Nutritional Support for Necrotizing Soft Tissue Infection Patients: From ICU to Outpatient Care
Abstract
:1. Introduction
2. Metabolic Response to Stress and Injury
- Early Acute Phase: This phase is marked by a hypometabolic state with decreased energy consumption, diminished mitochondrial capacity, and hemodynamic instability. In patients presenting in septic shock, as many patients with NSTIs do, the Early Acute Phase may be more pronounced [12].
- Late Acute Phase: This catabolic, hypermetabolic phase begins 2–7 days after injury and may last for weeks. It is characterized by increased energy expenditure, muscle proteolysis, and rapid tissue breakdown. Isocaloric nutrition support with an adequate protein content may blunt losses, but resolution of the underlying stress state is required to return to metabolic homeostasis.
- Persistent Inflammation, Immunosuppression, and Catabolism Syndrome [10]: Metabolic PICS, first described in 2012, is characterized by ongoing, smoldering inflammation, with infectious recidivism, anabolic resistance, exercise intolerance, and skeletal muscle catabolism due to ongoing inflammation. Necrosis and apoptosis of renal endothelium and skeletal muscle release damage-associated molecular patterns (DAMPs), which increase the risk of developing metabolic PICS. Additionally, chronic critical illness and repeated mobilizations of stress metabolism increase the likelihood of progressing into metabolic PICS rather than returning to homeostatic conditions.
- Recovery or Convalescent Phase: Eventually, the body returns to metabolic homeostasis as the inflammatory response subsides. This creates favorable conditions for anabolism and nutritional rehabilitation if malnutrition developed during hospitalization.
3. Nutrition Risk Screening and Malnutrition Assessment
3.1. Nutritional Risk Screening
3.2. Malnutrition Assessment
3.3. Micronutrient Deficiencies
4. Assessment of Nutritional and Metabolic Needs
4.1. Initial Assessment
4.2. Energy Expenditure
4.3. Estimating Protein Needs
5. Nutrition Interventions
5.1. Oral Diets
5.2. Enteral Nutrition
5.3. Parenteral Nutrition
6. Nutrition Monitoring After Discharge
Ensuring Nutritional Adequacy
7. Summary
Funding
Conflicts of Interest
References
- Hysong, A.A.; Posey, S.L.; Blum, D.M.; Benvenuti, M.A.; Benvenuti, T.A.; Johnson, S.R.; An, T.J.; Devin, J.K.; Obremskey, W.T.; Martus, J.E.; et al. Necrotizing Fasciitis: Pillaging the Acute Phase Response. J. Bone Jt. Surg. Am. 2020, 102, 526–537. [Google Scholar] [CrossRef] [PubMed]
- Endorf, F.W.; Klein, M.B.; Mack, C.D.; Jurkovich, G.J.; Rivara, F.P. Necrotizing soft-tissue infections: Differences in patients treated at burn centers and non-burn centers. J. Burn. Care Res. 2008, 29, 933–938. [Google Scholar] [CrossRef] [PubMed]
- Bosshardt, T.L.; Henderson, V.J.; Organ, C.H., Jr. Necrotizing soft-tissue infections. Arch. Surg. 1996, 131, 846–854, discussion 844–852. [Google Scholar] [CrossRef] [PubMed]
- Porter, C.; Tompkins, R.G.; Finnerty, C.C.; Sidossis, L.S.; Suman, O.E.; Herndon, D.N. The metabolic stress response to burn trauma: Current understanding and therapies. Lancet 2016, 388, 1417–1426. [Google Scholar] [CrossRef]
- Yu, Y.M.; Tompkins, R.G.; Ryan, C.M.; Young, V.R. The metabolic basis of the increase in energy expenditure in severely burned patients. JPEN J. Parenter. Enter. Nutr. 1999, 23, 160–168. [Google Scholar] [CrossRef]
- Bonne, S.L.; Kadri, S.S. Evaluation and Management of Necrotizing Soft Tissue Infections. Infect. Dis. Clin. N. Am. 2017, 31, 497–511. [Google Scholar] [CrossRef]
- Cocanour, C.S.; Chang, P.; Huston, J.M.; Adams, C.A., Jr.; Diaz, J.J.; Wessel, C.B.; Falcione, B.A.; Bauza, G.M.; Forsythe, R.A.; Rosengart, M.R. Management and Novel Adjuncts of Necrotizing Soft Tissue Infections. Surg. Infect. (Larchmt) 2017, 18, 250–272. [Google Scholar] [CrossRef]
- Preiser, J.C.; Ichai, C.; Orban, J.C.; Groeneveld, A.B. Metabolic response to the stress of critical illness. Br. J. Anaesth. 2014, 113, 945–954. [Google Scholar] [CrossRef]
- Simsek, T.; Simsek, H.U.; Canturk, N.Z. Response to trauma and metabolic changes: Posttraumatic metabolism. Ulus. Cerrahi Derg. 2014, 30, 153–159. [Google Scholar] [CrossRef]
- Efron, P.A.; Brakenridge, S.C.; Mohr, A.M.; Barrios, E.L.; Polcz, V.E.; Anton, S.; Ozrazgat-Baslanti, T.; Bihorac, A.; Guirgis, F.; Loftus, T.J.; et al. The persistent inflammation, immunosuppression, and catabolism syndrome 10 years later. J. Trauma Acute Care Surg. 2023, 95, 790–799. [Google Scholar] [CrossRef]
- van Zanten, A.R.H.; De Waele, E.; Wischmeyer, P.E. Nutrition therapy and critical illness: Practical guidance for the ICU, post-ICU, and long-term convalescence phases. Crit. Care 2019, 23, 368. [Google Scholar] [CrossRef] [PubMed]
- Wasyluk, W.; Zwolak, A. Metabolic Alterations in Sepsis. J. Clin. Med. 2021, 10, 2412. [Google Scholar] [CrossRef] [PubMed]
- Skipper, A.; Coltman, A.; Tomesko, J.; Charney, P.; Porcari, J.; Piemonte, T.A.; Handu, D.; Cheng, F.W. Position of the Academy of Nutrition and Dietetics: Malnutrition (Undernutrition) Screening Tools for All Adults. J. Acad. Nutr. Diet. 2020, 120, 709–713. [Google Scholar] [CrossRef]
- McClave, S.A.; Taylor, B.E.; Martindale, R.G.; Warren, M.M.; Johnson, D.R.; Braunschweig, C.; McCarthy, M.S.; Davanos, E.; Rice, T.W.; Cresci, G.A.; et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J. Parenter. Enter. Nutr. 2016, 40, 159–211. [Google Scholar] [CrossRef]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Calder, P.C.; Casaer, M.; Hiesmayr, M.; Mayer, K.; Montejo-Gonzalez, J.C.; Pichard, C.; Preiser, J.C.; et al. ESPEN practical and partially revised guideline: Clinical nutrition in the intensive care unit. Clin. Nutr. 2023, 42, 1671–1689. [Google Scholar] [CrossRef]
- Detsky, A.S.; McLaughlin, J.R.; Baker, J.P.; Johnston, N.; Whittaker, S.; Mendelson, R.A.; Jeejeebhoy, K.N. What is subjective global assessment of nutritional status? JPEN J. Parenter. Enter. Nutr. 1987, 11, 8–13. [Google Scholar] [CrossRef]
- White, J.V.; Guenter, P.; Jensen, G.; Malone, A.; Schofield, M.; Academy Malnutrition Work Group; A.S.P.E.N. Malnutrition Task Force; A.S.P.E.N. Board of Directors. Consensus statement: Academy of Nutrition and Dietetics and American Society for Parenteral and Enteral Nutrition: Characteristics recommended for the identification and documentation of adult malnutrition (undernutrition). JPEN J. Parenter. Enter. Nutr. 2012, 36, 275–283. [Google Scholar] [CrossRef]
- Cederholm, T.; Jensen, G.L.; Correia, M.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.J.S.; et al. GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. J. Cachexia Sarcopenia Muscle 2019, 10, 207–217. [Google Scholar] [CrossRef]
- Evans, D.C.; Corkins, M.R.; Malone, A.; Miller, S.; Mogensen, K.M.; Guenter, P.; Jensen, G.L.; Committee, A.M. The Use of Visceral Proteins as Nutrition Markers: An ASPEN Position Paper. Nutr. Clin. Pract. 2021, 36, 22–28. [Google Scholar] [CrossRef]
- Polcz, M.E.; Barbul, A. The Role of Vitamin A in Wound Healing. Nutr. Clin. Pract. 2019, 34, 695–700. [Google Scholar] [CrossRef]
- Lin, P.H.; Sermersheim, M.; Li, H.; Lee, P.H.U.; Steinberg, S.M.; Ma, J. Zinc in Wound Healing Modulation. Nutrients 2017, 10, 16. [Google Scholar] [CrossRef] [PubMed]
- Bechara, N.; Flood, V.M.; Gunton, J.E. A Systematic Review on the Role of Vitamin C in Tissue Healing. Antioxidants 2022, 11, 1605. [Google Scholar] [CrossRef]
- Spoelstra-de Man, A.M.E.; Elbers, P.W.G.; Oudemans-van Straaten, H.M. Making sense of early high-dose intravenous vitamin C in ischemia/reperfusion injury. Crit. Care 2018, 22, 70. [Google Scholar] [CrossRef]
- Sae-Khow, K.; Charoensappakit, A.; Chiewchengchol, D.; Leelahavanichkul, A. High-Dose Intravenous Ascorbate in Sepsis, a Pro-Oxidant Enhanced Microbicidal Activity and the Effect on Neutrophil Functions. Biomedicines 2022, 11, 51. [Google Scholar] [CrossRef]
- Lamontagne, F.; Masse, M.H.; Menard, J.; Sprague, S.; Pinto, R.; Heyland, D.K.; Cook, D.J.; Battista, M.C.; Day, A.G.; Guyatt, G.H.; et al. Intravenous Vitamin C in Adults with Sepsis in the Intensive Care Unit. N. Engl. J. Med. 2022, 386, 2387–2398. [Google Scholar] [CrossRef]
- Olson, J.M.; Ameer, M.A.; Goyal, A. Vitamin A Toxicity. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Lim, Y.; Levy, M.; Bray, T.M. Dietary zinc alters early inflammatory responses during cutaneous wound healing in weanling CD-1 mice. J. Nutr. 2004, 134, 811–816. [Google Scholar] [CrossRef]
- Houston, S.; Haggard, J.; Williford, J., Jr.; Meserve, L.; Shewokis, P. Adverse effects of large-dose zinc supplementation in an institutionalized older population with pressure ulcers. J. Am. Geriatr. Soc. 2001, 49, 1130–1132. [Google Scholar] [CrossRef]
- Graves, C.; Saffle, J.; Morris, S.; Stauffer, T.; Edelman, L. Caloric requirements in patients with necrotizing fasciitis. Burns 2005, 31, 55–59. [Google Scholar] [CrossRef]
- Majeski, J.A.; Alexander, J.W. Early diagnosis, nutritional support, and immediate extensive debridement improve survival in necrotizing fasciitis. Am. J. Surg. 1983, 145, 784–787. [Google Scholar] [CrossRef]
- Bels, J.L.M.; Thiessen, S.; van Gassel, R.J.J.; Beishuizen, A.; De Bie Dekker, A.; Fraipont, V.; Lamote, S.; Ledoux, D.; Scheeren, C.; De Waele, E.; et al. Effect of high versus standard protein provision on functional recovery in people with critical illness (PRECISe): An investigator-initiated, double-blinded, multicentre, parallel-group, randomised controlled trial in Belgium and the Netherlands. Lancet 2024, 404, 659–669. [Google Scholar] [CrossRef]
- Heyland, D.K.; Patel, J.; Compher, C.; Rice, T.W.; Bear, D.E.; Lee, Z.Y.; Gonzalez, V.C.; O’Reilly, K.; Regala, R.; Wedemire, C.; et al. The effect of higher protein dosing in critically ill patients with high nutritional risk (EFFORT Protein): An international, multicentre, pragmatic, registry-based randomised trial. Lancet 2023, 401, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Lee, Z.Y.; Dresen, E.; Lew, C.C.H.; Bels, J.; Hill, A.; Hasan, M.S.; Ke, L.; van Zanten, A.; van de Poll, M.C.G.; Heyland, D.K.; et al. The effects of higher versus lower protein delivery in critically ill patients: An updated systematic review and meta-analysis of randomized controlled trials with trial sequential analysis. Crit. Care 2024, 28, 15. [Google Scholar] [CrossRef] [PubMed]
- Stoppe, C.; Patel, J.J.; Zarbock, A.; Lee, Z.Y.; Rice, T.W.; Mafrici, B.; Wehner, R.; Chan, M.H.M.; Lai, P.C.K.; MacEachern, K.; et al. The impact of higher protein dosing on outcomes in critically ill patients with acute kidney injury: A post hoc analysis of the EFFORT protein trial. Crit. Care 2023, 27, 399. [Google Scholar] [CrossRef] [PubMed]
- Castro, S.; Tome, A.; Granja, C.; Macedo, A.; Binnie, A. High vs. low protein intake in chronic critical illness: A systematic review and meta-analysis. Clin. Nutr. ESPEN 2025, 65, 249–255. [Google Scholar] [CrossRef]
- Dickerson, R. Using nitrogen balance in clinical practice. Hosp. Pharm. 2005, 40, 1081–1085. [Google Scholar] [CrossRef]
- Stoppe, C.; Hill, A.; Christopher, K.B.; Kristof, A.S. Toward Precision in Nutrition Therapy. Crit. Care Med. 2025, 53, e429–e440. [Google Scholar] [CrossRef]
- Moisey, L.L.; Merriweather, J.L.; Drover, J.W. The role of nutrition rehabilitation in the recovery of survivors of critical illness: Underrecognized and underappreciated. Crit. Care 2022, 26, 270. [Google Scholar] [CrossRef]
- Uhl, S.; Siddique, S.M.; Bloschichak, A.; McKeever, W.; D’Anci, K.; Leas, B.; Mull, N.K.; Compher, C.; Lewis, J.D.; Wu, G.D.; et al. Interventions for malnutrition in hospitalized adults: A systematic review and meta-analysis. J. Hosp. Med. 2022, 17, 556–564. [Google Scholar] [CrossRef]
- Haac, B.; Henry, S.; Diaz, J.; Scalea, T.; Stein, D. Early Enteral Nutrition Is Associated with Reduced Morbidity in Critically Ill Soft Tissue Patients. Am. Surg. 2018, 84, 1003–1009. [Google Scholar] [CrossRef]
- Yue, H.Y.; Peng, W.; Zeng, J.; Zhang, Y.; Wang, Y.; Jiang, H. Efficacy of permissive underfeeding for critically ill patients: An updated systematic review and trial sequential meta-analysis. J. Intensive Care 2024, 12, 4. [Google Scholar] [CrossRef]
- Reignier, J.; Plantefeve, G.; Mira, J.P.; Argaud, L.; Asfar, P.; Aissaoui, N.; Badie, J.; Botoc, N.V.; Brisard, L.; Bui, H.N.; et al. Low versus standard calorie and protein feeding in ventilated adults with shock: A randomised, controlled, multicentre, open-label, parallel-group trial (NUTRIREA-3). Lancet Respir. Med. 2023, 11, 602–612. [Google Scholar] [CrossRef] [PubMed]
- McKeever, L.; Bonini, M.; Braunschweig, C. Feeding During Phases of Altered Mitochondrial Activity: A Theory. JPEN J. Parenter. Enter. Nutr. 2018, 42, 855–863. [Google Scholar] [CrossRef] [PubMed]
- Pousman, R.M.; Pepper, C.; Pandharipande, P.; Ayers, G.D.; Mills, B.; Diaz, J.; Collier, B.; Miller, R.; Jensen, G. Feasibility of implementing a reduced fasting protocol for critically ill trauma patients undergoing operative and nonoperative procedures. JPEN J. Parenter. Enter. Nutr. 2009, 33, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Ohbe, H.; Jo, T.; Matsui, H.; Fushimi, K.; Yasunaga, H. Early enteral nutrition in patients with severe traumatic brain injury: A propensity score-matched analysis using a nationwide inpatient database in Japan. Am. J. Clin. Nutr. 2020, 111, 378–384. [Google Scholar] [CrossRef]
- Reignier, J.; Boisrame-Helms, J.; Brisard, L.; Lascarrou, J.B.; Ait Hssain, A.; Anguel, N.; Argaud, L.; Asehnoune, K.; Asfar, P.; Bellec, F.; et al. Enteral versus parenteral early nutrition in ventilated adults with shock: A randomised, controlled, multicentre, open-label, parallel-group study (NUTRIREA-2). Lancet 2018, 391, 133–143. [Google Scholar] [CrossRef]
- Bertolini, G.; Iapichino, G.; Radrizzani, D.; Facchini, R.; Simini, B.; Bruzzone, P.; Zanforlin, G.; Tognoni, G. Early enteral immunonutrition in patients with severe sepsis: Results of an interim analysis of a randomized multicentre clinical trial. Intensive Care Med. 2003, 29, 834–840. [Google Scholar] [CrossRef]
- Arney, B.D.; Senter, S.A.; Schwartz, A.C.; Meily, T.; Pelekhaty, S. Effect of Registered Dietitian Nutritionist Order-Writing Privileges on Enteral Nutrition Administration in Selected Intensive Care Units. Nutr. Clin. Pr. 2019, 34, 899–905. [Google Scholar] [CrossRef]
- Worthington, P.; Balint, J.; Bechtold, M.; Bingham, A.; Chan, L.N.; Durfee, S.; Jevenn, A.K.; Malone, A.; Mascarenhas, M.; Robinson, D.T.; et al. When Is Parenteral Nutrition Appropriate? JPEN J. Parenter. Enter. Nutr. 2017, 41, 324–377. [Google Scholar] [CrossRef]
- Parent, B.A.; Seaton, M.; Djukovic, D.; Gu, H.; Wheelock, B.; Navarro, S.L.; Raftery, D.; O’Keefe, G.E. Parenteral and enteral nutrition in surgical critical care: Plasma metabolomics demonstrates divergent effects on nitrogen, fatty-acid, ribonucleotide, and oxidative metabolism. J. Trauma Acute Care Surg. 2017, 82, 704–713. [Google Scholar] [CrossRef]
- Berlana, D. Parenteral Nutrition Overview. Nutrients 2022, 14, 4480. [Google Scholar] [CrossRef]
- Pradelli, L.; Mayer, K.; Klek, S.; Rosenthal, M.D.; Povero, M.; Heller, A.R.; Muscaritoli, M. Omega-3 fatty acids in parenteral nutrition—A systematic review with network meta-analysis on clinical outcomes. Clin. Nutr. 2023, 42, 590–599. [Google Scholar] [CrossRef]
Type | Incidence | Etiology | Patient Population | Affected Areas | Typical Microorganisms |
---|---|---|---|---|---|
Type I | 70–80% | Polymicrobial | Elderly Medical comorbidities | Trunk Abdomen Perineum | Gram-positive cocci: non-group A streptococcus Gram-negative rods: enterobacteriaceae (escherichia coli, enterobacter, klebsiella, proteus) Anaerobes: bacteroides, clostridium, peptostreptococcus, fusobacterium |
Type II | 20–30% | Monomicrobial | Recent trauma or surgery IVDA | Extremities | Gram-positive cocci: group A beta-hemolytic streptococci, other beta-hemolytic streptococci, staphylococcus aureus (MRSA) |
Type III | <1% | Aquatic microorganisms | Minor trauma Fresh and/or seawater exposure | Extremities | Gram-negative rods: vibrio vulnificus, aeromonas hydrophila |
Type IV | <1% | Fungal | Immunocompromised patients Trauma/burns | Variable | Fungi: candida spp., zygomycetes |
Phase | Timing | Metabolic Activity | Characteristics | Nutritional Needs |
---|---|---|---|---|
Early Acute Phase | 0–2 days | Hypometabolic | Decreased energy consumption Diminished mitochondrial capacity Hemodynamic instability | Early, hypocaloric nutrition Oral, enteral, or parenteral nutrition Assessment of protein calories |
Late Acute Phase | 2–7 days | Catabolic | Increased energy expenditure Muscle proteolysis Rapid tissue breakdown | Isocaloric nutrition Adequate protein intake Transition to oral or enteral nutrition |
Recovery Phase | 3–8 days | Anabolic Homeostatic | Resolution of inflammation | Nutritional rehabilitation Oral or enteral nutrition |
PICS ‡ | 10–14 days | Anabolic resistance Catabolic | Smoldering inflammation Infectious recidivism Exercise intolerance | Hypercaloric nutrition Increased protein intake Incorporation of nutrition services at follow-up |
Subjective Global Assessment (SGA) | Academy of Nutrition and Dietetics and ASPEN Indicators of Malnutrition (AAIM) | Global Leadership Initiative on Malnutrition (GLIM) | |
---|---|---|---|
Year developed | 1982 | 2011 | 2018 |
Settings and application | Clinical setting Adult patients | Clinical setting Adult patients | All settings Adult patients |
Criteria and parameters | History Weight changes Dietary intake Gastrointestinal symptoms Changes in functional capacity | History Energy intake Interpretation of weight loss | Etiologic criteria Reduced food intake or assimilation Inflammation and disease burden |
Physical examination Subcutaneous fat Muscle wasting Edema Ascites | Physical examination Body fat (loss) Muscle mass (loss) Fluid accumulation Reduced grip strength | Phenotypic criteria Unintentional weight loss Low body mass index Reduced muscle mass | |
Scoring and diagnosis | A: Well nourished B: Moderately malnourished C: Severely malnourished | Non-severe (moderate) malnutrition Severe malnutrition | Stage 1: Moderate malnutrition Stage 2: Severe malnutrition |
Benefits | Gold standard for malnutrition assessment Simple Noninvasive | Structured Validated | Global application Objective Standardized Comprehensive |
Limitations | Subjective | Less sensitive and specific compared to GLIM | Complex |
History | Physical Examination | Laboratory Studies | Imaging Studies |
---|---|---|---|
Medical comorbidities | Muscle wasting | Serum proteins | DEXA |
Recent trauma, illness, or surgery | Body habitus | Acute-phase reactants | Computed tomography |
Recent weight loss | Skinfold thickness | Micronutrient levels | Magnetic resonance |
Changes in functional status | Skin, hair, or nail abnormalities | Nitrogen balance | Ultrasound |
Psychiatric conditions | Edema or anasarca | Functional tests | Bioelectrical impedance |
BMI Range | Initial Protein | Maximum Protein | CRRT |
---|---|---|---|
<18.5 | 1.5 g/kg ABW | 2 g/kg ABW | 2–2.5 g/kg ABW |
18.5–24.9 | 1.5 g/kg ABW | 2 g/kg ABW | 2–2.5 g/kg ABW |
25–29.9 | 1.5 g/kg ABW | 2 g/kg ABW | 2–2.5 g/kg ABW |
30–34.9 | 2 g/kg/IBW | 2.5 g/kg/IBW | Consider 2.5–3 g/kg/IBW ‡ |
35–39.9 | 2 g/kg/IBW | 3 g/kg/IBW | Consider 2.5–3 g/kg/IBW |
≥40 | 2 g/kg/IBW | 3 g/kg/IBW | Consider 2.5–3 g/kg/IBW |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akam, E.A.; Pelekhaty, S.L.; Knisley, C.P.; Ley, M.G.; Loran, N.V.; Ley, E.J. Nutritional Support for Necrotizing Soft Tissue Infection Patients: From ICU to Outpatient Care. J. Clin. Med. 2025, 14, 3167. https://doi.org/10.3390/jcm14093167
Akam EA, Pelekhaty SL, Knisley CP, Ley MG, Loran NV, Ley EJ. Nutritional Support for Necrotizing Soft Tissue Infection Patients: From ICU to Outpatient Care. Journal of Clinical Medicine. 2025; 14(9):3167. https://doi.org/10.3390/jcm14093167
Chicago/Turabian StyleAkam, Eftikhar A., Stacy L. Pelekhaty, Caitlin P. Knisley, Michael G. Ley, Noah V. Loran, and Eric J. Ley. 2025. "Nutritional Support for Necrotizing Soft Tissue Infection Patients: From ICU to Outpatient Care" Journal of Clinical Medicine 14, no. 9: 3167. https://doi.org/10.3390/jcm14093167
APA StyleAkam, E. A., Pelekhaty, S. L., Knisley, C. P., Ley, M. G., Loran, N. V., & Ley, E. J. (2025). Nutritional Support for Necrotizing Soft Tissue Infection Patients: From ICU to Outpatient Care. Journal of Clinical Medicine, 14(9), 3167. https://doi.org/10.3390/jcm14093167