Randomized Controlled Trial Considering Varied Exercises for Reducing Proactive Memory Interference
Abstract
1. Introduction
1.1. What Is Proactive Interference?
1.2. Theoretical Overview
1.3. Biological Overview
1.4. Exercise and PI
2. Method
2.1. Participants
2.2. Study Design
2.3. Study 1: Walking
2.4. Study 2: Jogging
2.5. Materials
2.5.1. Retrospective Memory
2.5.2. Exercise
“Please select a pace similar to one you would choose if you were late to class. Thus, it will not be a leisurely walk. Nor will it be a run.”
2.6. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Bennett, R.W. Proactive interference in short-term memory: Fundamental forgetting processes. J. Verbal Learn. Verbal Behav. 1975, 14, 123–144. [Google Scholar] [CrossRef]
- Bower, G.H. A Multicomponent Theory of the Memory Trace; Academic Press: New York, NY, USA, 1967. [Google Scholar]
- Turvey, M.T.; Egan, J.F. Release from proactlve interference in short-term memory as a function of change in visual and phonemic structure and retention interval. Percept. Psychophys. 1970, 7, 169–172. [Google Scholar] [CrossRef]
- Brown, J. Some tests of the decay theory of immediate memory. Q. J. Exp. Psychol. 1958, 10, 12–21. [Google Scholar] [CrossRef]
- Guise, K.G.; Shapiro, M.L. Medial prefrontal cortex reduces memory interference by modifying hippocampal encoding. Neuron 2017, 94, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Dolan, R.J.; Fletcher, P.C. Dissociating prefrontal and hippocampal function in episodic memory encoding. Nature 1997, 388, 582–585. [Google Scholar] [CrossRef] [PubMed]
- Moscovitch, M. Multiple dissociations of function in amnesia. Hum. Memory Amnesia 1982, 337–370. [Google Scholar]
- Raichle, M.E.; Fiez, J.A.; Videen, T.O.; MacLeod, A.M.K.; Pardo, J.V.; Fox, P.T.; Petersen, S.E. Practice-related changes in human brain functional anatomy during nonmotor learning. Cereb. Cortex 1994, 4, 8–26. [Google Scholar] [CrossRef] [PubMed]
- Shimamura, A.P.; Jurica, P.J.; Mangels, J.A.; Gershberg, F.B.; Knight, R.T. Susceptibility to memory interference effects following frontal lobe damage: Findings from tests of paired-associate learning. J. Cognit. Neurosci. 1995, 7, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Thompson-Schill, S.L.J.J.; Marshuetz, C.; Smith, E.E.; D’Esposito, M.; Kan, I.P.; Knight, R.T.; Swick, D. Effects of frontal lobe damage on interference effects in working memory. Cognit. Affect Behav. Neurosci. 2002, 2, 109–120. [Google Scholar] [CrossRef]
- Li, L.; Miller, E.K.; Desimone, R. The representation of stimulus familiarity in anterior inferior temporal cortex. J. Neurophysiol. 1993, 69, 1918–1929. [Google Scholar] [CrossRef] [PubMed]
- Badre, D.; Wagner, A.D. Selection, integration, and conflict monitoring; assessing the nature and generality of prefrontal cognitive control mechanisms. Neuron 2004, 41, 473–487. [Google Scholar] [CrossRef]
- Badre, D.; Wagner, A.D. Frontal lobe mechanisms that resolve proactive interference. Cereb. Cortex 2005, 15, 2003–2012. [Google Scholar] [CrossRef] [PubMed]
- D’Esposito, M.; Postle, B.R.; Jonides, J.; Smith, E.E. The neural substrate and temporal dynamics of interference effects in working memory as revealed by event-related functional MRI. Proc. Natl. Acad Sci. USA 1999, 96, 7514–7519. [Google Scholar] [CrossRef] [PubMed]
- Jonides, J.; Smith, E.E.; Marshuetz, C.; Koeppe, R.A.; Reuter-Lorenz, P.A. Inhibition in verbal working memory revealed by brain activation. Proc. Natl. Acad Sci. USA 1998, 95, 8410–8413. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J.K.; Reuter-Lorenz, P.A.; Sylvester, C.Y.; Jonides, J.; Smith, E.E. Dissociable neural mechanisms underlying response-based and familiarity-based conflict in working memory. Proc. Natl. Acad Sci. USA 2003, 100, 11171–11175. [Google Scholar] [CrossRef] [PubMed]
- Jay, T.M. Dopamine: A potential substrate for synaptic plasticity and memory mechanisms. Prog. Neurobiol. 2003, 69, 375–390. [Google Scholar] [CrossRef]
- Winters, B.D.; Bartko, S.J.; Saksida, L.M.; Bussey, T.J. Scopolamine infused into perirhinal cortex improves object recognition memory by blocking the acquisition of interfering object information. Learn Mem. 2007, 14, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.D.; Desmond, J.E.; Glover, G.H.; Gabrieli, J.D. Prefrontal cortex and recognition memory. Functional-MRI evidence for context-dependent retrieval processes. Brain 1998, 121 Pt 10, 1985–2002. [Google Scholar] [CrossRef] [PubMed]
- McNerney, M.W.; Radvansky, G.A. Mind racing: The influence of exercise on long-term memory consolidation. Memory 2015, 23, 1140–1151. [Google Scholar] [CrossRef] [PubMed]
- Colcombe, S.J.; Erickson, K.I.; Raz, N.; Webb, A.G.; Cohen, N.J.; McAuley, E.; Kramer, A.F. Aerobic fitness reduces brain tissue loss in aging humans. J. Gerontol. A Biol. Sci. Med. Sci. 2003, 58, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Brockett, A.T.; LaMarca, E.A.; Gould, E. Physical exercise enhances cognitive flexibility as well as astrocytic and synaptic markers in the medial prefrontal cortex. PLoS ONE 2015, 10, e0124859. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Nagappan, G.; Guan, X.; Nathan, P.J.; Wren, P. BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat. Rev. Neurosci. 2013, 14, 401–416. [Google Scholar] [CrossRef] [PubMed]
- Davey, C.P. Physical exertion and mental performance. Ergonomics 1973, 16, 595–599. [Google Scholar] [CrossRef] [PubMed]
- Tomporowski, P.D.; Cureton, K.; Armstrong, L.E.; Kane, G.M.S.P.B.; Millard-Stafford, M. Short-term effects of aerobic exercise on executive processes and emotional reactivity. Int. J. Sport Exerc. Psychol. 2005, 3, 131–146. [Google Scholar] [CrossRef]
- Etnier, J.L.; Nowell, P.M.; Landers, D.M.; Sibley, B.A. A meta-regression to examine the relationship between aerobic fitness and cognitive performance. Brain Res. Rev. 2006, 52, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Colcombe, S.J.; Kramer, A.F.; McAuley, E.; Erickson, K.I.; Scalf, P. Neurocognitive aging and cardiovascular fitness: Recent findings and future directions. J. Mol. Neurosci. 2004, 24, 9–14. [Google Scholar] [CrossRef]
- Labban, J.D.; Etnier, J.L. Effects of acute exercise on long-term memory. Res. Q. Exerc. Sport. 2011, 82, 712–721. [Google Scholar] [CrossRef] [PubMed]
- McMorris, T.; Sproule, J.; Turner, A.; Hale, B.J. Acute, intermediate intensity exercise, and speed and accuracy in working memory tasks: A meta-analytical comparison of effects. Physiol. Behav. 2011, 102, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, A. Functional neuroanatomy of altered states of consciousness: The transient hypofrontality hypothesis. Cons. Cogn. 2003, 12, 231–256. [Google Scholar] [CrossRef]
- Loprinzi, P.D.; Kane, C.J. Exercise and cognitive function: A randomized controlled trial examining acute exercise and free-living physical activity and sedentary effects. Mayo Clinic Proc. 2015, 90, 450–460. [Google Scholar] [CrossRef] [PubMed]
- De Sousa Magalhães, S.; Malloy-Diniz, L.F.; Hamdan, A.C. Validity convergent and reliability test-retest of the Rey Auditory Verbal Learning Test. Clinic. Neuropsychiatr. 2012, 9, 129–137. [Google Scholar]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Glanzer, M. Short-Term Memory; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Murdock, B.B. The serial position effect of free recall. J. Exp. Psychol. 1962, 64, 482–488. [Google Scholar] [CrossRef]
- Kiss, G.R.; Armstrong, C.; Milroy, R.; Piper, J. An associative thesaurus of English and its computer analysis. In The Computer and Literary Studies Edinburgh; Edinburgh University Press: Edinburgh, UK, 1973. [Google Scholar]
- Nielson, K.A.; Radtke, R.C.; Jensen, R.A. Arousal-induced modulation of memory storage processes in humans. Neurobiol. Learn Mem. 1996, 66, 133–142. [Google Scholar] [CrossRef] [PubMed]
Study 1 (n = 88) Walking | Study 2 (n = 88) Jogging | |
---|---|---|
Age (years) | M = 22.3 ± 3.7 | M = 21.9 ± 2.4 |
Body Mass Index (kg/m2) | M = 25.3 ± 4.5 | M = 24.2 ± 4.2 |
Sex | ||
Male | 52.3% | 45.5% |
Female | 47.7% | 54.5% |
Race | ||
Caucasian/Nonhispanic White | 65.9% | 68.2% |
African American/Nonhispanic Black | 20.5% | 25.0% |
Other Hispanic | - | 1.1% |
Other/multirace (Asian) | 13.6% | 5.7% |
Speed (mph; n = 66) | ||
Walking | M = 3.2 ± 5 | - |
0–5 min into jogging | - | M = 4.6 ± 9 |
6–10 min into jogging | - | M = 5.7 ± 9 |
11–15 min into jogging | - | M = 7.0 ± 1.3 |
Heart rate | ||
Resting (n = 88) | M = 73.5 ± 13.1 | M = 71.9 ± 10.9 |
7.5 min into walking/jogging (n = 66; control group omitted) | M = 113.3 ± 21.1 | M = 163.6 ± 16.5 |
14 min into walking/jogging | M = 116.0 ± 20.1 | M = 183.7 ± 12.9 |
5 min after walking/jogging | M = 80.6 ± 13.7 | M = 106.4 ± 15.8 |
Rating of perceived exertion | ||
7.5 min into walking (n = 66; control group omitted) | M = 9.1 ± 1.4 | - |
14 min into walking | M = 11.9 ± 14.5 | - |
0–5 min into jogging | - | M = 11.4 ± 7 |
6–10 min into jogging | - | M = 14.7 ± 1.2 |
11–15 min into jogging | - | M = 18.7 ± 9 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frith, E.; Sng, E.; Loprinzi, P.D. Randomized Controlled Trial Considering Varied Exercises for Reducing Proactive Memory Interference. J. Clin. Med. 2018, 7, 147. https://doi.org/10.3390/jcm7060147
Frith E, Sng E, Loprinzi PD. Randomized Controlled Trial Considering Varied Exercises for Reducing Proactive Memory Interference. Journal of Clinical Medicine. 2018; 7(6):147. https://doi.org/10.3390/jcm7060147
Chicago/Turabian StyleFrith, Emily, Eveleen Sng, and Paul D. Loprinzi. 2018. "Randomized Controlled Trial Considering Varied Exercises for Reducing Proactive Memory Interference" Journal of Clinical Medicine 7, no. 6: 147. https://doi.org/10.3390/jcm7060147
APA StyleFrith, E., Sng, E., & Loprinzi, P. D. (2018). Randomized Controlled Trial Considering Varied Exercises for Reducing Proactive Memory Interference. Journal of Clinical Medicine, 7(6), 147. https://doi.org/10.3390/jcm7060147