Concentration of Trace Elements in Patients with Aortic Stenosis and Coexisting Coronary Artery Disease: A Pilot Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Patients
2.2. Methods
2.3. Elemental Analysis
2.4. Ethics Approval
2.5. Statistical Analysis
3. Results
3.1. Study Group
3.2. Trace Elements Concentration Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Tomii, D.; Pilgrim, T.; Borger, M.A.; De Backer, O.; Lanz, J.; Reineke, D.; Siepe, M.; Windecker, S. Aortic Stenosis and Coronary Artery Disease: Decision-Making Between Surgical and Transcatheter Management. Circulation 2024, 150, 2046–2069. [Google Scholar] [CrossRef] [PubMed]
- Goody, P.R.; Hosen, M.R.; Christmann, D.; Niepmann, S.T.; Zietzer, A.; Adam, M.; Bönner, F.; Zimmer, S.; Nickenig, G.; Jansen, F. Aortic Valve Stenosis: From Basic Mechanisms to Novel Therapeutic Targets. Arter. Thromb. Vasc. Biol. 2020, 40, 885–900. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Pei, X.; Li, Z.Y. How does calcification influence plaque vulnerability? Insights from fatigue analysis. Sci. World J. 2014, 2014, 417324. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shi, X.; Gao, J.; Lv, Q.; Cai, H.; Wang, F.; Ye, R.; Liu, X. Calcification in Atherosclerotic Plaque Vulnerability: Friend or Foe? Front. Physiol. 2020, 11, 56. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Celeski, M.; Nusca, A.; Ciavaroli, N.G.; Martucciello, A.; Crisci, F.; Polito, D.; Mangiacapra, F.; Cammalleri, V.; Melfi, R.; Gallo, P.; et al. Co-Occurrence of Aortic Stenosis and Coronary Artery Disease: Facing Challenges Before, During, and After Transcatheter Aortic Valve Replacement. J. Clin. Med. 2025, 14, 4709. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Perpétuo, L.; Barros, A.S.; Dalsuco, J.; Nogueira-Ferreira, R.; Resende-Gonçalves, P.; Falcão-Pires, I.; Ferreira, R.; Leite-Moreira, A.; Trindade, F.; Vitorino, R. Coronary Artery Disease and Aortic Valve Stenosis: A Urine Proteomics Study. Int. J. Mol. Sci. 2022, 23, 13579. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bartnicka, J.J.; Blower, P.J. Insights into Trace Metal Metabolism in Health and Disease from PET: “PET Metallomics”. J. Nucl. Med. 2018, 59, 1355–1359. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gryszczyńska, B.; Grupińska, J.; Kasprzak, M.P.; Krasiński, Z.; Iskra, M. Calcium, magnesium and iron blood plasma levels in abdominal aortic aneurysm: The effects of pre-and postoperative treatment. J. Elem. 2025, 30. [Google Scholar] [CrossRef]
- Urbanowicz, T.; Hanć, A.; Olasińska-Wiśniewska, A.; Rodzki, M.; Witkowska, A.; Michalak, M.; Perek, B.; Haneya, A.; Jemielity, M. Serum copper concentration reflect inflammatory activation in the complex coronary artery disease—A pilot study. J. Trace Elem. Med. Biol. 2022, 74, 127064. [Google Scholar] [CrossRef] [PubMed]
- Zeng, D.; Chen, B.; Wang, H.; Xu, S.; Liu, S.; Yu, Z.; Pan, X.; Tang, X.; Qin, Y. The mediating role of inflammatory biomarkers in the association between serum copper and sarcopenia. Sci. Rep. 2025, 15, 1673. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sun, Z.; Xu, Y.; Liu, Y.; Tao, X.; Zhou, P.; Feng, H.; Weng, Y.; Lu, X.; Wu, J.; Wei, Y.; et al. Associations of Exposure to 56 Serum Trace Elements with the Prevalence and Severity of Acute Myocardial Infarction: Omics, Mixture, and Mediation Analysis. Biol. Trace Elem. Res. 2025, 203, 4466–4478. [Google Scholar] [CrossRef]
- Urbanowicz, T.; Hanć, A.; Frąckowiak, J.; Białasik-Misiorny, M.; Olasińska-Wiśniewska, A.; Krasińska, B.; Krasińska-Płachta, A.; Tomczak, J.; Kowalewski, M.; Krasiński, Z.; et al. Are Hair Scalp Trace Elements Correlated with Atherosclerosis Location in Coronary Artery Disease? Biol. Trace Elem. Res. 2025, 203, 2122–2131. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cimen, Y.A.; Taslidere, B.; Sarikaya, U.; Demirel, M.; Acikgoz, N.; Selek, S. Assessment of oxidative stress and trace element dynamics in acute myocardial infarction and heart failure: A focus on zinc, copper, and thiol dynamics. Clinics 2025, 80, 100755. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tomášek, A.; Maňoušek, J.; Kuta, J.; Hlásenský, J.; Křen, L.; Šindler, M.; Zelený, M.; Kala, P.; Němec, P. Metals and Trace Elements in Calcified Valves in Patients with Acquired Severe Aortic Valve Stenosis: Is There a Connection with the Degeneration Process? J. Pers. Med. 2023, 13, 320. [Google Scholar] [CrossRef]
- Abdul-Rahman, T.; Lizano-Jubert, I.; Garg, N.; Talukder, S.; Lopez, P.P.; Awuah, W.A.; Shah, R.; Chambergo, D.; Cantu-Herrera, E.; Farooqi, M.; et al. The common pathobiology between coronary artery disease and calcific aortic stenosis: Evidence and clinical implications. Prog. Cardiovasc. Dis. 2023, 79, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.P.; Michail, M.; Treibel, T.A.; Rathod, K.; Jones, D.A.; Ozkor, M.; Kennon, S.; Forrest, J.K.; Mathur, A.; Mullen, M.J.; et al. Coronary Revascularization in Patients Undergoing Aortic Valve Replacement for Severe Aortic Stenosis. JACC Cardiovasc. Interv. 2021, 14, 2083–2096. [Google Scholar] [CrossRef] [PubMed]
- Simić, A.; Hansen, A.F.; Syversen, T.; Lierhagen, S.; Ciesielski, T.M.; Romundstad, P.R.; Midthjell, K.; Åsvold, B.O.; Flaten, T.P. Trace elements in whole blood in the general population in Trøndelag County, Norway: The HUNT3 Survey. Sci. Total Environ. 2022, 806, 150875. [Google Scholar] [CrossRef] [PubMed]
- Syversen, T.; Evje, L.; Wolf, S.; Flaten, T.P.; Lierhagen, S.; Simic, A. Trace Elements in the Large Population-Based HUNT3 Survey. Biol. Trace Elem. Res. 2021, 199, 2467–2474. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aggett, P.J. Physiology and metabolism of essential trace elements: An outline. Clin. Endocrinol. Metab. 1985, 14, 513–543. [Google Scholar] [CrossRef]
- López-Alonso, M.; Rivas, I.; Miranda, M. Trace Mineral Imbalances in Global Health: Challenges, Biomarkers, and the Role of Serum Analysis. Nutrients 2025, 17, 2241. [Google Scholar] [CrossRef] [PubMed]
- Eroglu, B.; Eichelmann, F.; Kuxhausf, O.; Kipp, A.P.; Schwerdtle, T.; Haase, H.; Schomburg, L.; Schulze, M.B. Trace elements and risk of diabetes-related vascular complications: Results from the EPIC-Potsdam cohort study. Cardiovasc Diabetol. 2025, 24, 302. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nuermaimaiti, K.; Li, T.; Li, N.; Shi, T.; Liu, W.; Abulaiti, P.; Abulaihaiti, K.; Gao, F. Vitamin and trace elements imbalance are very common in adult patients with newly diagnosed Celiac disease. Sci. Rep. 2025, 15, 28315. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wechselberger, C.; Messner, B.; Bernhard, D. The Role of Trace Elements in Cardiovascular Diseases. Toxics 2023, 11, 956. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fanni, D.; Gerosa, C.; Nurchi, V.M.; Suri, J.S.; Nardi, V.; Congiu, T.; Coni, P.; Ravarino, A.; Cerrone, G.; Piras, M.; et al. Trace elements and the carotid plaque: The GOOD (Mg, Zn, Se), the UGLY (Fe, Cu), and the BAD (P, Ca)? Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 3772–3790. [Google Scholar] [CrossRef] [PubMed]
- Myasoedova, V.A.; Valerio, V.; Rusconi, V.; Bertolini, F.; Massaiu, I.; Pirola, S.; Gripari, P.; Mantegazza, V.; Cannata, F.; Stankowski, K.; et al. Systemic inflammation and fibrocalcific remodeling in aortic stenosis: The interplay of Lipoprotein(a), sex, and valve morphology. J. Transl. Med. 2025, 23, 1070–1085. [Google Scholar] [CrossRef] [PubMed]
- Nosrati, R.; Kheirouri, S.; Ghodsi, R.; Ojaghi, H. The effects of zinc treatment on matrix metalloproteinases: A systematic review. J. Trace Elem. Med. Biol. 2019, 56, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Yu, P.; Chan, W.N.; Xie, F.; Zhang, Y.; Liang, L.; Leung, K.T.; Lo, K.W.; Yu, J.; Tse, G.M.K.; et al. Cellular zinc metabolism and zinc signaling: From biological functions to diseases and therapeutic targets. Signal Transduct. Target. Ther. 2024, 9, 6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Starcher, B.C.; Hill, C.H.; Madaras, J.G. Effect of zinc deficiency on bone collagenase and collagen turnover. J. Nutr. 1980, 110, 2095–2102. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Ruan, J.; Chen, Y.; Yan, Z.; Meng, X.; Li, X.; Liu, J.; Mao, C.; Yang, P. Serum Zinc Ion Concentration Associated with Coronary Heart Disease: A Systematic Review and Meta-Analysis. Cardiol. Res. Pract. 2022, 2022, 4352484. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Banik, S.; Ghosh, A. Zinc status and coronary artery disease: A systematic review and meta-analysis. J. Trace Elem. Med. Biol. 2022, 73, 127018. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Liu, Y.; Yu, L.; Cheng, A.; Cao, J.; Wang, R.; Liu, Y.; Song, S.; Zhao, W.; Liu, Q.; et al. Association of metal elements deposition with symptomatic carotid artery stenosis and their spatial distribution in atherosclerosis plaques. Metallomics 2025, 17, mfaf019. [Google Scholar] [CrossRef] [PubMed]
- Mantsou, A.; Pitou, M.; Papachristou, E.; Papi, R.M.; Lamprou, P.; Choli-Papadopoulou, T. Effect of a Bone Morphogenetic Protein-2-derived peptide on the expression of tumor marker ZNF217 in osteoblasts and MCF-7 cells. Bone Rep. 2021, 15, 101125. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Y.M.; Feng, L.S.; Xu, A.; Ma, X.H.; Zhang, M.T.; Zhang, J. Copper ions: The invisible killer of cardiovascular disease (Review). Mol. Med. Rep. 2024, 30, 210. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fang, X.; Weintraub, N.L.; Rios, C.D.; Chappell, D.A.; Zwacka, R.M.; Engelhardt, J.F.; Oberley, L.W.; Yan, T.; Heistad, D.D.; Spector, A.A. Overexpression of human superoxide dismutase inhibits oxidation of low-density lipoprotein by endothelial cells. Circ Res. 1998, 82, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Tribble, D.L.; Gong, E.L.; Leeuwenburgh, C.; Heinecke, J.W.; Carlson, E.L.; Verstuyft, J.G.; Epstein, C.J. Fatty streak formation in fat-fed mice expressing human copper-zinc superoxide dismutase. Arter. Thromb. Vasc. Biol. 1997, 17, 1734–1740, Erratum in Arter. Thromb. Vasc. Biol. 1997, 17, 3363. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yi, L.; Zhang, L.; Shen, L.; Lu, Y.; Wang, H.; Chen, X.; Kou, Y.; Wang, Y.; Ma, R.; et al. Association of Copper with Atherosclerosis and Treatment Strategies. J. Cardiovasc. Transl. Res. 2025, 18, 1847–1864. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Li, Y.Y.; Liu, X. Copper homeostasis and copper-induced cell death: Novel targeting for intervention in the pathogenesis of vascular aging. Biomed. Pharmacother. 2023, 169, 115839. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Mei, K.; Hu, Q.; Wu, Y.; Xu, Y.; Qinling Yu, P.; Deng, Y.; Zhu, W.; Yan, Z.; Liu, X. Circulating copper levels and the risk of cardio-cerebrovascular diseases and cardiovascular and all-cause mortality: A systematic review and meta-analysis of longitudinal studies. Environ. Pollut. 2024, 340, 122711. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Bravo, C.; Soler-Iborte, E.; Lozano-Lorca, M.; Kouiti, M.; González-Palacios Torres, C.; Barrios-Rodríguez, R.; Jiménez-Moleón, J.J. Serum copper levels and risk of major adverse cardiovascular events: A systematic review and meta-analysis. Front. Cardiovasc. Med. 2023, 10, 1217748. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dziedzic, E.A.; Tuzimek, A.; Gąsior, J.S.; Paleczny, J.; Junka, A.; Kwaśny, M.; Dąbrowski, M.; Jankowski, P. Investigation on the Association of Copper and Copper-to-Zinc-Ratio in Hair with Acute Coronary Syndrome Occurrence and Its Risk Factors. Nutrients 2022, 14, 4107. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, A.; Li, G.; Liu, Y. Association between copper levels and myocardial infarction: A meta-analysis. Inhal. Toxicol. 2015, 27, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Morvaridzadeh, M.; Estêvão, M.D.; Qorbani, M.; Heydari, H.; Hosseini, A.S.; Fazelian, S.; Belančić, A.; Persad, E.; Rezamand, G.; Heshmati, J. The effect of chromium intake on oxidative stress parameters: A systematic review and meta-analysis. J. Trace Elem. Med. Biol. 2022, 69, 126879. [Google Scholar] [CrossRef] [PubMed]
- Guallar, E.; Jiménez, F.J.; van ‘t Veer, P.; Bode, P.; Riemersma, R.A.; Gómez-Aracena, J.; Kark, J.D.; Arab, L.; Kok, F.J.; Martín-Moreno, J.M.; et al. Low toenail chromium concentration and increased risk of nonfatal myocardial infarction. Am. J. Epidemiol. 2005, 162, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Kosmopoulos, M.; Drekolias, D.; Zavras, P.D.; Piperi, C.; Papavassiliou, A.G. Impact of advanced glycation end products (AGEs) signaling in coronary artery disease. Biochim. Biophys. Acta Mol. Basis Dis. 2019, 1865, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Kopytek, M.; Ząbczyk, M.; Mazur, P.; Undas, A.; Natorska, J. Accumulation of advanced glycation end products (AGEs) is associated with the severity of aortic stenosis in patients with concomitant type 2 diabetes. Cardiovasc. Diabetol. 2020, 19, 92. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guadalupe Hernández, J.; Thangarasu, P. Chromium Complex of Macrocyclic Ligands as Precursor for Nitric Oxide Release: A Theoretical Study. Chemphyschem 2024, 25, e202400700. [Google Scholar] [CrossRef] [PubMed]
- Erdely, A.; Antonini, J.M.; Young, S.H.; Kashon, M.L.; Gu, J.K.; Hulderman, T.; Salmen, R.; Meighan, T.; Roberts, J.R.; Zeidler-Erdely, P.C. Oxidative stress and reduced responsiveness of challenged circulating leukocytes following pulmonary instillation of metal-rich particulate matter in rats. Part. Fibre Toxicol. 2014, 11, 34. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Y.; Roh, Y.J.; Han, S.J.; Park, I.; Lee, H.M.; Ok, Y.S.; Lee, B.C.; Lee, S.R. Role of Selenoproteins in Redox Regulation of Signaling and the Antioxidant System: A Review. Antioxidants 2020, 9, 383. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brigelius-Flohé, R.; Banning, A.; Schnurr, K. Selenium-dependent enzymes in endothelial cell function. Antioxidants Redox Signal. 2003, 5, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Rashtchizadeh, N.; Karimi, P.; Dehgan, P.; Salimi Movahed, M. Effects of Selenium in the MAPK Signaling Cascade. J. Cardiovasc. Thorac. Res. 2015, 7, 107–112. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Orian, L.; Flohé, L. Selenium-Catalyzed Reduction of Hydroperoxides in Chemistry and Biology. Antioxidants 2021, 10, 1560. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lawrence, T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb. Perspect. Biol. 2009, 1, a001651. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tak, P.P.; Firestein, G.S. NF-kappaB: A key role in inflammatory diseases. J. Clin. Investig. 2001, 107, 7–11. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Klauzen, P.; Basovich, L.; Shishkova, D.; Markova, V.; Malashicheva, A. Macrophages in Calcific Aortic Valve Disease: Paracrine and Juxtacrine Disease Drivers. Biomolecules 2024, 14, 1547. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Scioli, M.G.; Storti, G.; D’Amico, F.; Rodríguez Guzmán, R.; Centofanti, F.; Doldo, E.; Céspedes Miranda, E.M.; Orlandi, A. Oxidative Stress and New Pathogenetic Mechanisms in Endothelial Dysfunction: Potential Diagnostic Biomarkers and Therapeutic Targets. J. Clin. Med. 2020, 9, 1995. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Detopoulou, P.; Letsiou, S.; Nomikos, T.; Karagiannis, A.; Pergantis, S.A.; Pitsavos, C.; Panagiotakos, D.B.; Antonopoulou, S. Selenium, Selenoproteins and 10-year Cardiovascular Risk: Results from the ATTICA Study. Curr. Vasc. Pharmacol. 2023, 21, 346–355. [Google Scholar] [CrossRef] [PubMed]
- Nyström-Rosander, C.; Lindh, U.; Thelin, S.; Lindquist, O.; Friman, G.; Ilbäck, N.G. Trace element changes in sclerotic heart valves from patients undergoing aortic valve surgery. Biol. Trace Element Res. 2002, 88, 9–24. [Google Scholar] [CrossRef] [PubMed]
- Lis, G.J.; Czapla-Masztafiak, J.; Kwiatek, W.M.; Gajda, M.; Jasek, E.; Jasinska, M.; Czubek, U.; Borchert, M.; Appel, K.; Nessler, J.; et al. Distribution of selected elements in calcific human aortic valves studied by microscopy combined with SR-μXRF: Influence of lipids on progression of calcification. Micron 2014, 67, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Al-Taesh, H.; Çelekli, A.; Sucu, M.; Taysi, S. Trace elements in patients with aortic valve sclerosis. Ther. Adv. Cardiovasc. Dis. 2021, 15, 1753944720985985. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jenkins, D.J.A.; Kitts, D.; Giovannucci, E.L.; Sahye-Pudaruth, S.; Paquette, M.; Blanco Mejia, S.; Patel, D.; Kavanagh, M.; Tsirakis, T.; Kendall, C.W.C.; et al. Selenium, antioxidants, cardiovascular disease, and all-cause mortality: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2020, 112, 1642–1652. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kuria, A.; Tian, H.; Li, M.; Wang, Y.; Aaseth, J.O.; Zang, J.; Cao, Y. Selenium status in the body and cardiovascular disease: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2021, 61, 3616–3625, Erratum in Crit. Rev. Food Sci. Nutr. 2022, 62, 282–283. https://doi.org/10.1080/10408398.2020.1815964. [Google Scholar] [CrossRef] [PubMed]
| Whole Group (n = 53) | CAD Patients (n = 26) | Non-CAD Patients (n = 27) | p | Any Revascularisation (n = 15) | Any Revascularisation or Stenosis > 70%/LM > 50% (n = 17) | |
|---|---|---|---|---|---|---|
| Sex male (n,%) | 25 (47.2) | 13 (50) | 12 (44) | 0.685 | 10 (66.7) | 10 (58.8) |
| Age (years, median, Q1–Q3) | 78 (75–81) | 78 (75.3–80.8) | 79 (76–82.5) | 0.988 | 79 (76.5–81.5) | 79 (76–81) |
| EuroScore II (%, median, Q1–Q3) | 2.3 (1.7–3.2) | 2.5 (1.7–3.5) | 2.1 (1.7–2.9) | 0.460 | 2.4 (1.7–3.4) | 2.7 (1.7–3.5) |
| BMI (kg/m2, median, Q1–Q3) | 28 (24.7–31.2) | 27.5 (24.3–33.5) | 28 (25.9–30.6) | 0.836 | 28.8 (25.2–34) | 28.7 (24.7–33.8) |
| DM or IGT (n,%) | 25 (47.2) | 13 (50.0) | 12 (44.4) | 0.685 | 6 (40.0) | 8 (47.1) |
| HA (n,%) | 47 (88.7) | 23 (88.5) | 24 (88.9) | 0.961 | 14 (93.3) | 16 (94.1) |
| COPD (n,%) | 5 (9.4) | 1 (3.9) | 4 (14.8) | 0.172 | 1 (6.7) | 1 (5.9) |
| AF (n,%) | 13 (24.5) | 6 (23.1) | 7 (25.9) | 0.810 | 3 (20.0) | 4 (23.5) |
| Hyperlipidaemia (n,%) | 47 (88.7) | 24 (92.3) | 23 (85.2) | 0.413 | 15 (100) | 17 (100) |
| Previous BAV (n,%) | 1 (1.9) | 0 | 1 (3.7) | 0.322 | 0 | 0 |
| PAD (n,%) | 10 (19.2) | 5 (19.2) | 5 (19.2) | 1.000 | 2 (13.3) | 3 (17.6) |
| Pacemaker (n,%) | 4 (7.6) | 2 (7.7) | 2 (7.4) | 0.969 | 2 (13.3) | 2 (11.8) |
| Kidney disease * (n,%) | 18 (34.6) | 10 (38.5) | 8 (30.8) | 0.560 | 5 (33.3) | 7 (41.2) |
| History of smoking (n,%) | 8 (15.1) | 5 (19.2) | 3 (11.1) | 0.467 | 1 (6.7) | 2 (11.8) |
| Previous stroke or TIA (n,%) | 9 (17) | 1 (3.9) | 8 (29.6) | 0.012 | 1 (6.7) | 1 (5.9) |
| Peak aortic gradient (mmHg, median, Q1–Q3) | 83 (72–100) | 76 (68.5–93.8) | 88 (77–102) | 0.096 | 75 (64–89.5) | 75 (60–86) |
| Mean aortic gradient (mmHg, median, Q1–Q3) | 54 (44–63) | 50.5 (42.3–60.4) | 54 (48.5–64) | 0.388 | 45 (41–59.3) | 44 (40–58) |
| LVEF (%, median, Q1–Q3) | 55 (50–60) | 57.5 (50–60) | 55 (50–60) | 0.852 | 55 (52.5–60) | 55 (50–60) |
| TRPG (mmHg, median, Q1–Q3) | 30 (25.5–39.5) | 30.3 (25–34.3) | 30 (27.5–41) | 0.336 | 26.5 (22.8–33.7) | 26.5 (19.8–33.9) |
| Whole Group (n = 53) | Non-CAD (n = 27) I | CAD (n = 26) II | Any Revascularisation (n = 15) III | Any Revascularisation or Stenosis > 70%/LM > 50% (n = 17) IV | p I vs. II | p I vs. III | p I vs. IV | |
|---|---|---|---|---|---|---|---|---|
| P-Li (µg/L, median, Q1–Q3) | 1.95 (1.45–2.60) | 1.79 (1.40–2.60) | 1.98 (1.65–2.38) | 1.77 (1.32–2.03) | 1.91 (1.45–2.91) | 0.90 | 0.51 | 0.99 |
| A-Li (µg/L, median, Q1–Q3) | 2.06 (1.41–2.60) | 2.05 (1.29–2.44) | 2.10 (1.69–2.92) | 1.75 (1.58–2.15) | 1.92 (1.61–2.73) | 0.51 | 0.97 | 0.71 |
| P-Mg (mg/L, median, Q1–Q3) | 33.6 (31.6–37.3 | 35.6 (31.9–37.2) | 33.2 (31.6–37.0) | 32.8 (30.1–33.6) | 32.8 (28.4–33.6) | 0.34 | 0.09 | 0.049 |
| A-Mg (mg/L, median, Q1–Q3) | 33.1 (30.5–35.9) | 32.9 (30.6–35.8) | 33.5 (30.3–36.0) | 34.2 (30.5–35.8) | 33.9 (29.8–35.6) | 1.00 | 0.84 | 0.84 |
| P-Al (µg/L, median, Q1–Q3) | 154.3 (106.2–175.4) | 160.9 (153.9–200.5) | 113.0 (92.1–163.1) | 114.9 (105.4–153.9) | 114.9 (107.1–157.6) | 0.047 | 0.05 | 0.05 |
| A-Al (µg/L, median, Q1–Q3) | 153.6 (112.8–171.7) | 155.1 (107.5–168.6) | 148.1 (113.7–175.6) | 137.9 (118.9–169.8) | 142.6 (123.7–194.3) | 0.83 | 0.73 | 1.00 |
| P-Ca (mg/L, median, Q1–Q3) | 16.2 (14.5–17.0) | 16.6 (16.0–17.3) | 15.3 (14.1–16.5) | 14.5 (14.1–15.8) | 14.5 (14.1–16.3) | 0.046 | 0.03 | 0.02 |
| A-Ca (mg/L, median, Q1–Q3) | 15.4 (13.9–16.6) | 15.9 (14.4–16.5) | 14.6 (13.5–16.5) | 13.6 (12.8–15.2) | 13.8 (12.9–16.1) | 0.41 | 0.05 | 0.16 |
| P-Ti (µg/L, median, Q1–Q3) | 206.0 (181.6–225.6) | 220.0 (177.5–230.9) | 202.7 (187.1–214.9) | 194.9 (174.6–210.8) | 194.9 (176.7–209.4) | 0.25 | 0.16 | 0.15 |
| A-Ti (µg/L, median, Q1–Q3) | 192.6 (179.2–216.0) | 191.9 (177.9–216.3) | 198.9 (181.1–209.9) | 205.0 (181.3–216.9) | 203.8 (178.1–213.8) | 0.99 | 0.79 | 0.92 |
| P-V (µg/L, median, Q1–Q3) | 0.66 (0.56–0.87) | 0.69 (0.55–0.85) | 0.65 (0.56–0.87) | 0.65 (0.55–0.74) | 0.65 (0.51–0.81) | 0.90 | 0.68 | 0.63 |
| A-V (µg/L, median, Q1–Q3) | 0.65 (0.52–0.86) | 0.65 (0.55–0.87) | 0.69 (0.52–0.84) | 0.52 (0.50–0.69) | 0.53 (0.51–0.76) | 0.76 | 0.16 | 0.32 |
| P-Cr (µg/L, median, Q1–Q3) | 13.8 (7.4–22.1) | 13.8 (8.7–21.3) | 12.2 (5.6–25.1) | 9.7 (4.5–15.7) | 8.5 (4.4–15.7) | 0.73 | 0.25 | 0.12 |
| A-Cr (µg/L, median, Q1–Q3) | 14.8 (9.1–27.5) | 16.8 (12.3–31.6) | 10.3 (5.5–17.4) | 5.8 (5.4–13.2) | 6.2 (5.4–14.4) | 0.07 | 0.002 | 0.004 |
| P-Mn (µg/L, median, Q1–Q3) | 5.70 (4.02–7.84) | 7.01 (4.20–10.35) | 5.57 (3.95–6.70) | 6.06 (4.66–6.85) | 6.1 (4.25–7.24) | 0.39 | 0.65 | 0.76 |
| A-Mn (µg/L, median, Q1–Q3) | 6.05 (3.91–7.35) | 7.01 (4.49–8.13) | 4.94 (3.37–6.19) | 5.00 (3.42–6.05) | 5.40 (3.80–6.47) | 0.03 | 0.13 | 0.13 |
| P-Fe (mg/L, median, Q1–Q3) | 423.7 (378.8–452.6) | 405.5 (382.3–446.8) | 425.8 (379.4–492.9) | 425.4 (385.5–460.3) | 419.7 (363.8–444.7) | 0.40 | 0.59 | 0.96 |
| A-Fe (mg/L, median, Q1–Q3) | 403.6 (363.0–471.7) | 399.8 (389.7–442.4) | 417.6 (349.7–474.2) | 433.9 (353.9–481.8) | 405.7 (351.3–475.1) | 0.90 | 0.67 | 0.99 |
| P-Co (µg/L, median, Q1–Q3) | 0.89 (0.69–0.94) | 0.90 (0.70–1.04) | 0.85 (0.71–1.03) | 0.93 (0.77–1.04) | 0.93 (0.75–1.08) | 0.88 | 0.73 | 0.71 |
| A-Co (µg/L, median, Q1–Q3) | 0.84 (0.70–0.94) | 0.84 (0.73–0.94) | 0.78 (0.59–0.90) | 0.75 (0.59–0.90) | 0.76 (0.60–0.92) | 0.20 | 0.15 | 0.30 |
| P-Ni (µg/L, median, Q1–Q3) | 20.59 (16.1–28.6) | 24.2 (16.8–29.5) | 17.6 (14.5–25.8) | 16.2 (12.5–21.5) | 16.8 (14.1–21.7) | 0.20 | 0.035 | 0.029 |
| A-Ni (µg/L, median, Q1–Q3) | 23.85 (16.2–37.4) | 31.5 (16.8–38.8) | 21.9 (14.5–27.5) | 21.9 (20.8–32.7) | 22.0 (21.0–30.3) | 0.17 | 0.49 | 0.46 |
| P-Cu (µg/L, median, Q1–Q3) | 963.3 (870.0–1044.5) | 991.4 (915.5–1044.5) | 914.2 (844.8–1009.2) | 870.0 (777.0–906.9) | 876.5 (780.4–921.5) | 0.34 | 0.01 | 0.03 |
| A-Cu (µg/L, median, Q1–Q3) | 917.0 (828.1–1006.8 | 914.9 (867.9–959.9) | 919.6 (751.1–1024.3) | 751.1 (706.1–778.3) | 752.0 (711.6–900) | 0.40 | 0.009 | 0.025 |
| P-Zn (µg/L, median, Q1–Q3) | 5428.8 (5136.8–6119.0) | 5382.3 (4844.9–6040.8) | 5466.6 (5202.7–6204.6) | 5466.6 (5124.2–5866.7) | 5410.6 (5217.5–5717.1) | 0.41 | 0.70 | 0.76 |
| A-Zn (µg/L, median, Q1–Q3) | 5569.2 (4985.5–6271.1) | 5554.0 (4969.8–6153.6) | 5622.5 (5399.2–6447.7) | 5622.5 (5467.9–6447.7) | 5545.5 (4979.8–6286.9) | 0.49 | 0.49 | 0.84 |
| P-As (µg/L, median, Q1–Q3) | 0.88 (0.50–1.87) | 1.06 (0.54–1.94) | 0.85 (0.45–1.62) | 0.79 (0.33–1.44) | 0.85 (0.34–1.51) | 0.50 | 0.22 | 0.40 |
| A-As (µg/L, median, Q1–Q3) | 0.97 (0.46–1.88) | 1.21 (0.47–2.00) | 0.73 (0.44–1.78) | 0.88 (0.47–1.91) | 0.97 (0.54–1.88) | 0.43 | 0.88 | 0.84 |
| P-Se (µg/L, median, Q1–Q3) | 89.7 (76.9–99.7) | 94.7 (82.3–101.9) | 86.5 (70.9–95.2) | 88.0 (68.7–95.2) | 82.5 (67.7–93.6) | 0.21 | 0.19 | 0.008 |
| A-Se (µg/L, median, Q1–Q3) | 84.4 (72.6–95.4) | 91.0 (74.8–97.9) | 79.9 (66.6–86.1) | 72.9 (66.6–81.6) | 71 (63.6–81.2) | 0.007 | 0.02 | 0.01 |
| P-Rb (µg/L, median, Q1–Q3) | 1103.9 (931.7–1279.5) | 1016.9 (894.8–1287.9) | 1145.7 (988.6–1232.2) | 1106.3 (909.2–1176.6) | 1106.3 (882.9–1180.5) | 0.44 | 0.83 | 0.96 |
| A-Rb (µg/L, median, Q1–Q3) | 1105.0 (911.7–1273.9) | 1109.2 (902.6–1247.4) | 1100.8 (953.1–1315.7) | 1062.7 (837.0–1396.8) | 1007.9 (808.9–1332.8) | 0.82 | 1.00 | 0.65 |
| P-Sr (µg/L, median, Q1–Q3) | 25.8 (19.1–34.6) | 25.8 (19.5–35.8) | 24.9 (18.6–30.1) | 24.9 (18.6–28.3) | 27.3 (19.5–32.5) | 0.43 | 0.35 | 0.63 |
| A-Sr (µg/L, median, Q1–Q3) | 24.8 (19.2–30.7) | 26.2 (20.6–30.7) | 21.8 (18.9–29.1) | 19.6 (19.1–27.7) | 22.5 (19.2–28.8) | 0.39 | 0.20 | 0.36 |
| P-Mo (µg/L, median, Q1–Q3) | 4.09 (3.52–4.81) | 4.43 (3.75–4.91) | 3.83 (3.34–4.80) | 3.58 (3.24–3.95) | 3.58 (3.19–4.09) | 0.25 | 0.08 | 0.08 |
| A-Mo (µg/L, median, Q1–Q3) | 3.86 (3.55–4.23) | 3.88 (3.76–4.28) | 3.62 (3.37–4.10) | 3.37 (2.69–3.62) | 3.45 (2.82–3.85) | 0.15 | 0.008 | 0.04 |
| P-Cd (µg/L, median, Q1–Q3) | 0.33 (0.04–0.48) | 0.33 (0.04–0.46) | 0.17 (0.07–0.51) | 0.10 (0.05–0.35) | 0.11 (0.06–0.34) | 0.98 | 0.59 | 0.56 |
| A-Cd (µg/L, median, Q1–Q3) | 0.16 (0.05–0.52) | 0.30 (0.04–0.52) | 0.10 (0.05–0.47) | 0.09 (0.05–0.40) | 0.10 (0.05–0.30) | 0.85 | 0.75 | 0.71 |
| P-Sn (µg/L, median, Q1–Q3) | 0.31 (0.15–0.64) | 0.18 (0.09–0.88) | 0.35 (0.26–0.51) | 0.36 (0.28–0.45) | 0.36 (0.24–0.47) | 0.34 | 0.52 | 0.52 |
| A-Sn (µg/L, median, Q1–Q3) | 0.55 (0.17–0.98) | 0.56 (0.32–0.96) | 0.44 (0.15–0.89) | 0.50 (0.13–1.11) | 0.59 (0.15–1.03) | 0.42 | 0.64 | 0.70 |
| P-Sb (µg/L, median, Q1–Q3) | 26.21 (0.39–32.43) | 30.76 (0.40–32.82) | 3.04 (0.41–30.28) | 2.66 (1.69–27.82) | 14.45 (2.28–29.10) | 0.32 | 0.24 | 0.36 |
| A-Sb (µg/L, median, Q1–Q3) | 16.0 (0.5–32.3) | 3.2 (0.6–32.0) | 29.4 (0.5–32.3) | 28.5 (0.4–32.1) | 28.9 (0.82–32.2) | 0.82 | 0.88 | 0.96 |
| P-Cs (µg/L, median, Q1–Q3) | 3.3 (2.1–10.4) | 3.1 (1.9–5.2) | 3.4 (2.4–15.4) | 20.3 (5.2–30.5) | 8.6 (2.9–30.3) | 0.59 | 0.12 | 0.29 |
| A-Cs (µg/L, median, Q1–Q3) | 4.20 (2.52–12.0) | 4.20 (2.74–12.95) | 3.81 (2.22–7.09) | 4.44 (2.38–28.41) | 5.09 (2.56–23.78) | 0.61 | 0.88 | 0.80 |
| P-Ba (µg/L, median, Q1–Q3) | 0.21 (0.04–0.97) | 0.41 (0.02–1.48) | 0.11 (0.07–0.68) | 0.07 (0.03–0.10) | 0.08 (0.04–0.15) | 1.00 | 0.62 | 0.59 |
| A-Ba (µg/L, median, Q1–Q3) | 0.18 (0.04–10.14) | 0.43 (0.04–19.11) | 0.08 (0.04–6.45) | 0.05 (0.04–11.25) | 0.047 (0.04–10.7) | 0.31 | 0.45 | 0.42 |
| P-Pb (µg/L, median, Q1–Q3) | 0.36 (0.06–15.78) | 0.42 (0.05–16.77) | 0.16 (0.07–10.85) | 0.10 (0.06–9.13) | 0.12 (0.07–8.92) | 0.64 | 0.53 | 0.48 |
| A-Pb (µg/L, median, Q1–Q3) | 0.12 (0.03–18.17) | 0.38 (0.04–20.88) | 0.06 (0.03–13.15) | 0.048 (0.03–14.43) | 0.055 (0.03–12.05) | 0.50 | 0.71 | 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Olasińska-Wiśniewska, A.; Urbanowicz, T.; Misterski, M.; Grygier, M.; Araszkiewicz, A.F.; Wojewódzki, F.; Stefaniak, S.; Marcinkowski, P.; Kauf, I.; Jemielity, M.; et al. Concentration of Trace Elements in Patients with Aortic Stenosis and Coexisting Coronary Artery Disease: A Pilot Study. J. Clin. Med. 2026, 15, 8. https://doi.org/10.3390/jcm15010008
Olasińska-Wiśniewska A, Urbanowicz T, Misterski M, Grygier M, Araszkiewicz AF, Wojewódzki F, Stefaniak S, Marcinkowski P, Kauf I, Jemielity M, et al. Concentration of Trace Elements in Patients with Aortic Stenosis and Coexisting Coronary Artery Disease: A Pilot Study. Journal of Clinical Medicine. 2026; 15(1):8. https://doi.org/10.3390/jcm15010008
Chicago/Turabian StyleOlasińska-Wiśniewska, Anna, Tomasz Urbanowicz, Marcin Misterski, Marek Grygier, Antoni F. Araszkiewicz, Filip Wojewódzki, Sebastian Stefaniak, Paweł Marcinkowski, Ilona Kauf, Marek Jemielity, and et al. 2026. "Concentration of Trace Elements in Patients with Aortic Stenosis and Coexisting Coronary Artery Disease: A Pilot Study" Journal of Clinical Medicine 15, no. 1: 8. https://doi.org/10.3390/jcm15010008
APA StyleOlasińska-Wiśniewska, A., Urbanowicz, T., Misterski, M., Grygier, M., Araszkiewicz, A. F., Wojewódzki, F., Stefaniak, S., Marcinkowski, P., Kauf, I., Jemielity, M., & Hanć, A. (2026). Concentration of Trace Elements in Patients with Aortic Stenosis and Coexisting Coronary Artery Disease: A Pilot Study. Journal of Clinical Medicine, 15(1), 8. https://doi.org/10.3390/jcm15010008

