Association between Socioeconomic Status and 30-Day and One-Year All-Cause Mortality after Surgery in South Korea
Abstract
:1. Introduction
2. Materials and Methods
3. Data Collection and Outcomes
4. Statistical Methods
5. Results
6. 30-Day and One-Year Mortality after Surgery
7. Discussion
8. Conclusions
Author Contributions
Conflicts of Interest
Appendix A
Variable | Odds Ratio | 95% Confidence Interval | P-Value | |
---|---|---|---|---|
Lower Limit | Upper Limit | |||
Gender: female | 0.980 | 0.790 | 1.215 | 0.851 |
Body mass index (kg/m2) | 1.008 | 0.978 | 1.038 | 0.627 |
Age (year) | 1.009 | 1.003 | 1.016 | 0.006 |
Type of surgery | ||||
Cardiovascular surgery | 1 (ref) | |||
General surgery | 1.580 | 0.727 | 3.434 | 0.248 |
Neurosurgery | 1.349 | 0.537 | 3.390 | 0.524 |
Spine Surgery | 1.570 | 0.649 | 3.795 | 0.317 |
Thoracic Surgery | 2.195 | 0.849 | 5.677 | 0.105 |
Procedures * | 3.714 | 0.456 | 30.253 | 0.220 |
Orthopedic surgery | 1.311 | 0.597 | 2.879 | 0.500 |
ENT, Plastic, Dental, Eye surgery | 1.485 | 0.684 | 3.221 | 0.317 |
Urologic or OBGY surgery | 1.394 | 0.640 | 3.039 | 0.403 |
Preoperative eGFR (mL/min/1.73 m2) | ||||
>90 | 1 (ref) | |||
90–60 | 1.186 | 0.933 | 1.507 | 0.164 |
60–30 | 1.141 | 0.664 | 1.960 | 0.633 |
<30 or RRT | 1.106 | 0.491 | 2.493 | 0.808 |
ASA Class | ||||
I | 1 (ref) | |||
II | 1.231 | 0.987 | 1.534 | 0.065 |
III, IV, V | 1.083 | 0.681 | 1.723 | 0.736 |
Charlson Comorbidity Index Score | 0.995 | 0.903 | 1.097 | 0.919 |
Type of Anesthesia | ||||
General anesthesia | 1 (ref) | |||
Regional anesthesia | 0.751 | 0.561 | 1.006 | 0.055 |
Monitored anesthesia care | 1.018 | 0.766 | 1.352 | 0.903 |
Postoperative ICU admission | 1.297 | 0.784 | 2.146 | 0.311 |
Educational level | ||||
Less than high school | 1 (ref) | |||
More than or equal to high school, less than college | 0.876 | 0.663 | 1.158 | 0.354 |
More than, equal to college | 0.805 | 0.607 | 1.069 | 0.135 |
Occupation | ||||
Office Worker | 1 (ref) | |||
Professional | 1.040 | 0.617 | 1.755 | 0.882 |
Housework | 1.065 | 0.781 | 1.452 | 0.691 |
Own business | 1.104 | 0.780 | 1.562 | 0.578 |
Student or military | 0.862 | 0.475 | 1.566 | 0.627 |
Unemployed | 1.035 | 0.742 | 1.444 | 0.840 |
Religion: No (vs. Yes) | 1.170 | 0.945 | 1.449 | 0.149 |
Protestantism | 1 | |||
Catholicism | 1.315 | 0.873 | 1.983 | 0.190 |
Buddhism | 1.442 | 0.006 | 2.066 | 0.056 |
Others ** | 0.000 | 0.995 | ||
None | 1.393 | 0.077 | 1.801 | 0.051 |
Marriage Status | ||||
Single | 1 (ref) | |||
Married, living together | 0.818 | 0.607 | 1.102 | 0.187 |
Divorced/separated | 0.668 | 0.434 | 1.028 | 0.067 |
Widowed | 1.058 | 0.576 | 1.942 | 0.857 |
Current Alcohol Use | ||||
Yes | 1 (ref) | |||
No | 0.008 | 1.401 | 1.094 | 1 |
Quit | 0.065 | 1.309 | 0.984 | 1 |
Past Smoking History | ||||
Yes | 1 (ref) | |||
No | 1.125 | 0.864 | 1.464 | 0.383 |
Quit | 1.132 | 0.833 | 1.539 | 0.427 |
Current Smoking: No | 1.371 | 0.991 | 1.895 | 0.056 |
Appendix B
Variable | Odds Ratio | 95% Confidence Interval | P-Value | |
---|---|---|---|---|
Lower Limit | Upper Limit | |||
Gender: female | 0.983 | 0.910 | 1.063 | 0.669 |
Body mass index (kg/m2) | 1.007 | 0.997 | 1.018 | 0.182 |
Age (year) | 1.003 | 1.001 | 1.006 | 0.005 |
Type of surgery | ||||
Cardiovascular surgery | 1 | |||
General surgery | 0.905 | 0.640 | 1.278 | 0.569 |
Neurosurgery | 1.142 | 0.761 | 1.713 | 0.522 |
Spine Surgery | 0.942 | 0.647 | 1.373 | 0.758 |
Thoracic Surgery | 0.986 | 0.673 | 1.444 | 0.942 |
Procedures * | 0.876 | 0.506 | 1.519 | 0.638 |
Orthopedic surgery | 0.945 | 0.665 | 1.343 | 0.753 |
ENT, Plastic, Dental, Eye surgery | 0.917 | 0.649 | 1.295 | 0.621 |
Urologic or OBGY surgery | 0.909 | 0.643 | 1.287 | 0.592 |
Preoperative eGFR (mL/min/1.73 m2) | ||||
>90 | 1 | |||
90–60 | 1.168 | 1.072 | 1.272 | <0.001 |
60–30 | 1.424 | 1.149 | 1.765 | 0.001 |
<30 or RRT | 1.126 | 0.839 | 1.512 | 0.429 |
ASA Class | ||||
I | 1 | |||
II | 1.028 | 0.950 | 1.113 | 0.487 |
III, IV, V | 1.252 | 1.041 | 1.506 | 0.017 |
Charlson Comorbidity Index Score | 1.019 | 0.982 | 1.056 | 0.317 |
Type of anesthesia | ||||
General anesthesia | 1 | |||
Regional anesthesia | 0.981 | 0.874 | 1.100 | 0.738 |
Monitored anesthesia care | 0.984 | 0.890 | 1.086 | 0.743 |
Postoperative ICU admission | 1.011 | 0.825 | 1.239 | 0.914 |
Educational level | ||||
Less than high school | 1 | |||
More than or equal to high school, less than college | 0.935 | 0.847 | 1.031 | 0.178 |
More than, equal to college | 0.899 | 0.812 | 0.994 | 0.038 |
Occupation | ||||
Office worker | 1 | |||
Professional | 1.107 | 0.914 | 1.341 | 0.299 |
Housework | 1.052 | 0.942 | 1.176 | 0.367 |
Own business | 1.142 | 1.007 | 1.295 | 0.038 |
Student or military | 0.835 | 0.675 | 1.032 | 0.095 |
Unemployed | 1.075 | 0.953 | 1.213 | 0.239 |
Religion: No (vs. Yes) | 1.012 | 0.937 | 1.094 | 0.759 |
Protestantism | 1 | |||
Catholicism | 0.982 | 0.845 | 1.140 | 0.809 |
Buddhism | 1.064 | 0.932 | 1.215 | 0.358 |
Others ** | 2.435 | 0.904 | 6.557 | 0.078 |
None | 1.034 | 0.936 | 1.142 | 0.513 |
Marriage status | ||||
Single | 1 | |||
Married, living together | 0.972 | 0.878 | 1.075 | 0.576 |
Divorced/separated | 0.979 | 0.832 | 1.153 | 0.803 |
Widowed | 1.091 | 0.889 | 1.339 | 0.403 |
Current alcohol use | ||||
Yes | 1 | |||
No | 0.949 | 0.859 | 1.048 | 0.299 |
Quit | 0.958 | 0.855 | 1.073 | 0.455 |
Past Smoking History | ||||
Yes | 1 | |||
No | 0.949 | 0.859 | 1.048 | 0.299 |
Quit | 0.958 | 0.855 | 1.073 | 0.455 |
Current Smoking: No | 0.921 | 0.804 | 1.055 | 0.236 |
References
- Baker, E.H. Socioeconomic status, definition. In The Wiley Blackwell Encyclopedia of Health, Illness, Behavior, and Society; Wiley-Blackwell: Chichester, UK, 2014; pp. 2210–2214. [Google Scholar]
- Kennedy, B.P.; Kawachi, I.; Glass, R.; Prothrow-Stith, D. Income distribution, socioeconomic status, and self rated health in the United States: Multilevel analysis. BMJ 1998, 317, 917–921. [Google Scholar] [CrossRef] [PubMed]
- Mackenbach, J.P.; Kunst, A.E.; Cavelaars, A.E.; Groenhof, F.; Geurts, J.J.; EU working group on socioeconomic inequalities in health. Socioeconomic inequalities in morbidity and mortality in Western Europe. Lancet 1997, 349, 1655–1659. [Google Scholar] [CrossRef]
- Lantz, P.M.; House, J.S.; Lepkowski, J.M.; Williams, D.R.; Mero, R.P.; Chen, J. Socioeconomic factors, health behaviors, and mortality: Results from a nationally representative prospective study of US adults. JAMA 1998, 279, 1703–1708. [Google Scholar] [CrossRef] [PubMed]
- Marmot, M. Social determinants of health inequalities. Lancet 2005, 365, 1099–1104. [Google Scholar] [CrossRef]
- Wolters, U.; Wolf, T.; Stutzer, H.; Schroder, T. ASA classification and perioperative variables as predictors of postoperative outcome. Br. J. Anaesth. 1996, 77, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.L.; LaPar, D.J.; Mulloy, D.P.; Rasmussen, S.K.; Kane, B.J.; McGahren, E.D.; Rodgers, B.M. Primary payer status is significantly associated with postoperative mortality, morbidity, and hospital resource utilization in pediatric surgical patients within the United States. J. Pediatr. Surg. 2013, 48, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Bozic, K.J.; Lau, E.; Kurtz, S.; Ong, K.; Rubash, H.; Vail, T.P.; Berry, D.J. Patient-related risk factors for periprosthetic joint infection and postoperative mortality following total hip arthroplasty in medicare patients. J. Bone Jt. Surg. Am. 2012, 94, 794–800. [Google Scholar] [CrossRef] [PubMed]
- Hole, D.J.; McArdle, C.S. Impact of socioeconomic deprivation on outcome after surgery for colorectal cancer. Br. J. Surg. 2002, 89, 586–590. [Google Scholar] [CrossRef] [PubMed]
- McIsaac, D.I.; Bryson, G.L.; van Walraven, C. Association of frailty and 1-year postoperative mortality following major elective noncardiac surgery: A population-based cohort study. JAMA Surg. 2016, 151, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Ambur, V.; Taghavi, S.; Kadakia, S.; Jayarajan, S.; Gaughan, J.; Sjoholm, L.O.; Pathak, A.; Santora, T.; Rappold, J.; Goldberg, A.J. Does socioeconomic status predict outcomes after cholecystectomy? Am. J. Surg. 2017, 213, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Van Roest, M.H.; van der Aa, M.A.; van der Geest, L.G.; de Jong, K.P. The impact of socioeconomic status, surgical resection and type of hospital on survival in patients with pancreatic cancer. A population-based study in the Netherlands. PLoS ONE 2016, 11, e0166449. [Google Scholar] [CrossRef] [PubMed]
- Lim, B. Korean medicine coverage in the national health insurance in Korea: Present situation and critical issues. Integr. Med. Res. 2013, 2, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Anderson, T.; Kohler, H.P. Education fever and the east Asian fertility puzzle: A case study of low fertility in South Korea. Asian Popul. Stud. 2013, 9, 196–215. [Google Scholar] [CrossRef] [PubMed]
- Schiffmann, J.; Gandaglia, G.; Larcher, A.; Sun, M.; Tian, Z.; Shariat, S.F.; McCormack, M.; Valiquette, L.; Montorsi, F.; Graefen, M.; et al. Contemporary 90-day mortality rates after radical cystectomy in the elderly. Eur. J. Surg. Oncol. 2014, 40, 1738–1745. [Google Scholar] [CrossRef] [PubMed]
- Neuman, H.B.; Weiss, J.M.; Leverson, G.; O’Connor, E.S.; Greenblatt, D.Y.; Loconte, N.K.; Greenberg, C.C.; Smith, M.A. Predictors of short-term postoperative survival after elective colectomy in colon cancer patients >/= 80 years of age. Ann. Surg. Oncol. 2013, 20, 1427–1435. [Google Scholar] [CrossRef] [PubMed]
- Ra, J.; Paulson, E.C.; Kucharczuk, J.; Armstrong, K.; Wirtalla, C.; Rapaport-Kelz, R.; Kaiser, L.R.; Spitz, F.R. Postoperative mortality after esophagectomy for cancer: Development of a preoperative risk prediction model. Ann. Surg. Oncol. 2008, 15, 1577–1584. [Google Scholar] [CrossRef] [PubMed]
- Gulack, B.C.; Hale, B.; White, W.D.; Moon, R.E.; Bennett-Guerrero, E. Marriage and mortality after noncardiac surgery. J. Surg. Res. 2017, 210, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Smock, P.J.; Manning, W.D.; Gupta, S. The effect of marriage and divorce on women’s economic well-being. Am. Sociol. Rev. 1999, 794–812. [Google Scholar] [CrossRef]
- Wight, R.G.; Leblanc, A.J.; Lee Badgett, M.V. Same-sex legal marriage and psychological well-being: Findings from the California health interview survey. Am. J. Public Health 2013, 103, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Krumholz, H.M.; Butler, J.; Miller, J.; Vaccarino, V.; Williams, C.S.; Mendes de Leon, C.F.; Seeman, T.E.; Kasl, S.V.; Berkman, L.F. Prognostic importance of emotional support for elderly patients hospitalized with heart failure. Circulation 1998, 97, 958–964. [Google Scholar] [CrossRef] [PubMed]
- Sbarra, D.A.; Coan, J.A. Divorce and health: Good data in need of better theory. Curr. Opin. Psychol. 2017, 13, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.E. Korean religious culture and its affinity to Christianity: The rise of protestant Christianity in South Korea. Sociol. Relig. 2000, 61, 117–133. [Google Scholar] [CrossRef]
- McCullough, M.E.; Hoyt, W.T.; Larson, D.B.; Koenig, H.G.; Thoresen, C. Religious involvement and mortality: A meta-analytic review. Health Psychol. 2000, 19, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.K.; Ko, M.J.; Han, J.T. Alcohol consumption and mortality from all-cause and cancers among 1.34 million Koreans: The results from the Korea national health insurance corporation’s health examinee cohort in 2000. Cancer Causes Control. 2010, 21, 2295–2302. [Google Scholar] [CrossRef] [PubMed]
- Jee, S.H.; Lee, J.K.; Kim, I.S. Smoking-attributable mortality among Korean adults: 1981–2003. Korean J. Epidemiol. 2006, 28, 92–99. [Google Scholar]
- Bluman, L.G.; Mosca, L.; Newman, N.; Simon, D.G. Preoperative smoking habits and postoperative pulmonary complications. Chest 1998, 113, 883–889. [Google Scholar] [CrossRef] [PubMed]
- Fu, K.M.; Smith, J.S.; Polly, D.W., Jr.; Ames, C.P.; Berven, S.H.; Perra, J.H.; McCarthy, R.E.; Knapp, D.R., Jr.; Shaffrey, C.I.; Scoliosis Research Society, M.; et al. Correlation of higher preoperative American society of anesthesiology grade and increased morbidity and mortality rates in patients undergoing spine surgery. J. Neurosurg. Spine 2011, 14, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Ouellette, J.R.; Small, D.G.; Termuhlen, P.M. Evaluation of Charlson-Age Comorbidity index as predictor of morbidity and mortality in patients with colorectal carcinoma. J. Gastrointest. Surg. 2004, 8, 1061–1067. [Google Scholar] [CrossRef] [PubMed]
- Froehner, M.; Koch, R.; Litz, R.; Heller, A.; Oehlschlaeger, S.; Wirth, M.P. Comparison of the American society of anesthesiologists physical status classification with the Charlson score as predictors of survival after radical prostatectomy. Urology 2003, 62, 698–701. [Google Scholar] [CrossRef]
Variables | N or Value | Percent or SD | |
---|---|---|---|
Gender | Male/Female | 35,281/45,688 | 43.6%/56.4% |
Body mass index (kg/m2) | 24.06 | 3.55 | |
Age (year) | 54.44 | 16.23 | |
Charlson comorbidity index score | 0.57 | 1.085 | |
ASA Class | I | 36,959 | 45.6% |
II | 39,330 | 48.6% | |
≥III | 4680 | 5.8% | |
Type of Surgery | Cardiovascular surgery | 1138 | 1.4% |
General surgery | 19,474 | 24.3% | |
Neurosurgery | 2847 | 3.6% | |
Spine surgery | 4329 | 5.4% | |
Thoracic surgery | 3913 | 4.9% | |
Procedures * | 601 | 0.8% | |
Orthopedic surgery | 12,346 | 15.4% | |
ENT, Plastic, Dental, OPH | 19,514 | 24.4% | |
Urology or OBGY | 15,839 | 19.8% | |
Preoperative eGFR (mL/min/1.73 m2) | >90 | 50,249 | 62.1% |
60–90 | 25,628 | 31.7% | |
30–60 | 3597 | 4.4% | |
<30 or RRT | 1495 | 1.8% | |
Type of Anesthesia | General anesthesia | 54,879 | 67.8% |
Regional anesthesia | 10,644 | 13.1% | |
Monitored anesthesia care | 15,446 | 19.1% | |
Postoperative ICU admission | Yes | 2982 | 3.7% |
No | 77,987 | 96.3% | |
Education Level | Less than high school | 21,191 | 26.2% |
More than or equal to high school, less than college | 32,400 | 40.0% | |
More than, equal to college | 27,378 | 33.8% | |
Occupation at Surgery | Office worker | 14,874 | 18.4% |
Professional | 4284 | 5.3% | |
Housework | 25,582 | 31.6% | |
Own business | 15,905 | 19.6% | |
Student or military | 2567 | 3.2% | |
Unemployed | 17,757 | 21.9% | |
Marital Status | Never married | 15,049 | 18.6% |
Married, living together | 55,558 | 68.6% | |
Divorced/separated | 6459 | 8.0% | |
Widowed | 3903 | 4.8% | |
Religion | Yes | 36,017 | 44.5% |
No | 44,952 | 55.5% | |
Classification of Religion | Protestantism | 16,253 | 20.1% |
Catholicism | 7522 | 9.3% | |
Buddhism | 11,962 | 14.8% | |
Others ** | 280 | 0.3% | |
None | 44,952 | 55.5% | |
Current Alcohol Use | Yes | 21,277 | 26.3% |
No | 39,138 | 48.3% | |
Quit | 20,554 | 25.4% | |
Smoking History | Yes | 17,647 | 21.8% |
Never smoked | 42,856 | 52.9% | |
Quit | 20,466 | 25.3% | |
Current Smoker | 7582 | 9.4% | |
30-day all-cause mortality | 339 | 0.4% | |
One-year all-cause mortality | 2687 | 3.3% |
Variables | Odds Ratio | 95% Confidence Interval | P-Value | |
---|---|---|---|---|
Lower Limit | Upper Limit | |||
Age | 1.012 | 1.003 | 1.021 | 0.006 |
Educational Level | ||||
Less than high school | 1 (ref) | |||
More than or equal to high school, less than college | 0.925 | 0.678 | 1.263 | 0.624 |
More than, equal to college | 0.925 | 0.670 | 1.277 | 0.634 |
Occupation | ||||
Office worker | 1 (ref) | |||
Professional | 1.110 | 0.652 | 1.890 | 0.701 |
Housework | 0.987 | 0.693 | 1.406 | 0.943 |
Own business | 1.076 | 0.741 | 1.563 | 0.700 |
Student or military | 0.893 | 0.454 | 1.757 | 0.744 |
Unemployed | 0.880 | 0.609 | 1.272 | 0.497 |
Religion | ||||
None | 1 (ref) | |||
Protestantism | 0.642 | 0.476 | 0.866 | 0.004 |
Catholicism | 0.855 | 0.565 | 1.292 | 0.456 |
Buddhism | 0.912 | 0.635 | 1.309 | 0.617 |
Others * | 55.206 | 0.000 | 0.995 | |
Marital Status | ||||
Never married | 1 (ref) | |||
Married, living together | 0.678 | 0.462 | 0.995 | 0.047 |
Divorced/separated | 0.573 | 0.359 | 0.917 | 0.020 |
Widowed | 0.709 | 0.351 | 1.429 | 0.336 |
Current Alcohol Use | ||||
No | 1 (ref) | |||
Yes | 1.390 | 1.048 | 1.844 | 0.022 |
Quit | 3.692 | 0.695 | 19.623 | 0.125 |
Past Smoking History | ||||
Yes | 1 (ref) | |||
Never smoked | 0.872 | 0.608 | 1.251 | 0.458 |
Quit | 0.252 | 0.047 | 1.341 | 0.106 |
Current Smoking (Yes) | 1.344 | 0.882 | 2.047 | 0.168 |
Odds Ratio | 95% Confidence Interval | P-Value | ||
---|---|---|---|---|
Lower Limit | Upper Limit | |||
Age (year) | 1.001 | 0.998 | 1.004 | 0.570 |
Preoperative eGFR (mL/min/1.73 m2) | ||||
>90 | 1 (ref) | |||
60–90 | 1.162 | 1.061 | 1.273 | <0.001 |
30–60 | 1.373 | 1.098 | 1.717 | 0.005 |
<30 or RRT | 1.033 | 0.758 | 1.409 | 0.835 |
ASA Class | ||||
I | 1 (ref) | |||
II | 0.970 | 0.887 | 1.062 | 0.515 |
III, IV, V | 1.153 | 0.940 | 1.415 | 0.171 |
Educational Level | ||||
Less than high school | 1 (ref) | |||
More than or equal to high school, Less than college | 0.932 | 0.834 | 1.041 | 0.217 |
More than, equal to college | 0.909 | 0.807 | 1.022 | 0.111 |
Occupation | ||||
Office worker | 1 (ref) | |||
Professional | 1.124 | 0.923 | 1.369 | 0.246 |
Housework | 1.059 | 0.926 | 1.195 | 0.402 |
Own business | 1.127 | 0.993 | 1.295 | 0.081 |
Student or military | 0.790 | 0.617 | 1.003 | 0.064 |
Unemployed | 1.013 | 0.883 | 1.162 | 0.853 |
Religion | ||||
None | 1 (ref) | |||
Protestantism | 0.962 | 0.859 | 1.078 | 0.508 |
Catholicism | 0.948 | 0.819 | 1.097 | 0.473 |
Buddhism | 0.983 | 0.866 | 1.115 | 0.787 |
Others * | 2.265 | 0.841 | 6.099 | 0.106 |
Marital Status | ||||
Never married | 1 (ref) | |||
Married, living together | 0.857 | 0.746 | 0.983 | 0.028 |
Divorced/separated | 0.884 | 0.741 | 1.054 | 0.170 |
Widowed | 0.883 | 0.692 | 1.126 | 0.316 |
Current Alcohol Use | ||||
No | 1 (ref) | |||
Yes | 1.073 | 0.964 | 1.194 | 0.199 |
Quit | 1.331 | 0.646 | 2.740 | 0.438 |
Past Smoking History | ||||
Yes | 1 (ref) | |||
Never smoked | 0.954 | 0.834 | 1.092 | 0.495 |
Quit | 0.739 | 0.356 | 1.533 | 0.417 |
Current Smoking: No | 0.923 | 0.781 | 1.091 | 0.347 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, T.K.; Kim, K.; Do, S.-H.; Hwang, J.-W.; Jeon, Y.-T. Association between Socioeconomic Status and 30-Day and One-Year All-Cause Mortality after Surgery in South Korea. J. Clin. Med. 2018, 7, 52. https://doi.org/10.3390/jcm7030052
Oh TK, Kim K, Do S-H, Hwang J-W, Jeon Y-T. Association between Socioeconomic Status and 30-Day and One-Year All-Cause Mortality after Surgery in South Korea. Journal of Clinical Medicine. 2018; 7(3):52. https://doi.org/10.3390/jcm7030052
Chicago/Turabian StyleOh, Tak Kyu, Kooknam Kim, Sang-Hwan Do, Jung-Won Hwang, and Young-Tae Jeon. 2018. "Association between Socioeconomic Status and 30-Day and One-Year All-Cause Mortality after Surgery in South Korea" Journal of Clinical Medicine 7, no. 3: 52. https://doi.org/10.3390/jcm7030052
APA StyleOh, T. K., Kim, K., Do, S.-H., Hwang, J.-W., & Jeon, Y.-T. (2018). Association between Socioeconomic Status and 30-Day and One-Year All-Cause Mortality after Surgery in South Korea. Journal of Clinical Medicine, 7(3), 52. https://doi.org/10.3390/jcm7030052