A Novel Machine Learning Algorithm to Automatically Predict Visual Outcomes in Intravitreal Ranibizumab-Treated Patients with Diabetic Macular Edema
Abstract
1. Introduction
2. Patients and Methods
2.1. Prediction Model Input and Target Output
2.2. Machine Learning Development
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pelletier, C.; Dai, S.; Roberts, K.C.; Bienek, A.; Onysko, J.; Pelletier, L. Report summary. Diabetes in Canada: Facts and figures from a public health perspective. Chronic Dis. Inj. Can. 2012, 33, 53–54. [Google Scholar] [PubMed]
- Varma, R.; Bressler, N.M.; Doan, Q.V.; Gleeson, M.; Danese, M.; Bower, J.K.; Selvin, E.; Dolan, C.; Fine, J.; Colman, S.; et al. Prevalence of and risk factors for diabetic macular edema in the United States. JAMA Ophthalmol. 2014, 132, 1334–1340. [Google Scholar] [CrossRef] [PubMed]
- Kiss, S.; Chandwani, H.S.; Cole, A.L.; Patel, V.D.; Lunacsek, O.E.; Dugel, P.U. Comorbidity and health care visit burden in working-age commercially insured patients with diabetic macular edema. Clin. Ophthalmol. 2016, 10, 2443–2453. [Google Scholar] [CrossRef] [PubMed]
- Aiello, L.P.; Avery, R.L.; Arrigg, P.G.; Keyt, B.A.; Jampel, H.D.; Shah, S.T.; Pasquale, L.R.; Thieme, H.; Iwamoto, M.A.; Park, J.E.; et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Engl. J. Med. 1994, 331, 1480–1487. [Google Scholar] [CrossRef] [PubMed]
- Antonetti, D.A.; Barber, A.J.; Hollinger, L.A.; Wolpert, E.B.; Gardner, T.W. Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J. Biol. Chem. 1999, 274, 23463–23467. [Google Scholar] [CrossRef] [PubMed]
- Bressler, S.B.; Ayala, A.R.; Bressler, N.M.; Melia, M.; Qin, H.; Ferris, F.L.; Flaxel, C.J.; Friedman, S.M.; Glassman, A.R.; Jampol, L.M.; et al. Persistent macular thickening after ranibizumab treatment for diabetic macular edema with vision impairment. JAMA Ophthalmol. 2016, 134, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Bressler, S.B.; Glassman, A.R.; Almukhtar, T.; Melia, M.; Qin, H.; Ferris, F.L.; Flaxel, C.J.; Friedman, S.M.; Glassman, A.R.; Jampol, L.M.; et al. Five-year outcomes of ranibizumab with prompt or deferred laser versus laser or triamcinolone plus deferred ranibizumab for diabetic macular edema. Am. J. Ophthalmol. 2016, 164, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Bressler, S.B.; Melia, M.; Glassman, A.R.; Almukhtar, T.; Jampol, L.M.; Shami, M.; Berger, B.B.; Bressler, N.M. Diabetic Retinopathy Clinical Research Network. Ranibizumab plus prompt or deferred laser for diabetic macular edema in eyes with vitrectomy before anti-vascular endothelial growth factor therapy. Retina 2015, 35, 2516–2528. [Google Scholar] [CrossRef] [PubMed]
- Diabetic Retinopathy Clinical Research Network. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N. Engl. J. Med. 2015, 372, 1193–1203. [Google Scholar] [CrossRef] [PubMed]
- Mukkamala, L.; Bhagat, N.; Zarbin, M. Practical lessons from protocol T for the management of diabetic macular edema. Dev. Ophthalmol. 2017, 60, 109–124. [Google Scholar] [PubMed]
- Mukkamala, L.; Bhagat, N.; Zarbin, M.A. Practical lessons from protocol I for the management of diabetic macular edema. Dev. Ophthalmol. 2017, 60, 91–108. [Google Scholar] [PubMed]
- Kononenko, I. Machine learning for medical diagnosis: History, state of the art and perspective. Artif. Intell. Med. 2001, 23, 89–109. [Google Scholar] [CrossRef]
- Aikat, J.; Carsey, T.M.; Fecho, K.; Jeffay, K.; Krishnamurthy, A.; Mucha, P.J.; Rajasekar, A.; Ahalt, S.C. Scientific training in the era of big data: A New pedagogy for graduate education. Big Data 2017, 5, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Lek, S.; Aulagnier, S. Application of neural networks to modelling nonlinear relationships in ecology. Ecol. Model. 1996, 90, 39–52. [Google Scholar] [CrossRef]
- Mehdy, M.M.; Ng, P.Y.; Shair, E.F.; Saleh, N.I.M.; Gomes, C. Artificial neural networks in image processing for early detection of breast cancer. Comput. Math. Methods Med. 2017. [Google Scholar] [CrossRef] [PubMed]
- Valerio, M.S.; Graziella, R. An extreme learning machine approach to effective energy disaggregation. Electronics 2018, 7, 235. [Google Scholar]
- Siniscalchi, S.M.; Salerno, V.M. Adaptation to new microphones using artificial neural networks with trainable activation functions. IEEE Trans. Neural. Netw. Learn. Syst. 2016, 28, 1959–1965. [Google Scholar] [CrossRef] [PubMed]
- Siriyasatien, P.; Phumee, A.; Ongruk, P.; Jampachaisri, K.; Kesorn, K. Analysis of significant factors for dengue fever incidence prediction. BMC Bioinforma. 2016, 17, 166. [Google Scholar] [CrossRef] [PubMed]
- Mehra, L.K.; Cowger, C.; Gross, K.; Ojiambo, P.S. Predicting pre-planting risk of stagonospora nodorum blotch in winter wheat using machine learning models. Front. Plant. Sci. 2016, 7, 390. [Google Scholar] [CrossRef] [PubMed]
- Giancardo, L.; Meriaudeau, F.; Karnowski, T.P.; Li, Y.; Garg, S.; Tobin, K.W., Jr.; Chaum, E. Exudate-based diabetic macular edema detection in fundus images using publicly available datasets. Med. Image Anal. 2012, 16, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuadros, J.; et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016, 316, 2402–2410. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Zhao, X.; Yang, Y.; Li, N. Learning-based visual saliency model for detecting diabetic macular edema in retinal image. Comput. Intell. Neurosci. 2016. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Feng, D.; Mi, H. Deep convolutional neural network-based early automated detection of diabetic retinopathy using fundus image. Molecules 2017, 22, 2054. [Google Scholar] [CrossRef] [PubMed]
- Bressler, S.B.; Qin, H.; Melia, M.; Bressler, N.M.; Beck, R.W.; Chan, C.K.; Grover, S.; Miller, D.G.; Diabetic Retinopathy Clinical Research Network. Exploratory analysis of the effect of intravitreal ranibizumab or triamcinolone on worsening of diabetic retinopathy in a randomized clinical trial. JAMA Ophthalmol. 2013, 131, 1033–1040. [Google Scholar] [CrossRef] [PubMed]
- Elman, M.J.; Qin, H.; Aiello, L.P.; Beck, R.W.; Bressler, N.M.; Ferris, F.L.; Glassman, A.R.; Maturi, R.K.; Melia, M. Intravitreal ranibizumab for diabetic macular edema with prompt versus deferred laser treatment: Three-year randomized trial results. Ophthalmology 2012, 119, 2312–2318. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, L.; Lian, G.; Zhan, R.; Xu, R.; Huang, Y.; Mitra, B.; Wu, J.; Luo, G. A novel mathematical model to predict prognosis of burnt patients based on logistic regression and support vector machine. Burns 2016, 42, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Qiu, X.; Shi, J.; Li, N.; Lu, Z.H.; Chen, P.; Yang, M.M.; Liu, F.Y.; Jia, W.J.; Zhang, Y. A pathological brain detection system based on extreme learning machine optimized by bat algorithm. CNS Neurol. Disord. Drug Targets 2017, 16, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Singal, A.G.; Mukherjee, A.; Elmunzer, B.J.; Higgins, P.D.; Lok, A.S.; Zhu, J.; Marrero, J.A.; Waljee, A.K. Machine learning algorithms outperform conventional regression models in predicting development of hepatocellular carcinoma. Am. J. Gastroenterol. 2013, 108, 1723–1730. [Google Scholar] [CrossRef] [PubMed]
- Galatzer-Levy, I.R.; Karstoft, K.I.; Statnikov, A.; Shalev, A.Y. Quantitative forecasting of ptsd from early trauma responses: A machine learning application. J. Psychiatr. Res. 2014, 59, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Mori, Y.; Murakami, T.; Suzuma, K.; Ishihara, K.; Yoshitake, S.; Fujimoto, M.; Dodo, Y.; Yoshitake, T.; Miwa, Y.; Tsujikawa, A. Relation between macular morphology and treatment frequency during twelve months with ranibizumab for diabetic macular edema. PLoS ONE 2017, 12, e0175809. [Google Scholar] [CrossRef] [PubMed]
- Fursova, A.Z.; Chubar’, N.V.; Tarasov, M.S.; Saifullina, I.F.; Pustovaya, G.G. Clinical associations between photoreceptor status and visual outcomes in diabetic macular edema. Vestn. Oftalmol. 2017, 133, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Fursova, A.Z.; Chubar, N.V.; Tarasov, M.S.; Sayfullina, I.F.; Pustovaya, G.G. Effectiveness of diffuse diabetic macular edema treatment in relation to structural changes in macular region. Vestn. Oftalmol. 2016, 132, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Erfurth, U.; Lang, G.E.; Holz, F.G.; Schlingemann, R.O.; Lanzetta, P.; Massin, P.; Gerstner, O.; Bouazza, A.S.; Shen, H.; Osborne, A.; et al. Three-year outcomes of individualized ranibizumab treatment in patients with diabetic macular edema: The RESTORE extension study. Ophthalmology 2014, 121, 1045–1053. [Google Scholar] [CrossRef] [PubMed]
- Anayol, M.A.; Sekeroglu, M.A.; Tirhis, H.; Gulpamuk, B.; Doguizi, S.; Yilmazbas, P. Objective evaluation of lens clarity after the intravitreal injection of sustained-release dexamethasone implant. J. Cataract. Refract. Surg. 2016, 42, 1477–1482. [Google Scholar] [CrossRef] [PubMed]
- Schmid, M.K.; Reich, O.; Faes, L.; Boehni, S.C.; Bittner, M.; Howell, J.P.; Thiel, M.A.; Signorell, A.; Bachmann, L.M. Comparison of outcomes and costs of ranibizumab and aflibercept treatment in real-life. PLoS ONE 2015, 10, e0135050. [Google Scholar] [CrossRef] [PubMed]
- Patrao, N.V.; Antao, S.; Egan, C.; Omar, A.; Hamilton, R.; Hykin, P.G.; Sivaprasad, S.; Rajendram, R.; Moorfields Diabetic Macular Edema Study Group. Real-world outcomes of ranibizumab treatment for diabetic macular edema in a United Kingdom National Health Service setting. Am. J. Ophthalmol. 2016, 172, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.Z.; Feng, K.; Lu, Y.; Qian, F.; Lu, X.R.; Zang, S.W.; Zhao, L. Predictors of short-term outcomes related to central subfield foveal thickness after intravitreal bevacizumab for macular edema due to central retinal vein occlusion. Int. J. Ophthalmol. 2016, 9, 86–92. [Google Scholar] [PubMed]
Characteristics | 52 Weeks | 78 Weeks | 104 Weeks |
---|---|---|---|
No. of study eyes | 512 | 483 | 464 |
Sex, male No. (%) | 290 (56.6) | 272 (53.3) | 262 (56.5) |
Age, mean (SD) (years) | 62.6 (9.5) | 62.5 (9.5) | 62.6 (9.5) |
Diabetes | |||
Type 2 No. (%) | 468 (91.4) | 442 (91.5) | 425 (91.6) |
HbA1c level, (SD) | 7.67 (1.55) | 7.66 (1.52) | 7.66 (1.55) |
Insulin using No. (%) | 308 (60.2) | 291 (60.2) | 278 (59.9) |
Comorbidities under treatment, No. (%) | |||
Hypertension | 404 (78.9) | 383 (79.3) | 367 (79.1) |
Hyper cholesterol | 350 (68.4) | 333 (68.9) | 320 (69.0) |
Lens status, pseudophakic No. (%) | 154 (30.1) | 149 (30.8) | 139 (30.0) |
Diabetic retinopathy severity, No. (%) | |||
Microaneurysms only | 16 (3.1) | 15 (3.1) | 15 (3.2) |
Mild/moderate NPDR | 266 (52.0) | 250 (51.8) | 241 (51.9) |
Severe NPDR | 105 (20.5) | 96 (19.9) | 93 (20.0) |
PDR and/or prior scatter | 123 (24.0) | 120 (24.8) | 113 (24.4) |
Visual acuity with ETDRS letter, mean (SD) | |||
Baseline | 63.6 (12.5) | 63.2 (12.4) | 63.2 (12.4) |
Final | 70.4 (13.5) | 70.2 (13.5) | 70.6 (13.9) |
Intra-vitreous injection No. (SD) | 8.1 (2.7) | 10.2 (4.2) | 11.7 (5.5) |
Retina thickness of grid (um) (SD) | |||
Center Point | 391.6 (135.9) | 394.8 (136.5) | 396.7 (138.1) |
Center subfield | 392.7 (122.6) | 395.4 (123.6) | 397.3 (125.0) |
Inner/outer subfield | |||
Superior | 358.2 (92.0)/291.6 (72.0) | 359.9 (93.4)/292.3 (72.3) | 360.8 (94.2)/292.6 (73.1) |
Nasal | 359.8 (92.2)/299.5 (66.9) | 361.2 (93.5)/300.0 (67.0) | 362.3 (94.4)/300.4 (67.7) |
Inferior | 364.4 (102.7)/286.6 (77.1) | 365.6 (104.3)/287.3 (78.3) | 366.5 (105.2)/287.3 (78.6) |
Temporal | 368.0 (104.1)/289.1 (82.7) | 370.0 (105.9)/290.3 (84.4) | 370.7 (106.7)/290.1 (84.6) |
Weeks | Net Name | Correlation Coefficients | Mean Standard Error (ETDRS Letters) | ||||
---|---|---|---|---|---|---|---|
Train Group | Test Group | Validation Group | Train Group | Test Group | Validation Group | ||
52 | MLP 58-21-1 | 0.75 | 0.77 | 0.70 | 6.50 | 6.11 | 6.40 |
78 | MLP 72-48-1 | 0.79 | 0.80 | 0.55 | 5.91 | 5.83 | 7.59 |
104 | MLP 84-21-1 | 0.83 | 0.47 | 0.81 | 5.39 | 8.70 | 6.81 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.-C.; Chiu, H.-W.; Chen, C.-C.; Woung, L.-C.; Lo, C.-M. A Novel Machine Learning Algorithm to Automatically Predict Visual Outcomes in Intravitreal Ranibizumab-Treated Patients with Diabetic Macular Edema. J. Clin. Med. 2018, 7, 475. https://doi.org/10.3390/jcm7120475
Chen S-C, Chiu H-W, Chen C-C, Woung L-C, Lo C-M. A Novel Machine Learning Algorithm to Automatically Predict Visual Outcomes in Intravitreal Ranibizumab-Treated Patients with Diabetic Macular Edema. Journal of Clinical Medicine. 2018; 7(12):475. https://doi.org/10.3390/jcm7120475
Chicago/Turabian StyleChen, Shao-Chun, Hung-Wen Chiu, Chun-Chen Chen, Lin-Chung Woung, and Chung-Ming Lo. 2018. "A Novel Machine Learning Algorithm to Automatically Predict Visual Outcomes in Intravitreal Ranibizumab-Treated Patients with Diabetic Macular Edema" Journal of Clinical Medicine 7, no. 12: 475. https://doi.org/10.3390/jcm7120475
APA StyleChen, S.-C., Chiu, H.-W., Chen, C.-C., Woung, L.-C., & Lo, C.-M. (2018). A Novel Machine Learning Algorithm to Automatically Predict Visual Outcomes in Intravitreal Ranibizumab-Treated Patients with Diabetic Macular Edema. Journal of Clinical Medicine, 7(12), 475. https://doi.org/10.3390/jcm7120475