Outcomes of Total Hip Arthroplasty in Patients with Osteonecrosis of the Femoral Head Following Surgical Treatment of Brain Tumors
Abstract
:1. Introduction
2. Material and Methods
2.1. Patient Cohort
2.2. Baseline Evaluation
2.3. Surgical Technique
2.4. Postoperative Management
2.5. Clinical Evaluation
2.6. Radiographic Evaluation
2.7. Statistical Analyses
3. Results
3.1. Clinical Outcomes
3.2. Radiographic Outcomes
3.3. Revision-Free Survivorships
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Dietrich, J.; Rao, K.; Pastorino, S.; Kesari, S. Corticosteroids in brain cancer patients: Benefits and pitfalls. Expert Rev. Clin. Pharmacol. 2011, 4, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Murayi, R.; Chittiboina, P. Glucocorticoids in the management of peritumoral brain edema: A review of molecular mechanisms. Child’s Nerv. Syst. 2016, 32, 2293–2302. [Google Scholar] [CrossRef] [PubMed]
- McClelland, S., 3rd; Long, D.M. Genesis of the use of corticosteroids in the treatment and prevention of brain edema. Neurosurgery 2008, 62, 965–967. [Google Scholar] [CrossRef] [PubMed]
- Roth, P.; Happold, C.; Weller, M. Corticosteroid use in neuro-oncology: An update. Neuro-Oncol. Pract. 2015, 2, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Kostaras, X.; Cusano, F.; Kline, G.A.; Roa, W.; Easaw, J. Use of dexamethasone in patients with high-grade glioma: A clinical practice guideline. Currentoncology 2014, 21, e493–e503. [Google Scholar] [CrossRef]
- Zada, G.; Tirosh, A.; Huang, A.P.; Laws, E.R.; Woodmansee, W.W. The postoperative cortisol stress response following transsphenoidal pituitary surgery: A potential screening method for assessing preserved pituitary function. Pituitary 2013, 16, 319–325. [Google Scholar] [CrossRef]
- Jahangiri, A.; Wagner, J.R.; Han, S.W.; Tran, M.T.; Miller, L.M.; Chen, R.; Tom, M.W.; Ostling, L.R.; Kunwar, S.; Blevins, L.; et al. Improved versus worsened endocrine function after transsphenoidal surgery for nonfunctional pituitary adenomas: Rate, time course, and radiological analysis. J. Neurosurg. 2016, 124, 589–595. [Google Scholar] [CrossRef]
- Agam, M.S.; Zada, G. Complications associated with transsphenoidal pituitary surgery: Review of the Literature. Neurosurgery 2018, 65, 69–73. [Google Scholar] [CrossRef]
- Lim, S.J.; Kim, S.M.; Kim, D.W.; Moon, Y.W.; Park, Y.S. Cementless total hip arthroplasty using Biolox(R) delta ceramic-on-ceramic bearing in patients with osteonecrosis of the femoral head. Hip Int. 2016, 26, 144–148. [Google Scholar] [CrossRef]
- Kim, S.M.; Lim, S.J.; Moon, Y.W.; Kim, Y.T.; Ko, K.R.; Park, Y.S. Cementless modular total hip arthroplasty in patients younger than fifty with femoral head osteonecrosis: Minimum fifteen-year follow-up. J. Arthroplast. 2013, 28, 504–509. [Google Scholar] [CrossRef]
- Amiche, M.A.; Albaum, J.M.; Tadrous, M.; Pechlivanoglou, P.; Levesque, L.E.; Adachi, J.D.; Cadarette, S.M. Fracture risk in oral glucocorticoid users: A Bayesian meta-regression leveraging control arms of osteoporosis clinical trials. Osteoporos. Int. 2016, 27, 1709–1718. [Google Scholar] [CrossRef] [PubMed]
- Resende, V.A.C.; Neto, A.C.; Nunes, C.; Andrade, R.; Espregueira-Mendes, J.; Lopes, S. Higher age, female gender, osteoarthritis and blood transfusion protect against periprosthetic joint infection in total hip or knee arthroplasties: A systematic review and meta-analysis. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kunutsor, S.K.; Whitehouse, M.R.; Blom, A.W.; Beswick, A.D. Patient-related risk factors for periprosthetic joint infection after total joint arthroplasty: A systematic review and meta-analysis. PLoS ONE 2016, 11, e0150866. [Google Scholar] [CrossRef] [PubMed]
- Fessy, M.H.; Putman, S.; Viste, A.; Isida, R.; Ramdane, N.; Ferreira, A.; Leglise, A.; Rubens-Duval, B.; Bonin, N.; Bonnomet, F.; et al. What are the risk factors for dislocation in primary total hip arthroplasty? A multicenter case-control study of 128 unstable and 438 stable hips. Orthop. Traumatol. Surg. Res. 2017, 103, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Dawson-Amoah, K.; Raszewski, J.; Duplantier, N.; Waddell, B.S. Dislocation of the hip: A review of types, causes, and treatment. Ochsner J. 2018, 18, 242–252. [Google Scholar] [CrossRef]
- Broden, C.; Mukka, S.; Muren, O.; Eisler, T.; Boden, H.; Stark, A.; Skoldenberg, O. High risk of early periprosthetic fractures after primary hip arthroplasty in elderly patients using a cemented, tapered, polished stem. Acta Orthop. 2015, 86, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Ganguli, M.; Dodge, H.H.; Shen, C.; DeKosky, S.T. Mild cognitive impairment, amnestic type: An epidemiologic study. Neurology 2004, 63, 115–121. [Google Scholar] [CrossRef]
- Streeten, D.H.; Anderson, G.H., Jr.; Bonaventura, M.M. The potential for serious consequences from misinterpreting normal responses to the rapid adrenocorticotropin test. J. Clin. Endocrinol. Metab. 1996, 81, 285–290. [Google Scholar] [CrossRef]
- Dargel, J.; Oppermann, J.; Bruggemann, G.P.; Eysel, P. Dislocation following total hip replacement. J. Bone Jt. Surg. 2014, 111, 884–890. [Google Scholar] [CrossRef]
- Zeng, W.N.; Liu, J.L.; Jia, X.L.; Zhou, Q.; Yang, L.; Zhang, Y. Midterm results of total hip arthroplasty in patients with high hip dislocation after suppurative hip arthritis. J. Arthroplast. 2019, 34, 102–107. [Google Scholar] [CrossRef]
- DeLee, J.G.; Charnley, J. Radiological demarcation of cemented sockets in total hip replacement. Clin. Orthop. Relat. Res. 1976, 121, 20–32. [Google Scholar] [CrossRef]
- Fredin, H.; Sanzen, L.; Sigurdsson, B.; Unander-Scharin, L. Total hip arthroplasty in high congenital dislocation. 21 hips with a minimum five-year follow-up. J. Bone Jt. Surg. 1991, 73, 430–433. [Google Scholar] [CrossRef]
- Gruen, T.A.; McNeice, G.M.; Amstutz, H.C. Modes of failure" of cemented stem-type femoral components: A radiographic analysis of loosening. Clin. Orthop. Relat. Res. 1979, 141, 17–27. [Google Scholar] [CrossRef]
- Engh, C.A.; Bobyn, J.D.; Glassman, A.H. Porous-coated hip replacement. The factors governing bone ingrowth, stress shielding, and clinical results. J. Bone Jt. Surg. 1987, 69, 45–55. [Google Scholar] [CrossRef]
- Brooker, A.F.; Bowerman, J.W.; Robinson, R.A.; Riley, L.H., Jr. Ectopic ossification following total hip replacement: Incidence and a method of classification. JBJS 1973, 55, 1629–1632. [Google Scholar] [CrossRef]
- Yoon, B.H.; Jones, L.C.; Chen, C.H.; Cheng, E.Y.; Cui, Q.; Drescher, W.; Fukushima, W.; Gangji, V.; Goodman, S.B.; Ha, Y.C.; et al. Etiologic Classification Criteria of ARCO on Femoral Head Osteonecrosis Part 1: Glucocorticoid-Associated Osteonecrosis. J. Arthroplast. 2019, 34, 163–168.e161. [Google Scholar] [CrossRef]
- Wong, G.K.; Poon, W.S.; Chiu, K.H. Steroid-induced avascular necrosis of the hip in neurosurgical patients: Epidemiological study. ANZ J. Surg. 2005, 75, 409–410. [Google Scholar] [CrossRef]
- Uppal, J.; Burbridge, B.; Arnason, T. Bilateral osteonecrosis of the hip in panhypopituitarism. BMJ Case Rep. CP 2019, 12, bcr-2018. [Google Scholar] [CrossRef]
- Liu, M.M.; Reidy, A.B.; Saatee, S.; Collard, C.D. Perioperative Steroid Management Approaches Based on Current Evidence. Anesthesiology 2017, 127, 166–172. [Google Scholar] [CrossRef]
- Posti, J.P.; Bori, M.; Kauko, T.; Sankinen, M.; Nordberg, J.; Rahi, M.; Frantzen, J.; Vuorinen, V.; Sipila, J.O. Presenting symptoms of glioma in adults. Acta Neurol. Scand. 2015, 131, 88–93. [Google Scholar] [CrossRef]
- Ali, F.S.; Hussain, M.R.; Gutierrez, C.; Demireva, P.; Ballester, L.Y.; Zhu, J.J.; Blanco, A.; Esquenazi, Y. Cognitive disability in adult patients with brain tumors. Cancer Treat. Rev. 2018, 65, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Flanigan, P.M.; Jahangiri, A.; Weinstein, D.; Dayani, F.; Chandra, A.; Kanungo, I.; Choi, S.; Sankaran, S.; Molinaro, A.M.; McDermott, M.W.; et al. Postoperative delirium in glioblastoma patients: Risk factors and prognostic implications. Neurosurgery 2018, 83, 1161–1172. [Google Scholar] [CrossRef] [PubMed]
- Ganau, M.; Lavinio, A.; Prisco, L. Delirium and agitation in traumatic brain injury patients: An update on pathological hypotheses and treatment options. Minerva Anestesiol. 2018, 84, 632–640. [Google Scholar] [CrossRef] [PubMed]
- Ganau, M.; Prisco, L.; Cebula, H.; Todeschi, J.; Abid, H.; Ligarotti, G.; Pop, R.; Proust, F.; Chibbaro, S. Risk of deep vein thrombosis in neurosurgery: State of the art on prophylaxis protocols and best clinical practices. J. Clin. Neurosci. 2017, 45, 60–66. [Google Scholar] [CrossRef]
- Chibbaro, S.; Cebula, H.; Todeschi, J.; Fricia, M.; Vigouroux, D.; Abid, H.; Kourbanhoussen, H.; Pop, R.; Nannavecchia, B.; Gubian, A.; et al. Evolution of prophylaxis protocols for venous thromboembolism in neurosurgery: Results from a prospective comparative study on low-molecular-weight heparin, elastic stockings, and intermittent pneumatic compression devices. World Neurosurg. 2018, 109, e510–e516. [Google Scholar] [CrossRef]
- Buckland, A.J.; Puvanesarajah, V.; Vigdorchik, J.; Schwarzkopf, R.; Jain, A.; Klineberg, E.O.; Hart, R.A.; Callaghan, J.J.; Hassanzadeh, H. Dislocation of a primary total hip arthroplasty is more common in patients with a lumbar spinal fusion. Bone Jt. J. 2017, 99, 585–591. [Google Scholar] [CrossRef]
- Jameson, S.S.; Lees, D.; James, P.; Serrano-Pedraza, I.; Partington, P.F.; Muller, S.D.; Meek, R.M.; Reed, M.R. Lower rates of dislocation with increased femoral head size after primary total hip replacement: A five-year analysis of NHS patients in England. J. Bone Jt. Surg. 2011, 93, 876–880. [Google Scholar] [CrossRef]
- Zijlstra, W.P.; DeHartog, B.; VanSteenbergen, L.N.; Scheurs, B.W.; Nelissen, R. Effect of femoral head size and surgical approach on risk of revision for dislocation after total hip arthroplasty: An analysis of 166,231 procedures in the Dutch Arthroplasty Register (LROI). Acta Orthop. 2017, 88, 395–401. [Google Scholar] [CrossRef]
- Sheth, D.; Cafri, G.; Inacio, M.C.; Paxton, E.W.; Namba, R.S. Anterior and anterolateral approaches for THA are associated with lower dislocation risk without higher revision risk. Clin. Orthop. Relat. Res. 2015, 473, 3401–3408. [Google Scholar] [CrossRef]
- Huang, H.; Cheng, W.X.; Hu, Y.P.; Chen, J.H.; Zheng, Z.T.; Zhang, P. Relationship between heterotopic ossification and traumatic brain injury: Why severe traumatic brain injury increases the risk of heterotopic ossification. J. Orthop. Transl. 2018, 12, 16–25. [Google Scholar] [CrossRef]
- Hudson, S.J.; Brett, S.J. Heterotopic ossification–a long-term consequence of prolonged immobility. Crit. Care 2006, 10, 174. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total (n = 26) |
---|---|
Pathology | |
Meningioma | 7 (27%) |
Craniopharyngioma | 5 (19%) |
Pituitary adenoma | 3 (12%) |
Germinoma | 2 (7.7%) |
Others * | 9 (35%) |
Location | |
Sella turcica | 12 (46%) |
Frontal lobe | 6 (23%) |
Temporal lobe | 3 (12%) |
Others † | 5 (19%) |
Neurological sequelae | |
Seizure | 8 (31%) |
Cognitive impairment | 5 (19%) |
Visual disturbance | 5 (19%) |
Hemiparesis | 2 (7.7%) |
Hearing loss | 1 (3.8%) |
Corticosteroids | Total (n = 26) |
---|---|
Dexamethasone | |
Daily dose (mg) | 16.0 ± 8.2 |
Duration (days) | 14.3 ± 9.1 |
Prednisolone | |
Daily dose (mg) | 17.6 ± 8.8 |
Duration (days) | 11.7 ± 6.1 |
Hydrocortisone | |
Daily dose (mg) | 76.9 ± 19.8 |
Duration (days) | 3.9 ± 1.6 |
Demographics | Brain Tumor | Control | P-Value |
---|---|---|---|
Number of patients (hips) | 26 (34) | 52 (68) | |
Age * (years) | 39.5 ± 11.3 | 40.7 ± 11.9 | 0.414 |
Female patients † | 15 (58%) | 30 (58%) | 1.000 |
Body mass index * (kg/m2) | 25.3 ± 5.6 | 24.2 ± 3.4 | 0.306 |
American Society of Anesthesiologists score † | 1.000 | ||
1 | 5 (19%) | 11 (21%) | |
2 | 20 (77%) | 39 (75%) | |
3 | 1 (3.8%) | 2 (3.8%) | |
Etiology of ONFH ‡ | <0.001 | ||
Corticosteroid | 34 (100%) | 21 (31%) | |
Trauma | 23 (34%) | ||
Alcohol | 9 (13%) | ||
Others or unknown | 15 (22%) | ||
Preoperative Harris Hip Score * | 42.8 ± 16.7 | 44.7 ± 15.8 | 0.567 |
Preoperative UCLA activity score § | 3 (1–5) | 3 (1–6) | 0.721 |
Preoperative combined ROM * (°) | 150.2 ± 39.4 | 153.9 ± 36.1 | 0.633 |
Duration of follow-up * (years) | 7.4 ± 3.9 | 7.3 ± 4.2 | 0.870 |
Characteristics | Brain Tumor (n = 34) | Control (n = 68) | P-Value |
---|---|---|---|
Spinal anesthesia * | 28 (82%) | 62 (91%) | 0.208 |
Cup diameter (mm) | 51.0 ± 2.9 | 51.4 ± 3.6 | 0.560 |
Head diameter * | 0.548 | ||
28 mm | 3 (8.8%) | 10 (15%) | |
32 mm | 11 (32%) | 25 (37%) | |
36 mm | 20 (59%) | 33 (49%) | |
Femoral stem * | 0.733 | ||
Bencox | 22 (65%) | 35 (52%) | |
S-ROM | 5 (15%) | 11 (16%) | |
Trilock | 2 (5.9%) | 8 (12%) | |
Corail | 2 (5.9%) | 8 (12%) | |
Others | 3 (8.8%) | 6 (8.8%) | |
Operation time (min) | 81.2 ± 11.6 | 79.8 ± 14.5 | 0.776 |
Outcomes | Brain Tumor (n = 34) | Control (n = 68) | P-Value |
---|---|---|---|
Postoperative Harris Hip Score * | 80.2 ± 13.8 | 89.0 ± 9.9 | 0.002 |
Pain score | 38.3 ± 6.1 | 40.0 ± 5.3 | 0.168 |
Functional score | 33.2 ± 11.0 | 40.5 ± 7.3 | 0.001 |
Ratings of Harris Hip Score | 0.007 | ||
Excellent | 10 (29%) | 38 (56%) | |
Good | 8 (24%) | 18 (27%) | |
Fair | 7 (21%) | 8 (12%) | |
Poor | 9 (27%) | 4 (5.9%) | |
Postoperative UCLA activity score † | 5 (3–7) | 6 (4–9) | <0.001 |
Number of satisfactory hips | 31 (91%) | 63 (93%) | 1.000 |
Postoperative combined ROM * (°) | 228.5 ± 25.8 | 232.0 ± 24.6 | 0.513 |
Length of hospital stay * (days) | 8.4 ± 3.7 | 6.4 ± 1.6 | 0.005 |
Major surgical complications | 1 (2.9%) | 1 (2.9%) | 1.000 |
Periprosthetic femoral fracture | 0 (0%) | 1 (2.9%) | 1.000 |
Dislocation | 1 (2.9%) | 0 (0%) | 0.333 |
Periprosthetic joint infection | 0 (0%) | 0 (0%) | 1.000 |
Aseptic loosening | 0 (0%) | 0 (0%) | 1.000 |
Reoperation | 0 (0%) | 1 (1.5%) | 1.000 |
Outcomes | Brain Tumor (n = 34) | Control (n = 68) | P-Value |
---|---|---|---|
Radiolucency around the cup | 2 (5.9%) | 3 (4.4%) | 1.000 |
Aseptic loosening of the cup | 0 (0%) | 0 (0%) | 1.000 |
Radiolucency around stem | 3 (8.8%) | 4 (5.9%) | 0.683 |
Stem subsidence | 2 (5.9%) | 1 (1.5%) | 0.257 |
Stem stability | 1.000 | ||
Bone ingrowth | 33 (97%) | 67 (99%) | |
Fibrous stable | 1 (2.9%) | 1 (1.5%) | |
Loosening | 0 (0%) | 0 (0%) | |
Heterotopic ossification | 11 (32%) | 7 (10%) | 0.006 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, S.-J.; Park, C.-W.; Kim, D.-U.; Han, K.; Seo, M.; Moon, Y.-W.; Lee, J.-I.; Park, Y.-S. Outcomes of Total Hip Arthroplasty in Patients with Osteonecrosis of the Femoral Head Following Surgical Treatment of Brain Tumors. J. Clin. Med. 2019, 8, 1703. https://doi.org/10.3390/jcm8101703
Lim S-J, Park C-W, Kim D-U, Han K, Seo M, Moon Y-W, Lee J-I, Park Y-S. Outcomes of Total Hip Arthroplasty in Patients with Osteonecrosis of the Femoral Head Following Surgical Treatment of Brain Tumors. Journal of Clinical Medicine. 2019; 8(10):1703. https://doi.org/10.3390/jcm8101703
Chicago/Turabian StyleLim, Seung-Jae, Chan-Woo Park, Dong-Uk Kim, Kwangjoon Han, Minkyu Seo, Young-Wan Moon, Jung-Il Lee, and Youn-Soo Park. 2019. "Outcomes of Total Hip Arthroplasty in Patients with Osteonecrosis of the Femoral Head Following Surgical Treatment of Brain Tumors" Journal of Clinical Medicine 8, no. 10: 1703. https://doi.org/10.3390/jcm8101703
APA StyleLim, S.-J., Park, C.-W., Kim, D.-U., Han, K., Seo, M., Moon, Y.-W., Lee, J.-I., & Park, Y.-S. (2019). Outcomes of Total Hip Arthroplasty in Patients with Osteonecrosis of the Femoral Head Following Surgical Treatment of Brain Tumors. Journal of Clinical Medicine, 8(10), 1703. https://doi.org/10.3390/jcm8101703