The Role of Hyperbaric Oxygen Therapy in Management of Necrotizing Soft Tissue Infection
Abstract
:1. History
2. Mechanisms of Action
Current UHMS Approved Indications | Emerging Indications |
---|---|
Gas embolism | Traumatic Brain Injury |
Decompression Sickness | Long Covid |
Carbon Monoxide Toxicity | Calciphylaxis |
Necrotizing Soft Tissue Infection | Frostbite |
Compromised Surgical Flaps and Grafts | Raynaud’s/Systemic Sclerosis Ulcers |
Sudden Sensorineural Hearing Loss | Pyoderma Gangrenosum |
Intracranial Abscess | Inflammatory Bowel Disease ● Crohn’s Disease ● Ulcerative Colitis ● Pouchitis |
Chronic Refractory Osteomyelitis | |
Severe Anemia | |
Avascular Necrosis | |
Diabetic Foot Ulcer | |
Acute Ischemias ● Central Retinal Artery Occlusion ● Crush Injury ● Compartment Syndrome ● Burns | |
Delayed Radiation Injury ● Soft Tissue Radionecrosis ● Osteoradionecrosis ● Radiation Cystitis ● Radiation Proctitis |
3. Bacteriostasis
4. Antibiotic Potentiation
5. Immune System Enhancement
6. Inflammation Attenuation
7. Gas Gangrene Toxin Degradation
8. Incorporation of HBOT
8.1. Recommended HBOT Regimens
8.1.1. General NSTI [48]
- 2.0–2.5 ATA pressure
- 90 min of oxygen delivery
- Twice daily for several days, until apparent infection control and halt of necrosis
- Once daily after stabilization to avoid relapse until persistent control is apparent
8.1.2. In the Subset of Gas Gangrene NSTI [48,49]
- 2.8–3.0 ATA pressure
- 90 min of oxygen delivery
- 2 to 3 times in first 24 h
- Twice daily for following 2 to 5 days
- Extend treatment while patient remains toxic
- Utilization review after 10 treatments
9. Summary
Funding
Conflicts of Interest
Abbreviations
NSTI | Necrotizing Soft Tissue Infection |
HBOT | Hyperbaric Oxygen Therapy |
PMN | Polymorphonuclear Neutrophil |
RBC | Red Blood Cell |
CPR | Cardiopulmonary Resuscitation |
ACLS | Advance Cardiovascular Life Support |
ATA | Atmosphere Absolute |
ROS | Reactive Oxygen Species |
References
- Madsen, M.B.; Skrede, S.; Perner, A.; Arnell, P.; Nekludov, M.; Bruun, T.; Karlsson, Y.; Hansen, M.B.; Polzik, P.; Hedetoft, M.; et al. Patient’s characteristics and outcomes in necrotising soft-tissue infections: Results from a Scandinavian, multicentre, prospective cohort study. Intensiv. Care Med. 2019, 45, 1241–1251. [Google Scholar] [CrossRef] [PubMed]
- Smolle, C.; Lindenmann, J.; Kamolz, L.; Smolle-Juettner, F.M. The History and Development of Hyperbaric Oxygenation (HBO) in Thermal Burn Injury. Medicina 2021, 57, 49. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, E. UHMS Hyperbaric Medicine Indications Manual, 15th ed.; Best Publishing: North Palm Beach, FL, USA, 2023. [Google Scholar]
- Bennett, M.H.; Mitchell, S.J.; Buckey, J.C.; Robins, M. Emerging Indications. In Hyperbaric Medicine Indications Manual, 15th ed.; Best Publishing Company: North Palm Beach, FL, USA, 2023; pp. 429–438. [Google Scholar]
- Brummelkamp, W.H. Considerations on hyperbaric oxygen therapy at three atmospheres absolute for clostridial infections type welchii. Ann. N. Y. Acad. Sci. 1965, 117, 688–699. [Google Scholar] [CrossRef]
- Shaw, J.J.; Psoinos, C.; Emhoff, T.A.; Shah, S.A.; Santry, H.P. Not just full of hot air: Hyperbaric oxygen therapy increases survival in cases of necrotizing soft tissue infections. Surg. Infect. 2014, 15, 328–335. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Devaney, B.; Frawley, G.; Frawley, L.; Pilcher, D.V. Necrotising soft tissue infections: The effect of hyperbaric oxygen on mortality. Anaesth. Intensive Care 2015, 43, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Mladenov, A.; Diehl, K.; Müller, O.; von Heymann, C.; Kopp, S.; Peitsch, W.K. Outcome of necrotizing fasciitis and Fournier’s gangrene with and without hyperbaric oxygen therapy: A retrospective analysis over 10 years. World J. Emerg. Surg. 2022, 17, 43. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hardy, K. Physics of Hyperbaric Oxygen Therapy in Physiology and Medicine of Hyperbaric Oxygen Therapy E-Book; Neuman, T.S., Thom, S.R., Eds.; Elsevier Health Sciences: Philadelphia, PA, USA, 2008; pp. 57–64. [Google Scholar]
- Hakkarainen, T.W.; Kopari, N.M.; Pham, T.N.; Evans, H.L. Necrotizing soft tissue infections: Review and current concepts in treatment, systems of care, and outcomes. Curr. Probl. Surg. 2014, 51, 344–362. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- André, A.C.; Laborde, M.; Marteyn, B.S. The battle for oxygen during bacterial and fungal infections. Trends Microbiol. 2022, 30, 643–653. [Google Scholar] [CrossRef] [PubMed]
- Memar, M.Y.; Yekani, M.; Alizadeh, N.; Baghi, H.B. Hyperbaric oxygen therapy: Antimicrobial mechanisms and clinical application for infections. Biomed. Pharmacother. 2019, 109, 440–447. [Google Scholar] [CrossRef]
- Fang, F.C. Antimicrobial reactive oxygen and nitrogen species: Concepts and controversies. Nat. Rev. Microbiol. 2004, 2, 820–832. [Google Scholar] [CrossRef] [PubMed]
- Turhan, V.; Sacar, S.; Uzun, G.; Sacar, M.; Yildiz, S.; Ceran, N.; Gorur, R.; Oncul, O. Hyperbaric oxygen as adjunctive therapy in experimental mediastinitis. J. Surg. Res. 2009, 155, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Mendel, V.; Reichert, B.; Simanowski, H.J.; Scholz, H.C. Therapy with hyperbaric oxygen and cefazolin for experimental osteomyelitis due to Staphylococcus aureus in rats. Undersea Hyperb. Med. 1999, 26, 169–174. [Google Scholar] [PubMed]
- Kolpen, M.; Mousavi, N.; Sams, T.; Bjarnsholt, T.; Ciofu, O.; Moser, C.; Kühl, M.; Høiby, N.; Jensen, P.Ø. Reinforcement of the bactericidal effect of ciprofloxacin on Pseudomonas aeruginosa biofilm by hyperbaric oxygen treatment. Int. J. Antimicrob. Agents 2016, 47, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Lerche, C.J.; Christophersen, L.J.; Kolpen, M.; Nielsen, P.R.; Trøstrup, H.; Thomsen, K.; Hyldegaard, O.; Bundgaard, H.; Jensen, P.Ø.; Høiby, N.; et al. Hyperbaric oxygen therapy augments tobramycin efficacy in experimental Staphylococcus aureus endocarditis. Int. J. Antimicrob. Agents 2017, 50, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, D.J.; Belenky, P.A.; Yang, J.H.; MacDonald, I.C.; Martell, J.D.; Takahashi, N.; Chan, C.T.; Lobritz, M.A.; Braff, D.; Schwarz, E.G.; et al. Antibiotics induce redox-related physiological alterations as part of their lethality. Proc. Natl. Acad. Sci. USA 2014, 111, E2100–E2109. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grant, S.S.; Kaufmann, B.B.; Chand, N.S.; Haseley, N.; Hung, D.T. Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals. Proc. Natl. Acad. Sci. USA 2012, 109, 12147–12152. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kok, M.; Maton, L.; van der Peet, M.; Hankemeier, T.; van Hasselt, J.G.C. Unraveling antimicrobial resistance using metabolomics. Drug Discov. Today 2022, 27, 1774–1783. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, G.; Saigal, S.; Elongavan, A. Action and resistance mechanisms of antibiotics: A guide for clinicians. J. Anaesthesiol. Clin. Pharmacol. 2017, 33, 300–305. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yan, J.; Kloecker, G.; Fleming, C.; Bousamra, M., 2nd; Hansen, R.; Hu, X.; Ding, C.; Cai, Y.; Xiang, D.; Donninger, H.; et al. Human polymorphonuclear neutrophils specifically recognize and kill cancerous cells. Oncoimmunology 2014, 3, e950163. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mandell, G.L. Bactericidal activity of aerobic and anaerobic polymorphonuclear neutrophils. Infect. Immun. 1974, 9, 337–341. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Almzaiel, A.J.; Billington, R.; Smerdon, G.; Moody, A.J. Effects of hyperbaric oxygen treatment on antimicrobial function and apoptosis of differentiated HL-60 (neutrophil-like) cells. Life Sci. 2013, 93, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Hedetoft, M.; Jensen, P.Ø.; Moser, C.; Vinkel, J.; Hyldegaard, O. Hyperbaric oxygen treatment impacts oxidative stress markers in patients with necrotizing soft-tissue infection. J. Investig. Med. 2021, 69, 1330–1338. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chung, S.W.; Liu, X.; Macias, A.A.; Baron, R.M.; Perrella, M.A. Heme oxygenase-1-derived carbon monoxide enhances the host defense response to microbial sepsis in mice. J. Clin. Investig. 2008, 118, 239–247. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weiss, S.J. Tissue destruction by neutrophils. N. Engl. J. Med. 1989, 320, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Wilgus, T.A.; Roy, S.; McDaniel, J.C. Neutrophils and Wound Repair: Positive Actions and Negative Reactions. Adv. Wound Care 2013, 2, 379–388. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baiula, M.; Greco, R.; Ferrazzano, L.; Caligiana, A.; Hoxha, K.; Bandini, D.; Longobardi, P.; Spampinato, S.; Tolomelli, A. Integrin-mediated adhesive properties of neutrophils are reduced by hyperbaric oxygen therapy in patients with chronic non-healing wound. PLoS ONE 2020, 15, e0237746. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ryter, S.W. Therapeutic Potential of Heme Oxygenase-1 and Carbon Monoxide in Acute Organ Injury, Critical Illness, and Inflammatory Disorders. Antioxidants 2020, 9, 1153. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Eltzschig, H.K.; Carmeliet, P. Hypoxia and inflammation. N. Engl. J. Med. 2011, 364, 656–665. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Babchin, A.; Levich, E.; Melamed, M.Y.; Sivashinsky, G. Osmotic phenomena in application for hyperbaric oxygen treatment. Colloids Surf. B Biointerfaces 2011, 83, 128–132. [Google Scholar] [CrossRef]
- Barshtein, G.; Pajic-Lijakovic, I.; Gural, A. Deformability of Stored Red Blood Cells. Front. Physiol. 2021, 12, 722896. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Steenebruggen, F.; Jacobs, D.; Delporte, C.; Van Antwerpen, P.; Boudjeltia, K.Z.; Biston, P.; Piagnerelli, M. Hyperbaric oxygenation improve red blood cell deformability in patients with acute or chronic inflammation. Microvasc. Res. 2023, 148, 104534. [Google Scholar] [CrossRef] [PubMed]
- Stevens, D.L. The pathogenesis of clostridial myonecrosis. Int. J. Med. Microbiol. 2000, 290, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Buboltz, J.B.; Murphy-Lavoie, H.M. Gas Gangrene. [Updated 2023 Jan 30]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK537030/ (accessed on 3 March 2025).
- Bakker, D.J. Clostridial myonecrosis (gas gangrene). Undersea Hyperb. Med. 2012, 39, 731–737. [Google Scholar] [PubMed]
- Titball, R.W.; Naylor, C.E.; Basak, A.K. The Clostridium perfringensα-toxin. Anaerobe 1999, 5, 51–64. [Google Scholar] [CrossRef]
- O’Brien, D.K.; Melville, S.B. Effects of Clostridium perfringens alpha-toxin (PLC) and perfringolysin O (PFO) on cytotoxicity to macrophages, on escape from the phagosomes of macrophages, and on persistence of C. perfringens in host tissues. Infect. Immun. 2004, 72, 5204–5215. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Maclennan, J.D. The histotoxic clostridial infections of man. Bacteriol. Rev. 1962, 26 Pt 1–2, 177–276. [Google Scholar] [CrossRef]
- van Unnik, A.J.M. Inhibition of toxin production in Clostridium perfringens in vitro by hyperbaric oxygen. Antonie Van Leeuwenhoek 1965, 31, 181–186. [Google Scholar] [CrossRef]
- Nora, P.F.; Bransfield, J.; Cieslak, F.; Laufman, H. HPO in clostridial toxicity and strangulation obstruction. Arch. Surg. 1966, 93, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Hirn, M. Hyperbaric oxygen in the treatment of gas gangrene and perineal necrotizing fasciitis. A clinical and experimental study. Eur. J. Surg. Suppl. 1993, 570, 1–36. [Google Scholar] [PubMed]
- Holland, J.A.; Hill, G.B.; Wolfe, W.G.; Osterhout, S.; Saltzman, H.A.; Brown, I.W., Jr. Experimental and clinical experience with hyperbaric oxygen in the treatment of clostridial myonecrosis. Surgery 1975, 77, 75–85. [Google Scholar] [PubMed]
- Wilkinson, D.; Doolette, D. Hyperbaric oxygen treatment and survival from necrotizing soft tissue infection. Arch. Surg. 2004, 139, 1339–1345. [Google Scholar] [CrossRef] [PubMed]
- Hedetoft, M.; Bennett, M.H.; Hyldegaard, O. Adjunctive hyperbaric oxygen treatment for necrotising soft-tissue infections: A systematic review and meta-analysis. Diving Hyperb. Med. 2021, 51, 34–43. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shishido, A.; Schrank, G.; Vostal, A.; Uehling, M.; Tripathi, R.; Chintalapati, S.; Conway, L.; Kus, N.; DiChiacchio, L.; Kai, M.; et al. Hyperbaric Oxygen Therapy for Necrotizing Soft Tissue Infections: A Retrospective Cohort Analysis of Clinical Outcomes. Surg. Infect. 2025; ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.A.; Jacoby, I. Necrotizing soft tissue infections. In Hyperbaric Medicine Indications Manual, 15th ed.; Best Publishing Company: North Palm Beach, FL, USA, 2023; p. 258. [Google Scholar]
- Weening, R.P.; Giannakopoulos, G.F.; van Hulst, R.A. Clostridial myonecrosis (gas gangrene). In Hyperbaric Medicine Indications Manual, 15th ed.; Best Publishing Company: North Palm Beach, FL, USA, 2023; p. 113. [Google Scholar]
- Sethuraman, K.N.; Smolin, R.; Henry, S. Is There a Place for Hyperbaric Oxygen Therapy? Adv. Surg. 2022, 56, 169–204. [Google Scholar] [CrossRef] [PubMed]
- Schiavo, S.; Brenna, C.T.A.; Albertini, L.; Djaiani, G.; Marinov, A.; Katznelson, R. Safety of hyperbaric oxygen therapy in patients with heart failure: A retrospective cohort study. PLoS ONE 2024, 19, e0293484. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jokinen-Gordon, H.; Barry, R.C.; Watson, B.; Covington, D.S. A Retrospective Analysis of Adverse Events in Hyperbaric Oxygen Therapy (2012–2015): Lessons Learned From 1.5 Million Treatments. Adv. Ski. Wound Care 2017, 30, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Gengel, K.C.; Hendriksen, S.; Cooper, J.S. Hyperbaric Related Myopia and Cataract Formation. [Updated 2023 Jul 4]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK430855/ (accessed on 8 May 2025).
- Sheffield, P.J.; Desautels, D.A. Hyperbaric and hypobaric chamber fires: A 73-year analysis. Undersea Hyperb. Med. 1997, 24, 153–164. [Google Scholar] [PubMed]
- Carlson, S.; Jones, J.; Brown, M.; Hess, C. Prevention of hyperbaric-associated middle ear barotrauma. Ann. Emerg. Med. 1992, 21, 1468–1471. [Google Scholar] [CrossRef] [PubMed]
Bacteriostasis |
Antibiotic potentiation |
Immune system enhancement |
Inflammation attenuation |
Alpha toxin disruption |
Author, Date | Findings |
---|---|
Shaw JJ et al., 2014 [6] | Reduced mortality, decreased complications |
Devaney B et al., 2015 [7] | Reduced mortality |
Mladenov A et al., 2022 [8] | Reduced mortality |
Turhan V et al., 2009 [14] | Linezolid, vancomycin, and teicoplanin potentiation |
Mendel V et al., 1999 [15] | Cefazolin potentiation |
Kolpen M et al., 2016 [16] | Ciprofloxacin potentiation |
Lerche CJ et al., 2017 [17] | Tobramycin potentiation |
Hedetoft M et al., 2021 [25] | Greater ROS presence |
Baiula M et al., 2020 [29] | Decreased pro-inflammatory markers |
Ryter SW; 2020 [30] | Increased inflammation attenuating molecules |
Steenebruggen F et al., 2023 [34] | Greater RBC deformability |
Bakker DJ; 2012 [37] | Improved morbidity, reduced mortality |
van Unnik AJM; 1965 [41] | Impaired alpha toxin production |
Hirn M; 1993 [43] | Improved morbidity, reduced mortality |
Wilkinson D, Doolette D; 2004 [45] | Reduced mortality, decreased amputation |
Hedetoft M et al., 2021 [46] | Reduced mortality, decreased amputation |
Shishido A et al., 2025 [47] | Reduced mortality |
Effect | Frequency |
---|---|
Ear pain | 17% |
Otic/sinus barotrauma | 0.37% |
Confinement anxiety | 0.16% |
Hypoglycemia | 0.08% |
Shortness of breath | 0.05% |
Seizure | 0.02% |
CHF exacerbation | 2 in 906 treatments ** [51] |
Pneumothorax | 1 in 1.5 million treatments [52] |
Progressive myopia (irreversible) | *** [53] |
Accelerated cataract formation | *** |
Fire/explosion | Very rare, life-threatening [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gregory, T.J.; Sethuraman, K. The Role of Hyperbaric Oxygen Therapy in Management of Necrotizing Soft Tissue Infection. J. Clin. Med. 2025, 14, 3511. https://doi.org/10.3390/jcm14103511
Gregory TJ, Sethuraman K. The Role of Hyperbaric Oxygen Therapy in Management of Necrotizing Soft Tissue Infection. Journal of Clinical Medicine. 2025; 14(10):3511. https://doi.org/10.3390/jcm14103511
Chicago/Turabian StyleGregory, Thomas J., and Kinjal Sethuraman. 2025. "The Role of Hyperbaric Oxygen Therapy in Management of Necrotizing Soft Tissue Infection" Journal of Clinical Medicine 14, no. 10: 3511. https://doi.org/10.3390/jcm14103511
APA StyleGregory, T. J., & Sethuraman, K. (2025). The Role of Hyperbaric Oxygen Therapy in Management of Necrotizing Soft Tissue Infection. Journal of Clinical Medicine, 14(10), 3511. https://doi.org/10.3390/jcm14103511