Association Between Obesity and Post-COVID-19 Condition in Military Conscripts
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Participants
2.3. Data Collection
2.4. Statistical Analyses
2.5. Ethical Considerations
3. Results
3.1. Clinical Characteristics of the Total Cohort and Prevalence of the Post-COVID-19 Condition
3.2. Body Mass Index and the Post-COVID-19 Condition
3.3. Waist Circumference and the Post-COVID-19 Condition
3.4. Waist-to-Height-Ratio and the Post-COVID-19 Condition
3.5. Logistic Regression Analyses Predicting the Post-COVID-19 Condition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gorbalenya, A.E.; Baker, S.C.; Baric, R.S.; de Groot, R.J.; Drosten, C.; Gulyaeva, A.A.; Gulyaeva, B.L.; Haagmans, C.L.; Andrey, M.L.; Benjamin, W.; et al. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020, 5, 536–544. [Google Scholar]
- Soriano, J.B.; Murthy, S.; Marshall, J.C.; Relan, P.; Diaz, J.V. WHO Clinical Case Definition Working Group on Post-COVID-19 Condition. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect. Dis. 2022, 22, e102–e107. [Google Scholar] [CrossRef]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef]
- del Rio, C.; Collins, L.F.; Malani, P. Long-term health consequences of COVID-19. JAMA 2020, 324, 1723–1724. [Google Scholar] [CrossRef]
- Davis, H.E.; Assaf, G.S.; McCorkell, L.; Wei, H.; Low, R.J.; Re’EM, Y.; Redfield, S.; Austin, J.P.; Akrami, A. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. eClinicalMedicine 2021, 38, 101019. [Google Scholar] [CrossRef] [PubMed]
- Groff, D.; Sun, A.; Ssentongo, A.E.; Ba, D.M.; Parsons, N.; Poudel, G.R.; Lekoubou, A.; Oh, J.S.; Ericson, J.E.; Ssentongo, P.; et al. Short-term and long-term rates of postacute sequelae of SARS-CoV-2 infection: A systematic review. JAMA Netw. Open 2021, 4, e2128568. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Leon, S.; Wegman-Ostrosky, T.; Perelman, C.; Sepulveda, R.; Rebolledo, P.A.; Cuapio, A.; Villapol, S. More than 50 long-term effects of COVID-19: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 16144. [Google Scholar] [CrossRef] [PubMed]
- Michelen, M.; Manoharan, L.; Elkheir, N.; Cheng, V.; Dagens, A.; Hastie, C.; O’Hara, M.; Suett, J.; Dahmash, D.; Bugaeva, P.; et al. Characterising long COVID: A living systematic review. BMJ Glob. Health 2021, 6, e005427. [Google Scholar] [CrossRef]
- Molteni, E.; Sudre, C.H.; Canas, L.S.; Bhopal, S.S.; Hughes, R.C.; Antonelli, M.; Murray, B.; Kläser, K.; Kerfoot, E.; Chen, L.; et al. Illness duration and symptom profile in symptomatic UK school-aged children tested for SARS-CoV-2. Lancet Child Adolesc. Health 2021, 5, 708–718. [Google Scholar] [CrossRef]
- Thompson, E.J.; Williams, D.M.; Walker, A.J.; Mitchell, R.E.; Niedzwiedz, C.L.; Yang, T.C.; Huggins, C.F.; Kwong, A.S.F.; Silverwood, R.J.; Di Gessa, G.; et al. Long COVID burden and risk factors in 10 UK longitudinal studies and electronic health records. Nat. Commun. 2022, 13, 3528. [Google Scholar] [CrossRef]
- Luo, D.; Mei, B.; Wang, P.; Li, X.; Chen, X.; Wei, G.; Kuang, F.; Li, B.; Su, S. Prevalence and risk factors for persistent symptoms after COVID-19: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2024, 30, 328–335. [Google Scholar] [CrossRef]
- Wang, H.-I.; Doran, T.; Crooks, M.G.; Khunti, K.; Heightman, M.; Gonzalez-Izquierdo, A.; Arfeen, M.Q.U.; Loveless, A.; Banerjee, A.; Van Der Feltz-Cornelis, C. Prevalence, risk factors and characterisation of individuals with long COVID using Electronic Health Records in over 1.5 million COVID cases in England. J. Infect. 2024, 89, 106235. [Google Scholar] [CrossRef]
- Xiang, M.; Wu, X.; Jing, H.; Novakovic, V.A.; Shi, J. The intersection of obesity and (long) COVID-19: Hypoxia, thrombotic inflammation, and vascular endothelial injury. Front. Cardiovasc. Med. 2023, 10, 1062491. [Google Scholar] [CrossRef] [PubMed]
- Loosen, S.H.; Jensen, B.O.; Tanislav, C.; Luedde, T.; Roderburg, C.; Kostev, K. Obesity and lipid metabolism disorders determine the risk for development of long COVID syndrome: A cross-sectional study from 50,402 COVID-19 patients. Infection 2022, 50, 1165–1170. [Google Scholar] [CrossRef] [PubMed]
- Bridger Staatz, C.; Bann, D.; Ploubidis, G.B.; Goodman, A.; Silverwood, R.J. Age of first overweight and obesity, COVID-19 and long COVID in two British birth cohorts. J. Epidemiol. Glob. Health 2023, 13, 140–153. [Google Scholar] [CrossRef]
- Torres-Romero, M.G.; Escrivá, N.; Barado, E.; Moreno-Galarraga, L.; Fernandez-Montero, A. Association of body mass index on long COVID: Predisposing factors, symptom severity, and functional status in a Spanish cohort of COVID-19 patients. Clin. Epidemiol. Glob. Health 2025, 36, 102195. [Google Scholar] [CrossRef]
- Subramanian, A.; Nirantharakumar, K.; Hughes, S.; Myles, P.; Williams, T.; Gokhale, K.M.; Taverner, T.; Chandan, J.S.; Brown, K.; Simms-Williams, N.; et al. Symptoms and risk factors for long COVID in non-hospitalized adults. Nat. Med. 2022, 28, 1706–1714. [Google Scholar] [CrossRef]
- Mohammadifard, N.; Arefian, M.; Najafian, J.; Shahsanaei, A.; Javanbakht, S.; Mahmoudi, S.; Nouri, F.; Sayyah, M.; Nilforoushzadeh, F.; Ahmadian, M.; et al. Association of obesity status and the risk of long-COVID: Isfahan COVID cohort study. Clin. Obes. 2025, 15, e12708. [Google Scholar] [CrossRef]
- Busetto, L.; Dicker, D.; Frühbeck, G.; Halford, J.C.G.; Sbraccia, P.; Yumuk, V.; Goossens, G.H. A new framework for the diagnosis, staging and management of obesity in adults. Nat. Med. 2024, 30, 2395–2399. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence. Overweight and Obesity Management (NICE Guideline NG246); NICE: London, UK, 2024; Available online: https://www.nice.org.uk/guidance/ng246 (accessed on 8 November 2025).
- Rubino, F.; Cummings, D.E.; Eckel, R.H.; Cohen, R.V.; Wilding, J.P.H.; Brown, W.A.; Stanford, F.C.; Batterham, R.L.; Farooqi, I.S.; Farpour-Lambert, N.J.; et al. Definition and diagnostic criteria of clinical obesity. Lancet Diabetes Endocrinol. 2025, 13, 221–262. [Google Scholar] [CrossRef]
- Ashwell, M.; Gunn, P.; Gibson, S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: Systematic review and meta-analysis. Obes. Rev. 2012, 13, 275–286. [Google Scholar] [CrossRef]
- Obesity: Preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ. Tech. Rep. Ser. 2000, 894, 1–253.
- WHO. Physical status: The use and interpretation of anthropometry. Report of a WHO Expert Committee. World Health Organ. Tech. Rep. Ser. 1995, 854, 1–452. [Google Scholar]
- Alberti, K.G.; Zimmet, P.; Shaw, J. Metabolic syndrome--a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Eurostat. Overweight and Obesity—BMI Statistics; European Commission: Luxembourg, 2025. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Overweight_and_obesity_-_BMI_statistics (accessed on 8 November 2025).
- World Health Organization. Obesity and Overweight; WHO: Geneva, Switzerland, 2024; Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 8 November 2025).
- Lacavalerie, M.R.; Pierre-Francois, S.; Agossou, M.; Inamo, J.; Cabie, A.; Barnay, J.L.; Neviere, R. Obese patients with long COVID-19 display abnormal hyperventilatory response and impaired gas exchange at peak exercise. Future Cardiol. 2022, 18, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Ellulu, M.S.; Patimah, I.; Khaza’ai, H.; Rahmat, A.; Abed, Y. Obesity and inflammation: The linking mechanism and the complications. Arch. Med. Sci. 2017, 13, 851–863. [Google Scholar] [CrossRef]
- Leisman, D.E.; Ronner, L.; Pinotti, R.; Taylor, M.D.; Sinha, P.; Calfee, C.S.; Hirayama, A.V.; Mastroiani, F.; Turtle, C.J.; Harhay, M.O.; et al. Cytokine elevation in severe and critical COVID-19: A rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir. Med. 2020, 8, 1233–1244. [Google Scholar] [CrossRef]
- Pretorius, E.; Venter, C.; Laubscher, G.J.; Kotze, M.J.; Oladejo, S.O.; Watson, L.R.; Rajaratnam, K.; Watson, B.W.; Kell, D.B. Prevalence of symptoms, comorbidities, fibrin amyloid microclots and platelet pathology in individuals with Long COVID/Post-Acute Sequelae of COVID-19 (PASC). Cardiovasc. Diabetol. 2022, 21, 148. [Google Scholar] [CrossRef]
- Gómez-Zorita, S.; Milton-Laskibar, I.; García-Arellano, L.; González, M.; Portillo, M.P. An overview of adipose tissue ACE2 modulation by diet and obesity. potential implications in COVID-19 infection and severity. Int. J. Mol. Sci. 2021, 22, 7975. [Google Scholar] [CrossRef]
- Martínez-Colón, G.J.; Ratnasiri, K.; Chen, H.; Jiang, S.; Zanley, E.; Rustagi, A.; Verma, R.; Chen, H.; Andrews, J.R.; Mertz, K.D.; et al. SARS-CoV-2 infection drives an inflammatory response in human adipose tissue through infection of adipocytes and macrophages. Sci. Transl. Med. 2022, 14, eabm9151. [Google Scholar] [CrossRef]
| Parameter | Total Cohort (N = 500) | History of COVID-19 Infection (n = 376, 75%) | No COVID-19 Infection (n = 124, 25%) |
|---|---|---|---|
| Body height (cm) | 178 ± 6 | 178 ± 6 | 178 ± 6 |
| Body weight (kg) | 75.7 ± 14.5 | 74.8 ± 12.8 | 76.0 ± 15.1 |
| Waist circumference (cm) | 79.8 ± 10.3 | 80.0 ± 10.8 | 79.4 ± 8.7 |
| BMI (kg/m2) | 23.7 ± 4.1 | 23.5 ± 3.7 | 23.8 ± 4.3 |
| Underweight (BMI < 18.4) | 32 (6%) | 23 (6%) | 9 (7%) |
| Normal weight (BMI 18.5–24.9) | 327 (65%) | 243 (65%) | 84 (68%) |
| Overweight (BMI 25–29.9) | 104 (21%) | 81 (21%) | 23 (18%) |
| Obesity (BMI ≥ 30) | 37 (7%) | 29 (8%) | 8 (6%) |
| Healthy WtHR (<0.5) | 420 (84%) | 315 (84%) | 105 (85%) |
| Central Obesity (WtHR ≥ 0.5) | 80 (16%) | 61 (16%) | 19 (15%) |
| BMI Category | Post-COVID-19 (n = 82) | No Post-COVID-19 (n = 294) | p = 0.066 |
|---|---|---|---|
| Underweight (BMI < 18.4) | 4 (5%) a | 19 (7%) a | |
| Normal weight (BMI 18.5–24.9) | 49 (60%) a | 194 (66%) a | |
| Overweight (BMI 25–29.9) | 17 (20%) a | 64 (22%) a | |
| Obesity (BMI ≥ 30) | 12 (15%) a | 17 (5%) b |
| Parameter | Post-COVID-19 (n = 82) | No Post-COVID-19 (n = 294) | |
|---|---|---|---|
| Waist circumference | p = 0.008 | ||
| Healthy (<94 cm) | 67 (82%) | 271 (93%) | |
| Central obesity (≥94 cm) | 15 (18%) | 23 (7%) |
| Parameter | Post-COVID-19 (n = 82) | No Post-COVID-19 (n = 294) | |
|---|---|---|---|
| Waist-to-Height Ratio | p = 0.012 | ||
| Healthy (<0.5) | 61 (74%) | 254 (86%) | |
| Central Obesity (≥0.5) | 21 (26%) | 40 (14%) |
| Predictor | Odds Ratio (OR) | 95% CI | p-Value |
|---|---|---|---|
| Underweight (BMI < 18.4) | 0.83 | 0.27–2.56 | 0.751 |
| Overweight (BMI 25–29.9) | 1.05 | 0.57–1.96 | 0.873 |
| Obesity (BMI ≥ 30) | 2.80 | 1.25–6.24 | 0.012 |
| Central obesity (WHtR ≥ 0.50) | 2.18 | 1.20–3.97 | 0.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Domanyi, R.; Maitz, E.; Andrianakis, A. Association Between Obesity and Post-COVID-19 Condition in Military Conscripts. J. Clin. Med. 2026, 15, 355. https://doi.org/10.3390/jcm15010355
Domanyi R, Maitz E, Andrianakis A. Association Between Obesity and Post-COVID-19 Condition in Military Conscripts. Journal of Clinical Medicine. 2026; 15(1):355. https://doi.org/10.3390/jcm15010355
Chicago/Turabian StyleDomanyi, Reinhard, Emanuel Maitz, and Alexandros Andrianakis. 2026. "Association Between Obesity and Post-COVID-19 Condition in Military Conscripts" Journal of Clinical Medicine 15, no. 1: 355. https://doi.org/10.3390/jcm15010355
APA StyleDomanyi, R., Maitz, E., & Andrianakis, A. (2026). Association Between Obesity and Post-COVID-19 Condition in Military Conscripts. Journal of Clinical Medicine, 15(1), 355. https://doi.org/10.3390/jcm15010355

