Comparing the Effect of Dipeptidyl-Peptidase 4 Inhibitors and Sulfonylureas on Albuminuria in Patients with Newly Diagnosed Type 2 Diabetes Mellitus: A Prospective Open-Label Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant Selection
2.2. Study Protocol
2.3. Laboratory Methods
2.4. Outcome Measures
2.5. Ethical Approval
2.6. Statistical Analysis Plan
3. Results
3.1. Demographic Characteristics of Participants
3.2. Comparison of the Clinical Outcomes Relative to Baseline Levels
3.3. Comparison of the Clinical Outcomes between DPP-4 Inhibitors and Sulfonylureas
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Park, C.W. Diabetic kidney disease: From epidemiology to clinical perspectives. Diabetes Metab. J. 2014, 38, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Stanton, R.C. Clinical challenges in diagnosis and management of diabetic kidney disease. Am. J. Kidney Dis. 2014, 63, 3–21. [Google Scholar] [CrossRef] [PubMed]
- Rask-Madsen, C.; King, G.L. Vascular complications of diabetes: Mechanisms of injury and protective factors. Cell. Metab. 2013, 17, 20–33. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.K. Treatment of diabetic kidney disease: Current and future targets. Korean J. Intern. Med. 2017, 32, 622–630. [Google Scholar] [CrossRef]
- American Diabetes Association. Introduction: Standards of Medical Care in Diabetes-2018. Diabetes Care 2018, 41, S1–S2. [Google Scholar] [CrossRef]
- Davidson, J.A. The placement of DPP-4 inhibitors in clinical practice recommendations for the treatment of type 2 diabetes. Endocr. Pract. 2013, 19, 1050–1061. [Google Scholar] [CrossRef] [PubMed]
- Sola, D.; Rossi, L.; Schianca, G.P.; Maffioli, P.; Bigliocca, M.; Mella, R.; Corliano, F.; Fra, G.P.; Bartoli, E.; Derosa, G. Sulfonylureas and their use in clinical practice. Arch. Med. Sci. 2015, 11, 840–848. [Google Scholar] [CrossRef]
- Levey, A.S.; Bosch, J.P.; Lewis, J.B.; Greene, T.; Rogers, N.; Roth, D. A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Modification of Diet in Renal Disease Study Group. Ann. Intern. Med. 1999, 130, 461–470. [Google Scholar] [CrossRef]
- Roshan, B.; Stanton, R.C. A story of microalbuminuria and diabetic nephropathy. J. Nephropathol. 2013, 2, 234–240. [Google Scholar]
- Rosenstock, J.; Perkovic, V.; Johansen, O.E.; Cooper, M.E.; Kahn, S.E.; Marx, N.; Alexander, J.H.; Pencina, M.; Toto, R.D.; Wanner, C.; et al. Effect of Linagliptin vs. Placebo on Major Cardiovascular Events in Adults with Type 2 Diabetes and High Cardiovascular and Renal Risk: The CARMELINA Randomized Clinical Trial. JAMA 2019, 321, 69–79. [Google Scholar] [CrossRef]
- Mosenzon, O.; Leibowitz, G.; Bhatt, D.L.; Cahn, A.; Hirshberg, B.; Wei, C.; Im, K.; Rozenberg, A.; Yanuv, I.; Stahre, C.; et al. Effect of Saxagliptin on Renal Outcomes in the SAVOR-TIMI 53 Trial. Diabetes Care 2017, 40, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Mori, H.; Okada, Y.; Arao, T.; Tanaka, Y. Sitagliptin improves albuminuria in patients with type 2 diabetes mellitus. J. Diabetes Investig. 2014, 5, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Penno, G.; Garofolo, M.; Del Prato, S. Dipeptidyl peptidase-4 inhibition in chronic kidney disease and potential for protection against diabetes-related renal injury. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 361–373. [Google Scholar] [CrossRef] [PubMed]
- Fujita, H.; Taniai, H.; Murayama, H.; Ohshiro, H.; Hayashi, H.; Sato, S.; Kikuchi, N.; Komatsu, T.; Komatsu, K.; Komatsu, K.; et al. DPP-4 inhibition with alogliptin on top of angiotensin II type 1 receptor blockade ameliorates albuminuria via up-regulation of SDF-1α in type 2 diabetic patients with incipient nephropathy. Endocr. J. 2014, 61, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Koya, D.; Kanasaki, K. Dipeptidyl peptidase-4 and kidney fibrosis in diabetes. Fibrogenesis Tissue Repair 2016, 9, 1. [Google Scholar] [CrossRef]
- Hung, A.M.; Roumie, C.L.; Greevy, R.A.; Liu, X.; Grijalva, C.G.; Murff, H.J.; Griffin, M.R. Kidney function decline in metformin versus sulfonylurea initiators: Assessment of time-dependent contribution of weight, blood pressure, and glycemic control. Pharmacoepidemiol. Drug Saf. 2013, 22, 623–631. [Google Scholar] [CrossRef]
- Ioannidis, I. Diabetes treatment in patients with renal disease: Is the landscape clear enough? World J. Diabetes 2014, 5, 651–658. [Google Scholar] [CrossRef]
- Alicic, R.Z.; Rooney, M.T.; Tuttle, K.R. Diabetic kidney disease: Challenges, progress, and possibilities. Clin. J. Am. Soc. Nephrol. 2017, 12, 2032–2045. [Google Scholar] [CrossRef]
- Maric-Bilkan, C. Obesity and diabetic kidney disease. Med. Clin. N. Am. 2013, 97, 59–74. [Google Scholar] [CrossRef]
- De Cosmo, S.; Viazzi, F.; Piscitelli, P.; Giorda, C.; Ceriello, A.; Genovese, S.; Russo, G.; Guida, P.; Fioretto, P.; Pontremoli, R. Blood pressure status and the incidence of diabetic kidney disease in patients with hypertension and type 2 diabetes. J. Hypertens. 2016, 34, 2090–2098. [Google Scholar] [CrossRef]
- Tervaert, T.W.; Mooyaart, A.L.; Amann, K.; Cohen, A.H.; Cook, H.T.; Drachenberg, C.B.; Ferrario, F.; Fogo, A.B.; Haas, M.; De Heer, E.; et al. Pathologic classification of diabetic nephropathy. J. Am. Soc. Nephrol. 2010, 21, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Rafieian-Kopaie, M. Metformin and renal injury protection. J. Renal Inj. Prev. 2013, 2, 91–92. [Google Scholar] [PubMed]
- Bowden, D.W. Genetics of kidney disease. Kidney Int. Suppl. 2003, 63, S8–S12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macisaac, R.J.; Ekinci, E.I.; Jerums, G. Markers of and risk factors for the development and progression of diabetic kidney disease. Am. J. Kidney Dis. 2014, 63, S39–S62. [Google Scholar] [CrossRef]
Variables | DPP-4 Inhibitors + Metformin (n = 45) | Sulfonylureas + Metformin (n = 56) | P Value |
---|---|---|---|
Age (years) | 62.9 ± 14.0 | 64.3 ± 10.7 | 0.500 |
Sex (Female) | 22 (52.4%) | 25 (47.2%) | 0.682 |
Body weight (kg) | 68.5 ± 16.0 | 66.2 ± 15.1 | 0.48 |
Serum HbA1c (%) | 8.7 ± 1.9 | 8.9 ± 1.8 | 0.66 |
Creatinine (mg/dL) | 0.83 ± 0.19 | 0.86 ± 0.25 | 0.379 |
Estimated GFR (mL/min/1.73 m2) | 88.5 ± 24.8 | 89.6 ± 26.7 | 0.843 |
ALT (U/mL) | 33.0 ± 29.5 | 28.8 ± 22.1 | 0.430 |
Systolic blood pressure (mm Hg) | 134 ± 19.4 | 133 ± 14.8 | 0.802 |
Urinary ACR (µg/mg creatinine) | 29.2 ± 31.2 | 39.9 ± 41.9 | 0.157 |
Triglycerides (mg/dL) | 162 ± 118 | 189 ± 116 | 0.278 |
High density lipoprotein cholesterol (mg/dL) | 44.2 ± 12.3 | 46.3 ± 14.3 | 0.455 |
Low density lipoprotein cholesterol (mg/dL) | 110 ± 34.8 | 117 ± 32.7 | 0.277 |
Use of calcium channel blockers | 12 (26.7%) | 21 (37.5%) | 0.249 |
Use of beta blockers | 11 (24.4%) | 10 (17.8%) | 0.418 |
Use of diuretics | 3 (6.7%) | 4 (7.1%) | 0.925 |
Treatment Duration | DPP-4 Inhibitors + Metformin (n = 45) | Sulfonylureas + Metformin (n = 56) |
---|---|---|
Urinary ACR (µg/mg creatinine) | ||
0 week | 29.2 ± 31.2 | 39.9 ± 41.9 |
24 weeks | 14.9 ± 23.9 | 43.2 ± 64.2 |
P value | < 0.001 | 0.641 |
Serum HbA1c (%) | ||
0 week | 8.7 ± 1.9 | 8.9 ± 1.8 |
24 weeks | 6.8 ± 0.83 | 7.2 ± 1.0 |
P value | <0.001 | <0.001 |
Body weight (kg) | ||
0 week | 68.5 ± 16.0 | 66.2 ± 15.1 |
24 weeks | 67.4 ± 15.8 | 66.4 ±14.4 |
P value | 0.0169 | 0.868 |
Serum creatinine (mg/dL) | ||
0 week | 0.83 ± 0.19 | 0.86 ± 0.24 |
24 weeks | 0.85 ± 0.28 | 0.95 ± 0.35 |
P value | 0.846 | 0.058 |
Estimated GFR (mL/min/1.73 m2) | ||
0 week | 88.5 ± 24.8 | 89.6 ± 26.7 |
24 weeks | 97.5 ± 47.5 | 84.6 ± 30.3 |
P value | 0.233 | 0.225 |
Systolic blood pressure (mm Hg) | ||
0 week | 134 ± 19.4 | 133 ± 14.8 |
24 weeks | 128 ± 13.2 | 131 ± 10.6 |
P value | 0.113 | 0.56 |
Treatment Duration | DPP-4 Inhibitors + Metformin (n = 45) | Sulfonylureas + Metformin (n = 56) | P Value |
---|---|---|---|
Change in urinary ACR (µg/mg creatinine) | |||
24 weeks | −14.3 ± 21.2 | 3.29 ± 52.5 | 0.037 |
Change in serum HbA1c (%) | |||
24 weeks | −1.87 ± 2.00 | −2.40 ± 2.43 | 0.250 |
Change in body weight (kg) | |||
24 weeks | −1.04 ± 2.82 | 0.12 ± 5.55 | 0.203 |
Change in serum creatinine (mg/dL) | |||
24 weeks | −0.01± 0.359 | 0.08 ± 0.32 | 0.171 |
Change in estimated GFR (mL/min/1.73 m2) | |||
24 weeks | 8.94 ± 49.6 | −4.93 ± 30.0 | 0.104 |
Change in systolic blood pressure (mm Hg) | |||
24 weeks | −4.27 ± 17.7 | −1.14 ± 14.6 | 0.333 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, P.-C.; Hsu, S.-R.; Kuo, J.-F.; Cheng, Y.-C.; Liu, Y.-H.; Tu, S.-T. Comparing the Effect of Dipeptidyl-Peptidase 4 Inhibitors and Sulfonylureas on Albuminuria in Patients with Newly Diagnosed Type 2 Diabetes Mellitus: A Prospective Open-Label Study. J. Clin. Med. 2019, 8, 1715. https://doi.org/10.3390/jcm8101715
Cheng P-C, Hsu S-R, Kuo J-F, Cheng Y-C, Liu Y-H, Tu S-T. Comparing the Effect of Dipeptidyl-Peptidase 4 Inhibitors and Sulfonylureas on Albuminuria in Patients with Newly Diagnosed Type 2 Diabetes Mellitus: A Prospective Open-Label Study. Journal of Clinical Medicine. 2019; 8(10):1715. https://doi.org/10.3390/jcm8101715
Chicago/Turabian StyleCheng, Po-Chung, Shang-Ren Hsu, Jeng-Fu Kuo, Yun-Chung Cheng, Yu-Hsiu Liu, and Shih-Te Tu. 2019. "Comparing the Effect of Dipeptidyl-Peptidase 4 Inhibitors and Sulfonylureas on Albuminuria in Patients with Newly Diagnosed Type 2 Diabetes Mellitus: A Prospective Open-Label Study" Journal of Clinical Medicine 8, no. 10: 1715. https://doi.org/10.3390/jcm8101715
APA StyleCheng, P.-C., Hsu, S.-R., Kuo, J.-F., Cheng, Y.-C., Liu, Y.-H., & Tu, S.-T. (2019). Comparing the Effect of Dipeptidyl-Peptidase 4 Inhibitors and Sulfonylureas on Albuminuria in Patients with Newly Diagnosed Type 2 Diabetes Mellitus: A Prospective Open-Label Study. Journal of Clinical Medicine, 8(10), 1715. https://doi.org/10.3390/jcm8101715