranowski, T.; Abdelsamad, D.; Baranowski, J.; O’Connor, T.M.; Thompson, D.; Barnett, A.; Cerin, E.; Chen, T.-A. Impact of an Active Video Game on Healthy Children’s Physical Activity. Pediatrics 2012, 129, e636–e642. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.; Zhang, P.; Gao, Z. Effects of Exergaming on Preschoolers’ Executive Functions and Perceived Competence: A Pilot Randomized Trial. J. Clin. Med. 2019, 8, 469. [Google Scholar] [CrossRef]
- Van Zutphen, M.; Bell, A.C.; Kremer, P.J.; A Swinburn, B. Association between the family environment and television viewing in Australian children. J. Paediatr. Child. Health 2007, 43, 458–463. [Google Scholar] [CrossRef]
- Reilly, J.J.; Jackson, D.M.; Montgomery, C.; A Kelly, L.; Slater, C.; Grant, S.; Paton, J.Y. Total energy expenditure and physical activity in young Scottish children: Mixed longitudinal study. Lancet 2004, 363, 211–212. [Google Scholar] [CrossRef]
- G*Power 3.1. Available online: http://www.gpower.hhu.de/en.html (accessed on 29 September 2019).
- Rothney, M.P.; Brychta, R.J.; Meade, N.N.; Chen, K.Y.; Buchowski, M.S. Validation of the ActiGraph two-regression model for predicting energy expenditure. Med. Sci. Sports Exerc. 2010, 42, 1785–1792. [Google Scholar] [CrossRef]
- Trost, S.G.; McIver, K.L.; Pate, R.R. Conducting accelerometer-based activity assessments in field-based research. Med. Sci. Sports Exerc. 2005, 37, S531–S543. [Google Scholar] [CrossRef]
- Puyau, M.R.; Adolph, A.L.; Vohra, F.A.; Butte, N.F. Validation and Calibration of Physical Activity Monitors in Children. Obes. Res. 2002, 10, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Pate, R.R.; Pfeiffer, K.A.; Trost, S.G.; Ziegler, P.; Dowda, M. Physical Activity among Children Attending Preschools. Pediatrics 2004, 114, 1258–1263. [Google Scholar] [CrossRef] [PubMed]
- Zelazo, P.D. The Dimensional Change Card Sort (DCCS): A method of assessing executive function in children. Nat. Protocols 2006, 1, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Łuczyńska, G.; Pena-Pereira, F.; Tobiszewski, M.; Namieśnik, J. Expectation-Maximization Model for Substitution of Missing Values Characterizing Greenness of Organic Solvents. Molecules 2018, 23, 1292. [Google Scholar] [CrossRef]
- Richardson, J.T. Eta squared and partial eta squared as measures of effect size in educational research. Educ. Res. Rev. 2011, 6, 135–147. [Google Scholar] [CrossRef]
- Ye, S.; Lee, J.E.; Stodden, D.F.; Gao, Z. Impact of Exergaming on Children’s Motor Skill Competence and Health-Related Fitness: A Quasi-Experimental Study. J. Clin. Med. 2018, 7, 261. [Google Scholar] [CrossRef]
- McDonough, D.J.; Pope, Z.C.; Zeng, N.; Lee, J.E.; Gao, Z. Comparison of College Students’ Energy Expenditure, Physical Activity, and Enjoyment during Exergaming and Traditional Exercise. J. Clin. Med. 2018, 7, 433. [Google Scholar] [CrossRef]
- Quan, M.; Pope, Z.; Gao, Z. Examining Young Children’s Physical Activity and Sedentary Behaviors in an Exergaming Program Using Accelerometry. J. Clin. Med. 2018, 7, 302. [Google Scholar] [CrossRef]
- Staiano, A.E.; Abraham, A.A.; Calvert, S.L. Adolescent Exergame Play for Weight Loss and Psychosocial Improvement: A Controlled Physical Activity Intervention. Obesity 2012, 21, 598–601. [Google Scholar] [CrossRef]
- Maddison, R.; Mhurchu, C.N.; Jull, A.; Jiang, Y.; Prapavessis, H.; Rodgers, A. Energy expended playing video console games: An opportunity to increase children’s physical activity? Pediatr. Exerc. Sci. 2007, 19, 334–343. [Google Scholar] [CrossRef]
- Graves, L.E.; Ridgers, N.D.; Williams, K.; Stratton, G.; Atkinson, G.; Cable, N.T. The physiological cost and enjoyment of Wii Fit in adolescents, young adults, and older adults. J. Phys. Act. Health 2010, 7, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, J.E.; Hillman, C.H.; Castelli, D.; Etnier, J.L.; Lee, S.; Tomporowski, P.; Lambourne, K.; Szabo-Reed, A.N. Physical Activity, Fitness, Cognitive Function, and Academic Achievement in Children. Med. Sci. Sports Exerc. 2016, 48, 1223–1224. [Google Scholar] [CrossRef] [PubMed]
- Hillman, C.H.; Pontifex, M.B.; Castelli, D.M.; Khan, N.A.; Raine, L.B.; Scudder, M.R.; Drollette, E.S.; Moore, R.D.; Wu, C.-T.; Kamijo, K. Effects of the FITKids Randomized Controlled Trial on Executive Control and Brain Function. Pediatrics 2014, 134, e1063–e1071. [Google Scholar] [CrossRef]
- Jäger, K.; Schmidt, M.; Conzelmann, A.; Roebers, C.M. Cognitive and physiological effects of an acute physical activity intervention in elementary school children. Front. Psychol. 2014, 5. [Google Scholar] [CrossRef]
- Sibley, B.A.; Etnier, J.L. The Relationship between Physical Activity and Cognition in Children: A Meta-Analysis. Pediatr. Exerc. Sci. 2003, 15, 243–256. [Google Scholar] [CrossRef]
- Field, T.; Diego, M.; Sanders, C.E. Exercise is positively related to adolescents’ relationships and academics. Adolescence 2001, 36, 105–110. [Google Scholar]
- Jarrett, O.S.; Maxwell, D.M.; Dickerson, C.; Hoge, P.; Davies, G.; Yetley, A. Impact of Recess on Classroom Behavior: Group Effects and Individual Differences. J. Educ. Res. 1998, 92, 121–126. [Google Scholar] [CrossRef]
- Mahar, M.T.; Murphy, S.K.; Rowe, D.A.; Golden, J.; Shields, A.T.; Raedeke, T.D. Effects of a Classroom-Based Program on Physical Activity and On-Task Behavior. Med. Sci. Sports Exerc. 2006, 38, 2086–2094. [Google Scholar] [CrossRef]
- Blumberg, F.C.; Altschuler, E.A.; Almonte, D.E.; Mileaf, M.I. The Impact of Recreational Video Game Play on Children’s and Adolescents’ Cognition. New Dir. Child. Adolesc. Dev. 2013, 2013, 41–50. [Google Scholar] [CrossRef]
- Wouters, P.; Van Nimwegen, C.; Van Oostendorp, H.; Van Der Spek, E.D. A meta-analysis of the cognitive and motivational effects of serious games. J. Educ. Psychol. 2013, 105, 249–265. [Google Scholar] [CrossRef]
- Girard, C.; Ecalle, J.; Magnan, A. Serious games as new educational tools: How effective are they? A meta-analysis of recent studies. J. Comput. Assist. Learn. 2013, 29, 207–219. [Google Scholar] [CrossRef]
- Granic, I.; Lobel, A.; Engels, R.C.M.E. The benefits of playing video games. Am. Psychol. 2014, 69, 66–78. [Google Scholar] [CrossRef] [PubMed]
- Green, C.; Bavelier, D. Learning, attentional control, and action video games. Curr. Biol. 2012, 22, R197–R206. [Google Scholar] [CrossRef] [PubMed]
- Best, J.R. Exergaming immediately enhances children’s executive function. Dev. Psychol. 2012, 48, 1501–1510. [Google Scholar] [CrossRef]
- Gao, Z. Fight fire with fire: Promoting physical activity and health through active video games. J. Sport Health Sci. 2017, 6, 1–3. [Google Scholar] [CrossRef]
- Baranowski, T. Exergaming: Hope for future physical activity? or blight on mankind? J. Sport Health Sci. 2017, 6, 44–46. [Google Scholar] [CrossRef]
- Gao, Z.; Pope, Z.C.; Lee, J.E.; Quan, M. Effects of Active Video Games on Children’s Psychosocial Beliefs and School Day Energy Expenditure. J. Clin. Med. 2019, 8, 1268. [Google Scholar] [CrossRef]
- Benzing, V.; Schmidt, M. Exergaming for Children and Adolescents: Strengths, Weaknesses, Opportunities and Threats. J. Clin. Med. 2018, 7, 422. [Google Scholar] [CrossRef]
Variables | Control (n = 14) | Intervention (n = 18) | p Value * |
---|---|---|---|
Age, years | 4.93/0.83 | 4.56/0.62 | 0.15 |
Gender | 0.15 | ||
Boys, n = 16 | 5 | 11 | |
Girls, n = 16 | 9 | 7 | |
Race/ethnicity | 0.16 | ||
White American, n =11 | 7 | 4 | |
Asian American, n =19 | 7 | 12 | |
African American, n =2 | 0 | 2 | |
Height, cm (M/SD) | 111.46/8.21 | 108.83/6.91 | 0.33 |
Weight, kg (M/SD) | 18.86/2.90 | 18.21/2.58 | 0.50 |
BMI, kg/m2 (M/SD) | 15.14/1.24 | 15.32/1.12 | 0.67 |
Intervention Group | Control Group | Overall Sample | |||||||
---|---|---|---|---|---|---|---|---|---|
Baseline | 13th Week | Mean Diff | Baseline | 13th Week | Mean Diff | Baseline | 13th Week | Mean Diff | |
EE | 357.42 /106.36 | 363.42 /112.33 | 6.07 /108.95 | 338.67 /74.25 | 384.59 /105.5 | 45.92 /64.27 | 349.29 /92.80 | 372.59 /68.08 | 23.30 /93.07 |
Fitness | 10.22 /6.75 | 7.56 /4.18 | −3.06 /8.33 | 10.64 /5.58 | 10.57 /3.72 | −0.46 /7.22 | 10.41 /6.17 | 8.88 /4.20 | −1.53 /7.75 |
BMI | 15.32 /1.12 | 15.42 /1.35 | 0.15 /0.65 | 15.14 /1.24 | 15.34 /1.38 | 0.14 /0.64 | 15.24 /1.15 | 15.39 /1.34 | 0.15 /0.65 |
Cognition | 50.89 /7.70 | 59.39 /7.59 | 8.76 /5.99 | 59 /7.65 | 62.36 /9.19 | 3.54 /5.62 | 54.44 /8.59 | 60.36 /9.19 | 6.25 /6.20 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Z.; Lee, J.E.; Zeng, N.; Pope, Z.C.; Zhang, Y.; Li, X. Home-Based Exergaming on Preschoolers’ Energy Expenditure, Cardiovascular Fitness, Body Mass Index and Cognitive Flexibility: A Randomized Controlled Trial. J. Clin. Med. 2019, 8, 1745. https://doi.org/10.3390/jcm8101745
Gao Z, Lee JE, Zeng N, Pope ZC, Zhang Y, Li X. Home-Based Exergaming on Preschoolers’ Energy Expenditure, Cardiovascular Fitness, Body Mass Index and Cognitive Flexibility: A Randomized Controlled Trial. Journal of Clinical Medicine. 2019; 8(10):1745. https://doi.org/10.3390/jcm8101745
Chicago/Turabian StyleGao, Zan, Jung Eun Lee, Nan Zeng, Zachary C. Pope, Ying Zhang, and Xianxiong Li. 2019. "Home-Based Exergaming on Preschoolers’ Energy Expenditure, Cardiovascular Fitness, Body Mass Index and Cognitive Flexibility: A Randomized Controlled Trial" Journal of Clinical Medicine 8, no. 10: 1745. https://doi.org/10.3390/jcm8101745
APA StyleGao, Z., Lee, J. E., Zeng, N., Pope, Z. C., Zhang, Y., & Li, X. (2019). Home-Based Exergaming on Preschoolers’ Energy Expenditure, Cardiovascular Fitness, Body Mass Index and Cognitive Flexibility: A Randomized Controlled Trial. Journal of Clinical Medicine, 8(10), 1745. https://doi.org/10.3390/jcm8101745