Biologic Therapies for Severe Asthma: Current Insights and Future Directions
Abstract
:1. Introduction
2. Biologic Therapies in Asthma
2.1. Self-Administration of Biologics at Home
2.2. Pediatric Severe Asthma
3. Future of Biologic Therapy for Asthma
4. Conclusions
Funding
Conflicts of Interest
References
- Global Initiative for Asthma, Gina 2024 Main Report. Available online: https://ginasthma.org/2024-report/ (accessed on 12 February 2025).
- Mortimer, K.; Reddel, H.K.; Pitrez, P.M.; Bateman, E.D. Asthma management in low and middle income countries: Case for change. Eur. Respir. J. 2022, 60, 2103179. [Google Scholar] [CrossRef] [PubMed]
- Redmond, C.; Akinoso-Imran, A.Q.; Heaney, L.G.; Sheikh, A.; Kee, F.; Busby, J. Socioeconomic disparities in asthma health care utilization, exacerbations, and mortality: A systematic review and meta-analysis. J. Allergy Clin. Immunol. 2022, 149, 1617–1627. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.F.; Wenzel, S.E.; Brozek, J.L.; Bush, A.; Castro, M.; Sterk, P.J.; Adcock, I.M.; Bateman, E.D.; Bel, E.H.; Bleecker, E.R.; et al. International ers/ats guidelines on definition, evaluation and treatment of severe asthma. Eur. Respir. J. 2014, 43, 343–373. [Google Scholar] [CrossRef] [PubMed]
- Plaza, V.; Blanco, M.; Ferreira, J.; Garcia, G.; Morete, A.; Quirce, S.; Soto-Campos, G.; Almonacid, C.; in representation of the Executive Committee of the Spanish Asthma Guidelines (GEMA). Highlights of the spanish asthma guidelines (gema), version 5.4. Open Respir. Arch. 2024, 6, 100356. [Google Scholar] [CrossRef]
- Chakravarthy, D.; Sankaranarayanan, S.; David, A.; V, N. Evaluating the effectiveness of a comprehensive interventional package on the quality of life of children with asthma. Cureus 2024, 16, e76135. [Google Scholar] [CrossRef]
- Milger, K.; Koschel, D.; Skowasch, D.; Timmermann, H.; Schmidt, O.; Bergmann, K.C.; Neurohr, C.; Lindner, R.; Heck, S.; Virchow, J.C. Maintenance ocs were used more frequently than biologics in patients with uncontrolled gina 4/5 asthma in germany in 2019. J. Asthma Allergy 2024, 17, 1093–1101. [Google Scholar] [CrossRef]
- Blakey, J.; Chung, L.P.; McDonald, V.M.; Ruane, L.; Gornall, J.; Barton, C.; Bosnic-Anticevich, S.; Harrington, J.; Hew, M.; Holland, A.E.; et al. Oral corticosteroids stewardship for asthma in adults and adolescents: A position paper from the thoracic society of australia and new zealand. Respirology 2021, 26, 1112–1130. [Google Scholar] [CrossRef]
- McGregor, M.C.; Krings, J.G.; Nair, P.; Castro, M. Role of biologics in asthma. Am. J. Respir. Crit. Care Med. 2019, 199, 433–445. [Google Scholar] [CrossRef]
- Thio, C.L.; Chang, Y.J. The modulation of pulmonary group 2 innate lymphoid cell function in asthma: From inflammatory mediators to environmental and metabolic factors. Exp. Mol. Med. 2023, 55, 1872–1884. [Google Scholar] [CrossRef]
- Crisford, H.; Sapey, E.; Rogers, G.B.; Taylor, S.; Nagakumar, P.; Lokwani, R.; Simpson, J.L. Neutrophils in asthma: The good, the bad and the bacteria. Thorax 2021, 76, 835–844. [Google Scholar] [CrossRef]
- Amelink, M.; de Groot, J.C.; de Nijs, S.B.; Lutter, R.; Zwinderman, A.H.; Sterk, P.J.; ten Brinke, A.; Bel, E.H. Severe adult-onset asthma: A distinct phenotype. J. Allergy Clin. Immunol. 2013, 132, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Blakey, J.D.; Gayle, A.; Slater, M.G.; Jones, G.H.; Baldwin, M. Observational cohort study to investigate the unmet need and time waiting for referral for specialist opinion in adult asthma in england (untwist asthma). BMJ Open 2019, 9, e031740. [Google Scholar] [CrossRef] [PubMed]
- Ortega, H.; Bharmal, N.; Khatri, S. Primary care referral patterns for patients with asthma: Analysis of real-world data. J. Asthma 2023, 60, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Pelaia, C.; Calabrese, C.; Terracciano, R.; de Blasio, F.; Vatrella, A.; Pelaia, G. Omalizumab, the first available antibody for biological treatment of severe asthma: More than a decade of real-life effectiveness. Ther. Adv. Respir. Dis. 2018, 12, 1753466618810192. [Google Scholar] [CrossRef]
- Wood, R.A.; Togias, A.; Sicherer, S.H.; Shreffler, W.G.; Kim, E.H.; Jones, S.M.; Leung, D.Y.M.; Vickery, B.P.; Bird, J.A.; Spergel, J.M.; et al. Omalizumab for the treatment of multiple food allergies. N. Engl. J. Med. 2024, 390, 889–899. [Google Scholar] [CrossRef]
- Song, Y.; Wang, Z.; Wang, N.; Xie, X.; Zhu, T.; Wang, Y. A real-world pharmacovigilance study of omalizumab using disproportionality analysis in the fda adverse drug events reporting system database. Sci. Rep. 2025, 15, 8045. [Google Scholar] [CrossRef]
- Iribarren, C.; Rahmaoui, A.; Long, A.A.; Szefler, S.J.; Bradley, M.S.; Carrigan, G.; Eisner, M.D.; Chen, H.; Omachi, T.A.; Farkouh, M.E.; et al. Cardiovascular and cerebrovascular events among patients receiving omalizumab: Results from excels, a prospective cohort study in moderate to severe asthma. J. Allergy Clin. Immunol. 2017, 139, 1489–1495.E5. [Google Scholar] [CrossRef]
- Lee, J.K.; Pollard, S.J.; Liu, M.C.; Schleich, F.; Pelaia, G.; Almonacid, C.; Heaney, L.G.; Chaudhuri, R.; Alfonso-Cristancho, R.; Zhang, L.; et al. Mepolizumab real-world effectiveness in severe asthma with an eosinophilic phenotype and overlapping severe allergic asthma. Ann. Allergy Asthma Immunol. 2025. Online ahead of print. [Google Scholar] [CrossRef]
- Bolke, G.; Tong, X.; Zuberbier, T.; Bousquet, J.; Bergmann, K.C. Extension of mepolizumab injection intervals as potential of saving costs in well controlled patients with severe eosinophilic asthma. World Allergy Organ. J. 2022, 15, 100703. [Google Scholar] [CrossRef]
- Soendergaard, M.B.; Bjerrum, A.S.; Rasmussen, L.M.; Lock-Johansson, S.; Hilberg, O.; Hansen, S.; von Bulow, A.; Porsbjerg, C. Titration of anti-il-5 biologics in severe asthma: An open-label randomised controlled trial (the optimal study). Eur. Respir. J. 2024, 64, 2400404. [Google Scholar] [CrossRef]
- Van Hulst, G.; Jorssen, J.; Jacobs, N.; Henket, M.; Louis, R.; Schleich, F.; Bureau, F.; Desmet, C.J. Anti-il5 mepolizumab minimally influences residual blood eosinophils in severe asthma. Eur. Respir. J. 2022, 59, 2100935. [Google Scholar] [CrossRef] [PubMed]
- Pelaia, C.; Vatrella, A.; Busceti, M.T.; Gallelli, L.; Terracciano, R.; Savino, R.; Pelaia, G. Severe eosinophilic asthma: From the pathogenic role of interleukin-5 to the therapeutic action of mepolizumab. Drug Des. Dev. Ther. 2017, 11, 3137–3144. [Google Scholar] [CrossRef] [PubMed]
- Choy, M.S.; Dixit, D.; Bridgeman, M.B. Mepolizumab (nucala) for severe eosinophilic asthma. Pharm. Ther. 2016, 41, 619–622. [Google Scholar]
- Virchow, J.C.; Katial, R.; Brusselle, G.G.; Shalit, Y.; Garin, M.; McDonald, M.; Castro, M. Safety of reslizumab in uncontrolled asthma with eosinophilia: A pooled analysis from 6 trials. J. Allergy Clin. Immunol. Pract. 2020, 8, 540–548.E1. [Google Scholar] [CrossRef]
- Liu, W.; Ma, X.; Zhou, W. Adverse events of benralizumab in moderate to severe eosinophilic asthma: A meta-analysis. Medicine 2019, 98, e15868. [Google Scholar] [CrossRef]
- Parmar, N.V.; Abdula, M.A.; Al Falasi, A.; Krishna, C.V. Long-term real-world experience of the side effects of dupilumab in 128 patients with atopic dermatitis and related conditions aged 6 years and above: Retrospective chart analysis from a single tertiary care center. Dermatol. Ther. 2022, 35, e15415. [Google Scholar] [CrossRef]
- Halling, A.S.; Loft, N.; Silverberg, J.I.; Guttman-Yassky, E.; Thyssen, J.P. Real-world evidence of dupilumab efficacy and risk of adverse events: A systematic review and meta-analysis. J. Am. Acad. Dermatol. 2021, 84, 139–147. [Google Scholar] [CrossRef]
- Corren, J.; Menzies-Gow, A.; Chupp, G.; Israel, E.; Korn, S.; Cook, B.; Ambrose, C.S.; Hellqvist, A.; Roseti, S.L.; Molfino, N.A.; et al. Efficacy of tezepelumab in severe, uncontrolled asthma: Pooled analysis of the pathway and navigator clinical trials. Am. J. Respir. Crit. Care Med. 2023, 208, 13–24. [Google Scholar] [CrossRef]
- Lin, F.; Yu, B.; Deng, B.; He, R. The efficacy and safety of tezepelumab in the treatment of uncontrolled asthma: A systematic review and meta-analysis of randomized controlled trials. Medicine 2023, 102, e34746. [Google Scholar] [CrossRef]
- Brusselle, G.; Riemann, S. Is efficacy of tezepelumab independent of severe asthma phenotype? Am. J. Respir. Crit. Care Med. 2023, 208, 1–3. [Google Scholar] [CrossRef]
- Menzies-Gow, A.; Wechsler, M.E.; Brightling, C.E.; Korn, S.; Corren, J.; Israel, E.; Chupp, G.; Bednarczyk, A.; Ponnarambil, S.; Caveney, S.; et al. Long-term safety and efficacy of tezepelumab in people with severe, uncontrolled asthma (destination): A randomised, placebo-controlled extension study. Lancet Respir. Med. 2023, 11, 425–438. [Google Scholar] [CrossRef] [PubMed]
- Barnikel, M.; Grabmaier, U.; Mertsch, P.; Ceelen, F.; Janke, C.; Behr, J.; Kneidinger, N.; Milger, K. Domestic parasitic infections in patients with asthma and eosinophilia in germany—Three cases with learnings in the era of anti- il5 treatments. J. Asthma Allergy 2023, 16, 1229–1232. [Google Scholar] [CrossRef] [PubMed]
- Ortega, H.; Llanos, J.P.; Lafeuille, M.H.; Duh, M.S.; Germain, G.; Lejeune, D.; Sama, S.; Bell, C.; Hahn, B. Effects of systemic corticosteroids on blood eosinophil counts in asthma: Real-world data. J. Asthma 2019, 56, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Soendergaard, M.B.; Hansen, S.; Bjerrum, A.S.; Hilberg, O.; Lock-Johansson, S.; Hakansson, K.E.J.; Ingebrigtsen, T.S.; Johnsen, C.R.; Rasmussen, L.M.; von Bulow, A.; et al. Complete response to anti-interleukin-5 biologics in a real-life setting: Results from the nationwide danish severe asthma register. ERJ Open Res. 2022, 8, 00238–2022. [Google Scholar] [CrossRef]
- Cabon, Y.; Molinari, N.; Marin, G.; Vachier, I.; Gamez, A.S.; Chanez, P.; Bourdin, A. Comparison of anti-interleukin-5 therapies in patients with severe asthma: Global and indirect meta-analyses of randomized placebo-controlled trials. Clin. Exp. Allergy 2017, 47, 129–138. [Google Scholar] [CrossRef]
- Ramonell, R.P.; Iftikhar, I.H. Effect of anti-il5, anti-il5r, anti-il13 therapy on asthma exacerbations: A network meta-analysis. Lung 2020, 198, 95–103. [Google Scholar] [CrossRef]
- Pfeffer, P.E.; Ali, N.; Murray, R.; Ulrik, C.; Tran, T.N.; Maspero, J.; Peters, M.; Christoff, G.C.; Sadatsafavi, M.; Torres-Duque, C.A.; et al. Comparative effectiveness of anti-il5 and anti-ige biologic classes in patients with severe asthma eligible for both. Allergy 2023, 78, 1934–1948. [Google Scholar] [CrossRef]
- Kotisalmi, E.; Hakulinen, A.; Makela, M.; Toppila-Salmi, S.; Kauppi, P. A comparison of biologicals in the treatment of adults with severe asthma—Real-life experiences. Asthma Res. Pract. 2020, 6, 2. [Google Scholar] [CrossRef]
- Indolfi, C.; Dinardo, G.; Klain, A.; Contieri, M.; Umano, G.R.; Decimo, A.; Ciprandi, G.; Del Giudice, M.M. Time effect of dupilumab to treat severe uncontrolled asthma in adolescents: A pilot study. Allergol. Immunopathol. 2023, 51, 12–18. [Google Scholar] [CrossRef]
- Izumo, T.; Tone, M.; Kuse, N.; Awano, N.; Tanaka, A.; Jo, T.; Yoshimura, H.; Minami, J.; Takada, K.; Inomata, M. Effectiveness and safety of benralizumab for severe asthma in clinical practice (j-best): A prospective study. Ann. Transl. Med. 2020, 8, 438. [Google Scholar] [CrossRef]
- Riccardi, E.; Guida, G.; Garino, S.; Bertolini, F.; Carriero, V.; Brusamento, M.; Pizzimenti, S.; Giannoccaro, F.; Falzone, E.; Arrigo, E.; et al. Biologics in t2 severe asthma: Unveiling different effectiveness by real-world indirect comparison. J. Clin. Med. 2024, 13, 4750. [Google Scholar] [CrossRef] [PubMed]
- Laorden, D.; Dominguez-Ortega, J.; Romero, D.; Villamanan, E.; Mariscal-Aguilar, P.; Granda, P.; Quirce, S.; Alvarez-Sala, R.; On Behalf of ASMAGRAVE-HULP Group. Efficacy assessment of biological treatments in severe asthma. J. Clin. Med. 2025, 14, 321. [Google Scholar] [CrossRef] [PubMed]
- Shackleford, A.; Heaney, L.G.; Redmond, C.; McDowell, P.J.; Busby, J. Clinical remission attainment, definitions, and correlates among patients with severe asthma treated with biologics: A systematic review and meta-analysis. Lancet Respir. Med. 2025, 13, 23–34. [Google Scholar] [CrossRef]
- Carriera, L.; Fanto, M.; Martini, A.; D’Abramo, A.; Puzio, G.; Scaramozzino, M.U.; Coppola, A. Combination of biological therapy in severe asthma: Where we are? J. Pers. Med. 2023, 13, 1594. [Google Scholar] [CrossRef]
- Lavoie, G.; Howell, I.; Melhorn, J.; Borg, C.; Bermejo-Sanchez, L.; Seymour, J.; Jabeen, M.F.; Fries, A.; Hynes, G.; Pavord, I.D.; et al. Effects of azithromycin in severe eosinophilic asthma with concomitant monoclonal antibody treatment. Thorax 2025, 80, 113–116. [Google Scholar] [CrossRef]
- Guan, D.; Liu, Y.; Gu, Y.; Zheng, B.; Sun, R.; Shen, Y.; Yang, Y. Efficacy and safety of specific immunotherapy combined with biologics in allergic rhinitis and asthma: A systematic review and network meta-analysis. Int. Arch. Allergy Immunol. 2025, 1–19, Online ahead of print. [Google Scholar] [CrossRef]
- Kyriakopoulos, C.; Gogali, A.; Markozannes, G.; Kostikas, K. Biologic agents licensed for severe asthma: A systematic review and meta-analysis of randomised controlled trials. Eur. Respir. Rev. 2024, 33, 230238. [Google Scholar] [CrossRef]
- Jackson, D.J.; Heaney, L.G.; Humbert, M.; Kent, B.D.; Shavit, A.; Hiljemark, L.; Olinger, L.; Cohen, D.; Menzies-Gow, A.; Korn, S.; et al. Reduction of daily maintenance inhaled corticosteroids in patients with severe eosinophilic asthma treated with benralizumab (shamal): A randomised, multicentre, open-label, phase 4 study. Lancet 2024, 403, 271–281. [Google Scholar] [CrossRef]
- Flokstra-de Blok, B.; Kocks, J.; Wouters, H.; Arling, C.; Chatelier, J.; Douglass, J.; Heaney, L.G.; Holmes, J.; Humbert, M.; Kolanowski, M.; et al. Perceptions on home-administration of biologics in the context of severe asthma: An international qualitative study. J. Allergy Clin. Immunol. Pract. 2022, 10, 2312–2323.e2. [Google Scholar] [CrossRef]
- Menzella, F.; Fontana, M.; Ruggiero, P.; Livrieri, F.; Facciolongo, N. Home-based treatment of biologics for asthma: Who, what, where, when and why. Expert Rev. Respir. Med. 2022, 16, 419–428. [Google Scholar] [CrossRef]
- Indolfi, C.; Klain, A.; Capuano, M.C.; Colosimo, S.; Rapillo, R.; Miraglia Del Giudice, M. Severe asthma in school-age children: An updated appraisal on biological options and challenges in this age group. Children 2025, 12, 167. [Google Scholar] [CrossRef] [PubMed]
- Bacharier, L.B.; Jackson, D.J. Biologics in the treatment of asthma in children and adolescents. J. Allergy Clin. Immunol. 2023, 151, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Galletta, F.; Caminiti, L.; Lugara, C.; Foti Randazzese, S.; Barraco, P.; D’Amico, F.; Irrera, P.; Crisafulli, G.; Manti, S. Long-term safety of omalizumab in children with asthma and/or chronic spontaneous urticaria: A 4-year prospective study in real life. J. Pers. Med. 2023, 13, 1068. [Google Scholar] [CrossRef] [PubMed]
- Pavord, I.; Chan, R.; Brown, N.; Howarth, P.; Gilson, M.; Price, R.G.; Maspero, J. Long-term safety of mepolizumab for up to approximately 10 years in patients with severe asthma: Open-label extension study. Ann. Med. 2024, 56, 2417184. [Google Scholar] [CrossRef]
- Jackson, D.J.; Wechsler, M.E.; Jackson, D.J.; Bernstein, D.; Korn, S.; Pfeffer, P.E.; Chen, R.; Saito, J.; de Luiz Martinez, G.; Dymek, L.; et al. Twice-yearly depemokimab in severe asthma with an eosinophilic phenotype. N. Engl. J. Med. 2024, 391, 2337–2349. [Google Scholar] [CrossRef]
- Wechsler, M.E.; Ruddy, M.K.; Pavord, I.D.; Israel, E.; Rabe, K.F.; Ford, L.B.; Maspero, J.F.; Abdulai, R.M.; Hu, C.C.; Martincova, R.; et al. Efficacy and safety of itepekimab in patients with moderate-to-severe asthma. N. Engl. J. Med. 2021, 385, 1656–1668. [Google Scholar] [CrossRef]
- Rabe, K.F.; Martinez, F.J.; Bhatt, S.P.; Kawayama, T.; Cosio, B.G.; Mroz, R.M.; Boomsma, M.M.; Goulaouic, H.; Nivens, M.C.; Djandji, M.; et al. Aerify-1/2: Two phase 3, randomised, controlled trials of itepekimab in former smokers with moderate-to-severe copd. ERJ Open Res 2024, 10, 00718–2023. [Google Scholar] [CrossRef]
- Corren, J. Frontier-3: A randomized, phase 2a study to evaluate the efficacy and safety of tozorakimab (an anti-interleukin-33 monoclonal antibody) in early-onset asthma. Thorax 2024. [Google Scholar] [CrossRef]
- Kelsen, S.G.; Agache, I.O.; Soong, W.; Israel, E.; Chupp, G.L.; Cheung, D.S.; Theess, W.; Yang, X.; Staton, T.L.; Choy, D.F.; et al. Astegolimab (anti-st2) efficacy and safety in adults with severe asthma: A randomized clinical trial. J. Allergy Clin. Immunol. 2021, 148, 790–798. [Google Scholar] [CrossRef]
- Lipworth, B.J.; Han, J.K.; Desrosiers, M.; Hopkins, C.; Lee, S.E.; Mullol, J.; Pfaar, O.; Li, T.; Chen, C.; Almqvist, G.; et al. Tezepelumab in adults with severe chronic rhinosinusitis with nasal polyps. N. Engl. J. Med. 2025, 392, 1178–1188. [Google Scholar] [CrossRef]
- Singh, D.; Brightling, C.E.; Rabe, K.F.; Han, M.K.; Christenson, S.A.; Drummond, M.B.; Papi, A.; Pavord, I.D.; Molfino, N.A.; Almqvist, G.; et al. Efficacy and safety of tezepelumab versus placebo in adults with moderate to very severe chronic obstructive pulmonary disease (course): A randomised, placebo-controlled, phase 2a trial. Lancet Respir. Med. 2025, 13, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Seluk, L.; Davis, A.E.; Rhoads, S.; Wechsler, M.E. Novel asthma treatments: Advancing beyond approved novel step-up therapies for asthma. Ann. Allergy Asthma Immunol. 2025, 134, 9–18. [Google Scholar] [CrossRef] [PubMed]
- O’Byrne, P.M.; Panettieri, R.A., Jr.; Taube, C.; Brindicci, C.; Fleming, M.; Altman, P. Development of an inhaled anti-tslp therapy for asthma. Pulm. Pharmacol. Ther. 2023, 78, 102184. [Google Scholar] [CrossRef] [PubMed]
- Panettieri, R.A., Jr.; Sjobring, U.; Peterffy, A.; Wessman, P.; Bowen, K.; Piper, E.; Colice, G.; Brightling, C.E. Tralokinumab for severe, uncontrolled asthma (stratos 1 and stratos 2): Two randomised, double-blind, placebo-controlled, phase 3 clinical trials. Lancet Respir. Med. 2018, 6, 511–525. [Google Scholar] [CrossRef]
- Kardas, G.; Panek, M.; Kuna, P.; Damianski, P.; Kupczyk, M. Monoclonal antibodies in the management of asthma: Dead ends, current status and future perspectives. Front. Immunol. 2022, 13, 983852. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Russell, R.E.K.; Mahmood, H.R.; Krassowska, K.; Melhorn, J.; Mwasuku, C.; Pavord, I.D.; Bermejo-Sanchez, L.; Howell, I.; Mahdi, M.; et al. Treating eosinophilic exacerbations of asthma and copd with benralizumab (abra): A double-blind, double-dummy, active placebo-controlled randomised trial. Lancet Respir. Med. 2025, 13, 59–68. [Google Scholar] [CrossRef]
- Gyawali, B.; Georas, S.N.; Khurana, S. Biologics in severe asthma: A state-of-the-art review. Eur. Respir. Rev. 2025, 34, 240088. [Google Scholar] [CrossRef]
- Jeffery, M.M.; Inselman, J.W.; Maddux, J.T.; Lam, R.W.; Shah, N.D.; Rank, M.A. Asthma patients who stop asthma biologics have a similar risk of asthma exacerbations as those who continue asthma biologics. J. Allergy Clin. Immunol. Pract. 2021, 9, 2742–2750.e1. [Google Scholar] [CrossRef]
- Matsuyama, T.; Tomioka, Y.; Matsuyama, H.; Kamenohara, Y.; Tanigawa, K.; Dotake, Y.; Hagihara, Y.; Takagi, K.; Machida, K.; Inoue, H. Severe asthma remaining well-controlled after mepolizumab discontinuation: A case report and literature review. Respirol. Case Rep. 2023, 11, e01158. [Google Scholar] [CrossRef]
- Hamada, K.; Oishi, K.; Murata, Y.; Hirano, T.; Matsunaga, K. Feasibility of discontinuing biologics in severe asthma: An algorithmic approach. J. Asthma Allergy 2021, 14, 1463–1471. [Google Scholar] [CrossRef]
- Moore, W.C.; Kornmann, O.; Humbert, M.; Poirier, C.; Bel, E.H.; Kaneko, N.; Smith, S.G.; Martin, N.; Gilson, M.J.; Price, R.G.; et al. Stopping versus continuing long-term mepolizumab treatment in severe eosinophilic asthma (comet study). Eur. Respir. J. 2022, 59, 2100396. [Google Scholar] [CrossRef]
- Vennera, M.D.C.; Sabadell, C.; Picado, C.; Spanish Omalizumab, R. Duration of the efficacy of omalizumab after treatment discontinuation in ‘real life’ severe asthma. Thorax 2018, 73, 782–784. [Google Scholar] [CrossRef]
Inhaled Corticosteroid | ≥12 Years Old | 6–11 Years Old | ||
---|---|---|---|---|
High Dose | Medium Dose | High Dose | Medium Dose | |
Beclomethasone (standard) | >1000 | >500 | >400 | >200 |
Beclomethasone (extrafine) | >400 | >200 | >200 | >100 |
Budesonide (MDI or DPI) | >800 | >400 | >400 | >200 |
Ciclesonide | >320 | >160 | >160 | >80 |
Fluticasone propionate (MDI or DPI) | >500 | >250 | >200 | >100 |
Fluticasone furoate (DPI) | 200 | 100 * | N.A. | 50 * |
Mometasone MDI | >400 | >200 * | 200 | 100 * |
Mometasone DPI (Breezhaler triple/Breezhaler double/Twisthaler) | 160/320/800 | 80/160/400 | N.A. # | N.A. # |
Omalizumab | Mepolizumab | Benralizumab | Reslizumab | Dupilumab | Tezepelumab | |
---|---|---|---|---|---|---|
Indications | CRSwNP | CRSwNP | EGPA | - | CRSwNP | - |
beyond severe | CSU | EGPA | COPD | |||
asthma | Food allergy * | HES | Atopic dermatitis | |||
Prurigo nodularis | ||||||
Eosinophilic esophagitis |
Omalizumab | Mepolizumab | Benralizumab | Reslizumab | Dupilumab | Tezepelumab | |
---|---|---|---|---|---|---|
Target | IgE | IL-5 | IL-5R | IL-5 | IL-4/13 | TSLP |
Age | ≥6 years | ≥6 years | ≥12 years | ≥18 years | ≥6 years | ≥12 years |
Eosinophils | - | ≥150 | ≥00 | ≥400 | ≥150 | - |
IgE | 30 a 1500 | - | - | - | - | - |
Administration | SC | SC | SC | IV | SC | SC |
Dosing interval | 2 or 4 weeks | 4 weeks | 8 weeks * | 4 weeks | 2 weeks | 4 weeks |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faria, N.; Costa, M.I.; Fernandes, A.L.; Fernandes, A.; Fernandes, B.; Machado, D.C.; Machado, F.; Simão, L.; Ribeiro, L.; Ferreira, L.; et al. Biologic Therapies for Severe Asthma: Current Insights and Future Directions. J. Clin. Med. 2025, 14, 3153. https://doi.org/10.3390/jcm14093153
Faria N, Costa MI, Fernandes AL, Fernandes A, Fernandes B, Machado DC, Machado F, Simão L, Ribeiro L, Ferreira L, et al. Biologic Therapies for Severe Asthma: Current Insights and Future Directions. Journal of Clinical Medicine. 2025; 14(9):3153. https://doi.org/10.3390/jcm14093153
Chicago/Turabian StyleFaria, Nuno, Maria Inês Costa, Ana Luísa Fernandes, António Fernandes, Beatriz Fernandes, Daniela Cunha Machado, Francisco Machado, Laura Simão, Liliana Ribeiro, Lurdes Ferreira, and et al. 2025. "Biologic Therapies for Severe Asthma: Current Insights and Future Directions" Journal of Clinical Medicine 14, no. 9: 3153. https://doi.org/10.3390/jcm14093153
APA StyleFaria, N., Costa, M. I., Fernandes, A. L., Fernandes, A., Fernandes, B., Machado, D. C., Machado, F., Simão, L., Ribeiro, L., Ferreira, L., Boaventura, R., Lima, R., & Ferreira, J. (2025). Biologic Therapies for Severe Asthma: Current Insights and Future Directions. Journal of Clinical Medicine, 14(9), 3153. https://doi.org/10.3390/jcm14093153