Effect of High-Intensity Interval Training Combined with L-Citrulline Supplementation on Functional Capacities and Muscle Function in Dynapenic-Obese Older Adults
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design
2.2. Population
2.3. Intervention
2.3.1. Exercise Training
2.3.2. L-citrulline Supplementation
2.4. Measurements
2.4.1. Body Composition
2.4.2. Functional and Aerobic Capacities
2.4.3. Muscle Function
2.4.4. Energy Balance
2.5. Statistical Analysis
3. Results
Population
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bouchard, D.R.; Dionne, I.J.; Brochu, M. Sarcopenic/obesity and physical capacity in older men and women: Data from the nutrition as a determinant of successful aging (nuage)—the quebec longitudinal study. Obesity 2009, 17, 2082–2088. [Google Scholar] [CrossRef] [PubMed]
- Stenholm, S.; Alley, D.; Bandinelli, S.; Griswold, M.E.; Koskinen, S.; Rantanen, T.; Guralnik, J.M.; Ferrucci, L. The effect of obesity combined with low muscle strength on decline in mobility in older persons: Results from the inchianti study. Int. J. Obes. 2009, 33, 635–644. [Google Scholar] [CrossRef] [PubMed]
- Bouchard, D.R.; Janssen, I. Dynapenic-obesity and physical function in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2010, 65, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Barbat-Artigas, S.; Dupontgand, S.; Fex, A.; Karelis, A.D.; Aubertin-Leheudre, M. Relationship between dynapenia and cardiorespiratory functions in healthy postmenopausal women. Menopause 2011, 18, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Alexandre, T.D.S.; Scholes, S.; Santos, J.L.F.; de Oliveira, C. Dynapenic abdominal obesity as a risk factor for worse trajectories of ADL disability among older adults: ELSA cohort study. J. Gerontol. A Biol. Sci. Med. Sci. 2018. [Google Scholar] [CrossRef] [PubMed]
- Trouwborst, I.; Verreijen, A.; Memelink, R.; Massanet, P.; Boirie, Y.; Weijs, P.; Tieland, M. Exercise and Nutrition Strategies to Counteract Sarcopenic Obesity. Nutrients 2018, 10, 605. [Google Scholar] [CrossRef] [PubMed]
- Harvey, J.A.; Chastin, S.F.; Skelton, D.A. Prevalence of sedentary behavior in older adults: A systematic review. Int. J. Environ. Res. Public Health 2013, 10, 6645–6661. [Google Scholar] [CrossRef] [PubMed]
- Moschny, A.; Platen, P.; Klaassen-Mielke, R.; Trampisch, U.; Hinrichs, T. Barriers to physical activity in older adults in Germany: A cross-sectional study. Int. J. Behav. Nutr. Phys. Act. 2011. [Google Scholar] [CrossRef]
- Barbat-Artigas, S.; Dupontgand, S.; Pion, C.H.; Feiter-Murphy, Y.; Aubertin-Leheudre, M. Identifying recreational physical activities associated with muscle quality in men and women aged 50 years and over. J. Cachexia Sarcopenia Muscle 2014, 5, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Fex, A.; Leduc-Gaudet, J.P.; Filion, M.E.; Karelis, A.D.; Aubertin-Leheudre, M. Effect of Elliptical High Intensity Interval Training on Metabolic Risk Factor in Pre- and Type 2 Diabetes Patients: A Pilot Study. J. Phys. Act. Health 2015, 12, 942–946. [Google Scholar] [CrossRef]
- Batacan, R.B.; Duncan, M.J.; Dalbo, V.J.; Tucker, P.S.; Fenning, A.S. Effects of high-intensity interval training on cardiometabolic health: A systematic review and meta-analysis of intervention studies. Columbia J. Sports Medicine 2016, 51, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Karlsen, T.; Aamot, I.L.; Haykowsky, M.; Rognmo, Ø. High Intensity Interval Training for Maximizing Health Outcomes. Prog. Cardiovasc. Dis. 2017, 60, 67–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillen, J.B.; Gibala, M.J. Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness? Appl. Physiol. Nutr. Metab. 2014, 39, 409–412. [Google Scholar] [CrossRef] [PubMed]
- García-Pinillos, F.; Cámara-Pérez, J.C.; Soto-Hermoso, V.M.; Latorre-Román, P.Á. A High Intensity Interval Training (HIIT)-Based Running Plan Improves Athletic Performance by Improving Muscle Power. J. Strength Cond. Res. 2017, 31, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Knowles, A.-M.; Herbert, P.; Easton, C.; Sculthorpe, N.; Grace, F.M. Impact of low-volume, high-intensity interval training on maximal aerobic capacity, health-related quality of life and motivation to exercise in ageing men. AGE 2015, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sculthorpe, N.F.; Herbert, P.; Grace, F. One session of high-intensity interval training (HIIT) every 5 days, improves muscle power but not static balance in lifelong sedentary ageing men: A randomized controlled trial. Medicine (Baltimore) 2017, 96, e6040. [Google Scholar] [CrossRef]
- Thum, J.S.; Parsons, G.; Whittle, T.; Astorino, T.A. High-Intensity Interval Training Elicits Higher Enjoyment than Moderate Intensity Continuous Exercise. PLoS ONE 2017, 12, e0166299. [Google Scholar] [CrossRef]
- Vella, C.A.; Taylor, K.; Drummer, D. High-intensity interval and moderate-intensity continuous training elicit similar enjoyment and adherence levels in overweight and obese adults. Eur. J. Sport Sci. 2017, 17, 1203–1211. [Google Scholar] [CrossRef]
- Papadia, C.; Osowska, S.; Cynober, L.; Forbes, A. Citrulline in health and disease. Review on human studies. Clin. Nutr. 2018, 37, 1823–1828. [Google Scholar] [CrossRef]
- Jobgen, W.S.; Fried, S.K.; Fu, W.J.; Meininger, C.J.; Wu, G. Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J. Nutr. Biochem. 2006, 17, 571–588. [Google Scholar] [CrossRef]
- Moinard, C.; Le Plenier, S.; Noirez, P.; Morio, B.; Bonnefont-Rousselot, D.; Kharchi, C.; Ferry, A.; Neveux, N.; Cynober, L.; Raynaud-Simon, A. Citrulline Supplementation Induces Changes in Body Composition and Limits Age-Related Metabolic Changes in Healthy Male Rats. J. Nutr. 2015, 145, 1429–1437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joffin, N.; Jaubert, A.-M.; Durant, S.; Bastin, J.; De Bandt, J.-P.; Cynober, L.; Moinard, C.; Forest, C.; Noirez, P. Citrulline induces fatty acid release selectively in visceral adipose tissue from old rats. Mol. Nutr. Food Res. 2014, 58, 1765–1775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faure, C.; Raynaud-Simon, A.; Ferry, A.; Daugé, V.; Cynober, L.; Aussel, C.; Moinard, C. Leucine and citrulline modulate muscle function in malnourished aged rats. Amino Acids 2011, 42, 1425–1433. [Google Scholar] [CrossRef] [PubMed]
- Bouillanne, O.; Melchior, J.C.; Faure, C.; Paul, M.; Canouï-Poitrine, F.; Boirie, Y.; Chevenne, D.; Forasassi, C.; Guery, E.; Herbaud, S.; et al. Impact of 3-week citrulline supplementation on postprandial protein metabolism in malnourished older patients: The Ciproage randomized controlled trial. Clin. Nutr. 2018. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, A.; Alvarez-Alvarado, S.; Ormsbee, M.J.; Madzima, T.A.; Campbell, J.C.; Wong, A. Impact of l-citrulline supplementation and whole-body vibration training on arterial stiffness and leg muscle function in obese postmenopausal women with high blood pressure. Exp. Gerontol. 2015, 63, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Lauzé, M.; Martel, D.D.; Aubertin-Leheudre, M. Feasibility and Effects of a Physical Activity Program Using Gerontechnology in Assisted Living Communities for Older Adults. J. Am. Med. Dir. Assoc. 2017, 18, 1069–1075. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, R.N.; Wayne, S.J.; Waters, D.L.; Janssen, I.; Gallagher, D.; Morley, J.E. Sarcopenic obesity predicts instrumental activities of daily living disability in the elderly. Obes. Res. 2004, 12, 1995–2004. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.J.; Fan, X.; Moe, S.T. Criterion-related validity of the borg ratings of perceived exertion scale in healthy individuals: A meta-analysis. J. Sports Sci. 2002, 20, 873–899. [Google Scholar] [CrossRef]
- Karvonen, J.; Vuorimaa, T. Heart rate and exercise intensity during sports activities. Practical application. Sports Med. 1988, 5, 303–311. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The montreal cognitive assessment, moca: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Aubertin-Leheudre, M.; Audet, M.; Goulet, E.D.B.; Dionne, I.J. Hrt provides no additional beneficial effect on sarcopenia in physically active postmenopausal women: A cross-sectional, observational study. Maturitas 2005, 51, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Podsiadlo, D.; Richardson, S. The timed “up & go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Mathias, S.; Nayak, U.S.; Isaacs, B. Balance in elderly patients: The “get-up and go” test. Arch. Phys. Med. Rehabil. 1986, 67, 387–389. [Google Scholar] [PubMed]
- Springer, B.A.; Marin, R.; Cyhan, T.; Roberts, H.; Gill, N.W. Normative values for the unipedal stance test with eyes open and closed. J. Geriatr. Phys. Ther. 2007, 30, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Yanagawa, N.; Shimomitsu, T.; Kawanishi, M.; Fukunaga, T.; Kanehisa, H. Relationship between performances of 10-time-repeated sit-to-stand and maximal walking tests in non-disabled older women. J. Physiol. Anthr. 2016, 36. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.M.; Chan, R.W.; Fung, Y.K.; Fong, S.S.; Lam, S.S.; Lai, C.W.; Ng, S.S. Reliability and validity of Alternate Step Test times in subjects with chronic stroke. J. Rehabil. Med. 2014, 46, 969–974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, K.O.; Wood-Dauphinee, S.L.; Williams, J.I.; Maki, B. Measuring balance in the elderly: validation of an instrument. Can. J. Public Health 1992, 83, S7–S11. [Google Scholar] [PubMed]
- Erratum: ATS Statement: Guidelines for the Six-Minute Walk Test. Am. J. Respir. Crit. Care Medicine 2016, 193, 1185. [CrossRef] [PubMed]
- Burr, J.F.; Bredin, S.S.D.; Faktor, M.D.; Warburton, D.E.R. The 6-minute walk test as a predictor of objectively measured aerobic fitness in healthy working-aged adults. Physician Sportsmed. 2011, 39, 133–139. [Google Scholar] [CrossRef]
- Mathiowetz, V.; Weber, K.; Volland, G.; Kashman, N. Reliability and validity of grip and pinch strength evaluations. J. Hand. Surg. Am. 1984, 9, 222–226. [Google Scholar] [CrossRef]
- Dulac, M.; Boutros, G.E.; Pion, C.; Barbat-Artigas, S.; Gouspillou, G.; Aubertin-Leheudre, M. Is handgrip strength normalized to body weight a useful tool to identify dynapenia and functional incapacity in post-menopausal women? Braz. J. Phys. Ther. 2016, 20, 510–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbat-Artigas, S.; Rolland, Y.; Cesari, M.; Abellan van Kan, G.; Vellas, B.; Aubertin-Leheudre, M. Clinical relevance of different muscle strength indexes and functional impairment in women aged 75 years and older. J. Gerontol. Ser. A Biol. Sci. Med. 2012, 68, 811–819. [Google Scholar] [CrossRef] [PubMed]
- Houtz, S.J.; Lebow, M.J.; Beyer, F.R. Effect of posture on strength of the knee flexor and extensor muscles. J. Appl. Physiol. 1957, 11, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.; Stutzman, L. Strength variation through the range of joint motion. Phys. Ther. Rev. 1959, 39, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Riggs, B.L.; Wahner, H.W.; Dunn, W.L.; Mazess, R.B.; Offord, K.P.; Melton, L.J. Differential changes in bone mineral density of the appendicular and axial skeleton with aging: Relationship to spinal osteoporosis. J. Clin. Investig. 1981, 67, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Verdijk, L.B.; van Loon, L.; Meijer, K.; Savelberg, H.H.C.M. One-repetition maximum strength test represents a valid means to assess leg strengthin vivoin humans. J. Sports Sci. 2009, 27, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Newman, A.B.; Kupelian, V.; Visser, M.; Simonsick, E.M.; Goodpaster, B.H.; Kritchevsky, S.B.; Tylavsky, F.A.; Rubin, S.M.; Harris, T.B. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J. Gerontol. Ser. A Biol. Sci. Med. 2006, 61, 72–77. [Google Scholar] [CrossRef]
- Bassey, E.J.; Short, A.H. A new method for measuring power output in a single leg extension: Feasibility, reliability and validity. Eur. J. Appl. Physiol. Occup. Physiol. 1990, 60, 385–390. [Google Scholar] [CrossRef]
- Skelton, D.A. Explosive power and asymmetry in leg muscle function in frequent fallers and non-fallers aged over 65. Age Ageing 2002, 31, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Lührmann, P.M.; Herbert, B.M.; Gaster, C.; Neuhäuser-Berthold, M. Validation of a self-administered 3-day estimated dietary record for use in the elderly. Eur. J. Nutr. 1999, 38, 235–240. [Google Scholar] [CrossRef]
- Colbert, L.H.; Matthews, C.E.; Havighurst, T.C.; Kim, K.; Schoeller, D.A. Comparative validity of physical activity measures in older adults. Med. Sci. Sports Exerc. 2011, 43, 867–876. [Google Scholar] [CrossRef] [PubMed]
- Brazeau, A.S.; Beaudoin, N.; Bélisle, V.; Messier, V.; Karelis, A.D.; Rabasa-Lhoret, R. Validation and reliability of two activity monitors for energy expenditure assessment. J. Sci. Med. Sport. 2016, 19, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Türk, Y.; Theel, W.; Kasteleyn, M.J.; Franssen, F.M.E.; Hiemstra, P.S.; Rudolphus, A.; Taube, C.; Braunstahl, G.J. High intensity training in obesity: A Meta-analysis. Obes. Sci. Pract. 2017, 3, 258–271. [Google Scholar] [CrossRef] [PubMed]
- Sénéchal, M.; Bouchard, D.R.; Dionne, I.J.; Brochu, M. The effects of lifestyle interventions in dynapenic-obese postmenopausal women. Menopause 2012, 19, 1015–1021. [Google Scholar] [CrossRef] [PubMed]
- Buckley, S.; Knapp, K.; Lackie, A.; Lewry, C.; Horvey, K.; Benko, C.; Trinh, J.; Butcher, S. Multimodal high-intensity interval training increases muscle function and metabolic performance in females. Appl. Physiol. Nutr. Metab. 2015, 40, 1157–1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engel, F.A.; Ackermann, A.; Chtourou, H.; Sperlich, B. High-Intensity Interval Training Performed by Young Athletes: A Systematic Review and Meta-Analysis. Front. Physiol. 2018, 9, 1012. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Landi, F.; Schneider, S.M.; Zuniga, C.; Arai, H.; Boirie, Y.; Chen, L.-K.; Fielding, R.A.; Martin, F.C.; Michel, J.-P.; et al. Prevalence of and interventions for sarcopenia in ageing adults: A systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing 2014, 43, 748–759. [Google Scholar] [CrossRef] [PubMed]
Citrulline (10 g) | Placebo (10 g) |
---|---|
38 kcal | 38 kcal |
0 g of proteins | 0 g of proteins |
0 g of maltodextrin (carbohydrate) | 10 g of maltodextrin (carbohydrate) |
10 g of L-citrulline | 0 g of L-Citrulline |
Variables | HIIT-CIT (n = 26) | HIIT-PLA (n = 30) | p-Value | |||||
---|---|---|---|---|---|---|---|---|
Pre | Post | p Value * | Pre | Post | p Value * | Time Effect Adjusted for Age | Time × Group Effect Adjusted for Age | |
General characteristics | ||||||||
Age (years) | 65.7 ± 4.2 a | NA | NA | 68.1 ± 4.2 a | NA | NA | NA | NA |
Sex (% men) | 50 | NA | NA | 50 | NA | NA | NA | NA |
MoCA (/30) | 27.1 ± 1.9 | NA | NA | 27.9 ± 1.4 | NA | NA | NA | NA |
Body composition | ||||||||
Body weight (BW; kg) | 82.6 ± 12.5 | 82.1 ± 10.9 | 0.40 | 83.7 ± 11.8 | 82.6 ± 12.5 | 0.30 | 0.35 | 0.98 |
BMI (kg/m²) | 30.5 ± 4.1 | 30.4 ± 4.6 | 0.56 | 30.5 ± 4.9 | 30.0 ± 4.9 | 0.27 | 0.67 | 0.62 |
WC (cm) | 107 ± 11 | 104 ± 11 | <0.001 | 106 ± 11 | 104 ± 10 | <0.001 | 0.20 | 0.15 |
Total LM (kg) | 47.8 ± 7.4 | 48.2 ± 7.3 | 0.19 | 47.3 ± 9.2 | 47.9 ± 9.6 | 0.04 | 0.54 | 0.59 |
Total FM (%) | 38.9 ± 5.8 | 37.8 ± 6.3 | 0.02 | 38.9 ± 6.3 | 38.5 ± 7.6 | 0.25 | 0.23 | 0.17 |
Android FM (%) | 48.8 ± 5.5 | 47.7± 6.8 | 0.09 | 48.5 ± 6.6 | 48.1 ± 7.2 | 0.46 | 0.41 | 0.25 |
Gynoid FM (%) | 40.4 ± 8.1 | 39.6 ± 8.8 | 0.19 | 41.1 ± 10.1 | 40.8 ± 10.2 | 0.55 | 0.42 | 0.46 |
Leg FM (%) | 36.5 ± 9.0 | 35.5± 9.2 | 0.02 | 37.0 ± 10.7 | 36.5 ± 10.8 | 0.18 | 0.17 | 0.40 |
Variables | HIIT-CIT (n = 26) | HIIT-PLA (n = 30) | p-Values | |||||
---|---|---|---|---|---|---|---|---|
Pre | Post | p Value * | Pre | Post | p Value * | Time Effect Adjusted for Age | Time × Group Effect Adjusted for Age | |
Functional & aerobic capacities | ||||||||
TUGn (s) | 9.9 ± 1.3 | 8.7 ± 0.9 | <0.001 | 10.3 ± 1.8 | 9.1 ± 1.3 | <0.001 | 0.03 | 0.53 |
TUGf (s) | 7.4 ± 0.8 | 6.2 ± 0.9 | <0.001 | 7.5 ± 1.1 | 6.6 ± 0.9 | <0.001 | 0.04 | 0.04 |
6 MWT (m) | 558 ± 92 | 633 ± 85 | <0.001 | 550 ± 85 | 618 ± 91 | <0.001 | 0.61 | 0.70 |
Estimated VO2max (mL/min/kg) | 17.8 ± 2.1 | 19.5 ± 1.9 | <0.001 | 17.6 ± 2.1 | 19.2 ± 2.1 | <0.001 | 0.67 | 0.69 |
Unipodal balance (/60 s) | 26.7 ± 18.6 | 40.5 ± 21.6 | 0.001 | 22.4 ± 14.6 | 34.5 ± 20.2 | <0.001 | 0.62 | 0.48 |
Chair stand test (s) | 19.1 ± 3.3 | 15.1 ± 2.7 | <0.001 | 18.8 ± 3.7 | 15.6 ± 3.7 | <0.001 | 0.03 | 0.15 |
Alternate step test (n) | 30.3 ± 4.9 | 35.0 ± 5.6 | <0.001 | 28.9 ± 3.9 | 33.6 ± 4.7 | <0.001 | 0.59 | 0.56 |
Muscle Function | ||||||||
ULMS (kg) | 32.6 ± 9.1 | 35.7 ± 10.8 | <0.001 | 32.4 ± 8.1 | 33.5 ± 9.2 | 0.18 | 0.035 | 0.05 |
ULMSr (Kg/Kg) | 0.39 ± 0.09 | 0.43 ± 0.11 | <0.001 | 0.39 ± 0.08 | 0.41 ± 0.08 | 0.09 | 0.019 | 0.05 |
Upper MQ (kg/kg) | 6.20 ± 1.04 | 6.79 ± 1.19 | 0.004 | 6.11 ± 1.23 | 6.98 ± 4.50 | 0.21 | 0.19 | 0.98 |
LLMS (N) | 348 ± 83 | 379 ± 72 | 0.007 | 339 ± 92 | 347 ± 96 | 0.22 | 0.07 | 0.07 |
LLMSr (kg/kg) | 0.42 ± 0.09 | 0.46 ± 0.08 | <0.001 | 0.42 ± 0.11 | 0.43 ± 0.09 | <0.001 | 0.10 | 0.14 |
Lower MQ (kg/kg) | 2.11 ± 0.45 | 2.26 ± 0.35 | 0.004 | 2.06 ± 0.35 | 2.08 ± 0.31 | 0.15 | 0.11 | 0.10 |
Muscle Power (W) | 153 ± 52 | 186 ± 56 | <0.001 | 155 ± 70 | 186 ± 69 | <0.001 | 0.84 | 0.90 |
Variables | HIIT-CIT (n = 26) | HIIT-PLA (n = 30) | p-Value | |||||
---|---|---|---|---|---|---|---|---|
Pre | Post | p Value | Pre | Post | p Value | Time Effect Adjusted for Age | Time × Group Effect Adjusted for Age | |
Energy balance | ||||||||
Total Kcal intake (kcal/day) | 1963 ± 310 | 1826 ± 540 | 0.36 | 2211 ± 1032 | 2055 ± 479 | 0.73 | 0.35 | 0.29 |
Proteins intake (g/day) | 83.6 ± 20.7 | 87.3 ± 5.7 | 0.65 | 86.9 ± 30.5 | 79.6 ± 20.6 | 0.61 | 0.77 | 0.76 |
Carbohydrates intake (g/day) | 252 ± 64 | 222 ± 76 | 0.24 | 267 ± 137 | 251 ± 52 | 0.79 | 0.25 | 0.22 |
Lipids intake (g/day) | 69.6 ± 18.4 | 64.9 ± 26.3 | 0.28 | 90.2 ± 51.6 | 79.9 ± 23.7 | 0.65 | 0.24 | 0.26 |
Number of steps (n/day) | 6639 ± 3448 | 6110 ± 3334 | 0.88 | 6228 ± 3217 | 5501 ± 3468 | 0.27 | 0.23 | 0.18 |
Variables | HIIT-CIT Group (n = 26) | HIIT-PLA Group (n = 30) | p-Value | ||
---|---|---|---|---|---|
Δ Changes (%) | Responders (%) | Δ Changes (%) | Responders (%) | ||
Body composition | |||||
BMI | −0.6 ± 3.8 | 65.8 | −1.3 ± 6.6 | 53 | 0.62 |
WC | −3.1 ± 2.3 | 92 | −2.1 ± 2.8 | 83 | 0.15 |
Total LM | 0.9 ± 3.1 | 53.8 | 1.3 ± 3.4 | 63.3 | 0.59 |
Total FM | −2.9 ± 6.0 | 73.3 | −0.9 ± 5.12 | 50 | 0.17 |
Gynoid FM | −2.2 ± 7.4 | 53.8 | −0.7 ± 7.7 | 56.7 | 0.46 |
Android FM | −2.6 ± 7.3 | 65.4 | −0.6 ± 5.1 | 46.7 | 0.25 |
Legs FM | −2.9 ± 5.6 | 73.1 | −1.5 ± 6.9 | 63.3 | 0.40 |
Functional & aerobic capacities | |||||
TUGn (%) | −12.3 ± 5.8 | 96.2 | −10.8 ± 10.9 | 90 | 0.53 |
TUGf (%) | −16.1 ± 9.0 | 100 | −11.8 ± 7.8 | 93.3 | 0.04 * |
6MWT (%) | 14.5 ± 11.6 | 92.3 | 13.2 ± 13.3 | 93.3 | 0.70 |
Estimated Vo2max | 10.2 ± 8.1 | 92.3 | 9.3 ± 9.3 | 93.3 | 0.69 |
Unipedal balance | 109.1 ± 174.0 | 80.8 | 82.9 ± 96.1 | 86.7 | 0.48 |
Chair Stand test | −20.5 ± 8.5 | 100 | −17.1 ± 8.8 | 96.6 | 0.15 |
Alternate step test | 16.1 ± 7.2 | 100 | 17.4 ± 9.5 | 100 | 0.56 |
Muscle function | |||||
ULMS | 9.3 ± 10.8 | 82.3 | 3.3 ± 11.5 | 53.3 | 0.04 * |
Relative ULMS | 10.9 ± 11.6 | 80.8 | 5.3 ± 16.0 | 56.7 | 0.018 * |
UMQ | 10.4 ± 15.5 | 76.9 | 10.7 ± 37.3 | 60 | 0.98 |
LLMS | 12.3 ± 21.5 | 80.8 | 3.3 ± 12.1 | 58.3 | 0.07 * |
Relative LLMS | 13.9 ± 22.3 | 80.8 | 5.6 ± 16.4 | 62.5 | 0.10 |
LMQ | 10.8 ± 22.7 | 73.1 | 1.9 ± 12.6 | 54.2 | 0.17 * |
Muscle Power | 26.6 ± 30.7 | 80.8 | 25.7 ± 25.3 | 89.7 | 0.90 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buckinx, F.; Gouspillou, G.; Carvalho, L.P.; Marcangeli, V.; El Hajj Boutros, G.; Dulac, M.; Noirez, P.; Morais, J.A.; Gaudreau, P.; Aubertin-Leheudre, M. Effect of High-Intensity Interval Training Combined with L-Citrulline Supplementation on Functional Capacities and Muscle Function in Dynapenic-Obese Older Adults. J. Clin. Med. 2018, 7, 561. https://doi.org/10.3390/jcm7120561
Buckinx F, Gouspillou G, Carvalho LP, Marcangeli V, El Hajj Boutros G, Dulac M, Noirez P, Morais JA, Gaudreau P, Aubertin-Leheudre M. Effect of High-Intensity Interval Training Combined with L-Citrulline Supplementation on Functional Capacities and Muscle Function in Dynapenic-Obese Older Adults. Journal of Clinical Medicine. 2018; 7(12):561. https://doi.org/10.3390/jcm7120561
Chicago/Turabian StyleBuckinx, Fanny, Gilles Gouspillou, Livia P. Carvalho, Vincent Marcangeli, Guy El Hajj Boutros, Maude Dulac, Philippe Noirez, José A. Morais, Pierette Gaudreau, and Mylène Aubertin-Leheudre. 2018. "Effect of High-Intensity Interval Training Combined with L-Citrulline Supplementation on Functional Capacities and Muscle Function in Dynapenic-Obese Older Adults" Journal of Clinical Medicine 7, no. 12: 561. https://doi.org/10.3390/jcm7120561
APA StyleBuckinx, F., Gouspillou, G., Carvalho, L. P., Marcangeli, V., El Hajj Boutros, G., Dulac, M., Noirez, P., Morais, J. A., Gaudreau, P., & Aubertin-Leheudre, M. (2018). Effect of High-Intensity Interval Training Combined with L-Citrulline Supplementation on Functional Capacities and Muscle Function in Dynapenic-Obese Older Adults. Journal of Clinical Medicine, 7(12), 561. https://doi.org/10.3390/jcm7120561