Active Detection of Glucose Metabolism Disorders Prior to Coronary Artery Bypass Grafting: Associations with In-Hospital Postoperative Complications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Diagnosis of Glucose Metabolism Disorders
2.4. Outcomes
2.5. Statistical Analyses
3. Results
3.1. Baseline Characteristics
3.2. Preoperative Characteristics of Patients in Groups with or Without GMD
3.3. Hospital Complications After Coronary Artery Bypass Grafting in Groups with or Without GMD
3.4. The Impact of Glucose Metabolism Disorders on the Development of Hospital Complications After CABG: Results of Logistic Regression Analysis
4. Discussion
Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cosentino, F.; Grant, P.J.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.; Grobbee, D.E.; Hansen, T.B.; et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur. Heart J. 2020, 41, 255–323. [Google Scholar] [CrossRef] [PubMed]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef]
- Zhuo, X.; Zhang, C.; Feng, J.; Ouyang, S.; Niu, P.; Dai, Z. In-hospital, short-term and long-term adverse clinical outcomes observed in patients with type 2 diabetes mellitus vs non-diabetes mellitus following percutaneous coronary intervention: A meta-analysis including 139,774 patients. Medicine 2019, 98, e14669. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, S.V.; Sumin, A.N. Current trends in routine myocardial revascularization. Complex Issues Cardiovasc. Diseases. 2021, 10, 25–35. [Google Scholar] [CrossRef]
- Slezák, D.; Mayer, O.; Bruthans, J.; Seidlerová, J.; Rychecká, M.; Gelžinský, J.; Mateřánková, M.; Karnosová, P.; Wohlfahrt, P.; Cífková, R.; et al. The Prognostic Importance of Impaired Fasting Glycemia in Chronic Coronary Heart Disease Patients. Exp. Clin. Endocrinol. Diabetes 2021, 129, 29–35. [Google Scholar] [CrossRef]
- Slingerland, S.R.; Schulz, D.N.; van Steenbergen, G.J.; Soliman-Hamad, M.A.; Kisters, J.M.H.; Timmermans, M.; Teeuwen, K.; Dekker, L.; van Veghel, D.; participating centres of the Cardiothoracic surgery registration committee, the PCI registration committee and the THI registration committee of the Netherlands Heart Registration (NHR). A high-volume study on the impact of diabetes mellitus on clinical outcomes after surgical and percutaneous cardiac interventions. Cardiovasc. Diabetol. 2024, 23, 260. [Google Scholar] [CrossRef] [PubMed]
- Zhai, C.; Cong, H.; Hou, K.; Hu, Y.; Zhang, J.; Zhang, Y. Clinical outcome comparison of percutaneous coronary intervention and bypass surgery in diabetic patients with coronary artery disease: A meta-analysis of randomized controlled trials and observational studies. Diabetol. Metab. Syndr. 2019, 11, 110. [Google Scholar] [CrossRef]
- Carvalho, P.E.P.; Veiga, T.M.A.; Machado, F.S.L.; Porto, G.V.; Pirez, J.; Rivera, M.; Melo, P.C.; Braghiroli, J.; Cardoso, R. Long-term outcomes of percutaneous versus surgical revascularization in patients with diabetes and left main coronary artery disease: A meta-analysis of randomized controlled trials. J. Card. Surg. 2022, 37, 4646–4653. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.; Hou, X.; Li, X.; Qian, X.; Feng, X.; Liu, S.; Shi, N.; Zhao, W.; Hu, S.; et al. Glycemic control and risk factors for in-hospital mortality and vascular complications after coronary artery bypass grafting in patients with and without preexisting diabetes. J. Diabetes 2021, 13, 232–242. [Google Scholar] [CrossRef]
- You, H.; Hou, X.; Zhang, H.; Li, X.; Feng, X.; Qian, X.; Shi, N.; Guo, R.; Wang, X.; Sun, H.; et al. Effect of glycemic control and glucose fluctuation on in-hospital adverse outcomes after on-pump coronary artery bypass grafting in patients with diabetes: A retrospective study. Diabetol. Metab. Syndr. 2023, 15, 20. [Google Scholar] [CrossRef]
- Djupsjo, C.; Sartipy, U.; Ivert, T.; Karayiannides, S.; Lundman, P.; Nystrom, T.; Holzmann, M.J.; Kuhl, J. Preoperative disturbances of glucose metabolism and mortality after coronary artery bypass grafting. Open Heart 2020, 7, e001217. [Google Scholar] [CrossRef] [PubMed]
- Sumin, A.N.; Bezdenezhnykh, N.A.; Bezdenezhnykh, A.V.; Osokina, A.V.; Kuz’mina, A.A.; Tsepokina, A.V.; Barbarash, O.L. Screening for Glucose Metabolism Disorders, Assessment the Disse Insulin Resistance Index and Hospital Prognosis of Coronary Artery Bypass Surgery. J. Pers. Med. 2021, 11, 802. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.L.; Sheu, W.H.; Li, Y.H.; Wang, J.S.; Lee, W.J.; Liang, K.W.; Lee, W.L.; Lee, I.T. Newly diagnosed diabetes based on an oral glucose tolerance test predicts cardiovascular outcomes in patients with coronary artery disease: An observational study. Medicine 2022, 101, e29557. [Google Scholar] [CrossRef] [PubMed]
- Bezdenezhnyh, N.A.; Bezdenezhnyh, A.V.; Gruzdeva, O.V.; Sumin, A.N.; Barbarash, O.L.; Shamina, O.A. Screening of carbohydrate metabolism disorders before coronary artery bypass grafting. Certificate of registration of the computer program RU Patent 2021613682; 11 March 2021. Application № 2021612467, 25 February 2021. [Google Scholar]
- World Health Organization. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycemia: Report of a WHO/IDF Consultation; World Health Organization: Geneva, Switzerland, 2006; pp. 1–50. [Google Scholar]
- Dedov, I.I.; Shestakova, M.V.; Galstyan, G.R.; Grigoryan, O.R.; Esayan, R.M.; Kalashnikov, V.Y.; Kuraeva, T.L.; Lipatov, D.V.; Mayorov, A.Y.; Peterkova, V.A.; et al. Standards of specialized diabetes care. Diabetes Mellit. 2015, 18, 1–112. [Google Scholar] [CrossRef]
- Thornton-Swan, T.D.; Armitage, L.C.; Curtis, A.M.; Farmer, A.J. Assessment of glycaemic status in adult hospital patients for the detection of undiagnosed diabetes mellitus: A systematic review. Diabet Med. 2022, 39, e14777. [Google Scholar] [CrossRef]
- Hauguel-Moreau, M.; Hergault, H.; Cazabat, L.; Pépin, M.; Beauchet, A.; Aïdan, V.; Ouadahi, M.; Josseran, L.; Hage, M.; Rodon, C.; et al. Prevalence of prediabetes and undiagnosed diabetes in a large urban middle-aged population: The CARVAR 92 cohort. Cardiovasc. Diabetol. 2023, 22, 31. [Google Scholar] [CrossRef]
- Bjarkø, V.V.; Haug, E.B.; Sørgjerd, E.P.; Stene, L.C.; Ruiz, P.L.; Birkeland, K.I.; Berg, T.J.; Gulseth, H.L.; Iversen, M.M.; Langhammer, A.; et al. Undiagnosed diabetes: Prevalence and cardiovascular risk profile in a population-based study of 52,856 individuals. The HUNT Study, Norway. Diabet. Med. 2022, 39, e14829. [Google Scholar] [CrossRef]
- Lapić, I.; Rogić, D.; Nikolac Gabaj, N.; Kajić, K.; Peran, N.; Surjan, L.; Đuras, A.; Cesar Kocijan, V.; Bilopavlović, N.; Smaić, F.; et al. Haemoglobin A1c-based screening for prediabetes and diabetes mellitus: A multi-center study in Croatian adult population. Biochem. Med. 2022, 32, 010903. [Google Scholar] [CrossRef]
- Alshair, F.M.; Baghaffar, A.H.; Fatani, M.A.; Alqahtani, A.K.; Al Assiri, A.K.; Alsulymani, B.M.; Sanedi, A.M.; Bamousa, S.M. Glycosylated Hemoglobin (HbA1C) as a Predictor of Early Postoperative Outcomes After Coronary Artery Bypass Grafting: A Single-Center Observational Study. Cureus 2024, 16, e65567. [Google Scholar] [CrossRef]
- Wesche, J.; Bakken, T.; Vetrhus, M.; Hufthammer, K.O.; Nyroenning, L.A.; Fagertun, H.; Saethre, I.; Wold, B.H.; Lyng, C.; Pettersen, E.M.; et al. High proportion of undiagnosed diabetes in patients surgically treated for infrarenal abdominal aortic aneurysm: Findings from the multicentre Norwegian Aortic Aneurysm and Diabetes (ABANDIA) Study. Cardiovasc. Diabetol. 2024, 23, 333. [Google Scholar] [CrossRef]
- van Wilpe, R.; van Zuylen, M.L.; Hermanides, J.; DeVries, J.H.; Preckel, B.; Hulst, A.H. Preoperative Glycosylated Haemoglobin Screening to Identify Older Adult Patients with Undiagnosed Diabetes Mellitus-A Retrospective Cohort Study. J. Pers. Med. 2024, 14, 219. [Google Scholar] [CrossRef]
- Welsh, C.; Welsh, P.; Celis-Morales, C.A.; Mark, P.B.; Mackay, D.; Ghouri, N.; Ho, F.K.; Ferguson, L.D.; Brown, R.; Lewsey, J.; et al. Glycated Hemoglobin, Prediabetes, and the Links to Cardiovascular Disease: Data From UK Biobank. Diabetes Care 2020, 43, 440–445. [Google Scholar] [CrossRef]
- Ansari, D.M.; Harahwa, T.; Abuelgasim, E.; Harky, A. Glycated Haemoglobin Levels and Its Effect on Outcomes in Cardiac Surgery. Braz. J. Cardiovasc. Surg. 2022, 37, 744–753. [Google Scholar] [CrossRef]
- Shivganesh, B.R.D.; Karim, H.M.R.; Agrawal, N.; Kumar, M. The Relation of Preoperative HbA1c Level With Intraoperative and Postoperative Complications in Type-2 Diabetic Patients: An Observational Study. Cureus 2024, 16, e64487. [Google Scholar] [CrossRef]
- Rodriguez-Quintero, J.H.; Skendelas, J.P.; Phan, D.K.; Fisher, M.C.; DeRose, J.J.; Slipczuk, L.; Forest, S.J. Elevated glycosylated hemoglobin levels are associated with severe acute kidney injury following coronary artery bypass surgery. Cardiovasc. Revasc. Med. 2024, 62, 50–57. [Google Scholar] [CrossRef]
- Madhu, M.; Patni, A. Use of pre-operative hemoglobin a1c to predict early post-operative renal failure and infection risks in patients who are not diabetics and undergoing elective off pump coronary artery bypass graft surgery. Ann. Card. Anaesth. 2023, 26, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Luo, X.; Jin, X.; Lv, M.; Li, X.; Dou, J.; Zeng, J.; An, P.; Chen, Y.; Chen, K.; et al. Effects of Preoperative HbA1c Levels on the Postoperative Outcomes of Coronary Artery Disease Surgical Treatment in Patients with Diabetes Mellitus and Nondiabetic Patients: A Systematic Review and Meta-Analysis. J. Diabetes Res. 2020, 2020, 3547491. [Google Scholar] [CrossRef] [PubMed]
- Mattina, A.; Raffa, G.M.; Giusti, M.A.; Conoscenti, E.; Morsolini, M.; Mularoni, A.; Fazzina, M.L.; Di Carlo, D.; Cipriani, M.; Musumeci, F.; et al. Impact of systematic diabetes screening on peri-operative infections in patients undergoing cardiac surgery. Sci. Rep. 2024, 14, 14182. [Google Scholar] [CrossRef]
- Zhu, Y.; Hu, J.; Zhang, M.; Xue, Q.; Liu, H.; Wang, R.; Wang, X.; Cheng, Z.; Zhao, Q. Influence of Baseline HbA1c and Antiplatelet Therapy on 1-Year Vein Graft Outcome. JACC Asia 2022, 2, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, K.; Jalali, A.; Karimi, A.; Sadeghian, S.; Tajdini, M. Mid-term Outcome and Prognosis of Prediabetic Patients after Coronary Artery Bypass Graft Surgery, Regardless of the First Month After Surgery. Crit. Pathw. Cardiol. 2019, 18, 108–111. [Google Scholar] [CrossRef]
- Funamizu, T.; Iwata, H.; Nishida, Y.; Miyosawa, K.; Doi, S.; Chikata, Y.; Shitara, J.; Endo, H.; Wada, H.; Naito, R.; et al. Increased risk of cardiovascular mortality by strict glycemic control (pre-procedural HbA1c < 6.5%) in Japanese medically-treated diabetic patients following percutaneous coronary intervention: A 10-year follow-up study. Cardiovasc. Diabetol. 2020, 19, 21. [Google Scholar] [PubMed]
Indicator | Group 1 Without GMD n = 413 | Group 2 Prediabetes n = 324 | Group 3 Type 2 Diabetes n = 284 | p |
---|---|---|---|---|
Men (n, %) | 340 (82.3) | 264 (81.5) | 181 (63.7) | <0.001 <0.001 1–3, 2–3 |
Women (n, %) | 73 (17.68) | 60 (18.5) | 103 (36.3) | <0.001 <0.001 1–3, 2–3 |
Age (years, Me [LQ; UQ]) | 61.9 [56.6;66.9] | 64.1 [58.8;68.1] | 64.5 [59.9;68.8] | <0.001 0.003 1–2 <0.001 1–3 |
BMI (kg/m2, Me [LQ;UQ]) | 26.8 [24.2; 29.1] | 27.7 [25.0; 30.7] | 28,8 [26.0; 31.6] | <0.001 <0.001 1–2, 1–3 |
Obesity (BMI ≥30 kg/m2, n, %) | 82 (19.9) | 98 (30.2) | 104 (36.6) | <0.001 <0.001 1–2, 1–3 |
Obesity or overweight (BMI ≥ 25 kg/m2, n, %) | 263 (63.7) | 244 (75.3) | 232 (81.7) | <0.001 <0.001 1–2, 1–3 |
Arterial hypertension (n, %) | 222 (53.8) | 190 (58.6) | 179 (63.0) | 0.048 |
III—IV FC angina (n, %) | 20 (4.8) | 22 (6.8) | 19 (6.7) | 0.671 |
III FC CHF according to NYHA (n, %) | 20 (4.8) | 22 (6.8) | 19 (6.7) | 0.648 |
EuroSCORE II (%, Me LQ;UQ]) | 1.30 [0.85; 1.85] | 1.31 [0.87; 1.88] | 1.85 [1.06; 2.59] | <0.001 <0.001 1–3, 2–3 |
Hospital medical therapy in groups (n, %) | ||||
Acetylsalicylic acid | 368 (89.1) | 322 (99.4) | 251 (88.4) | <0.001 <0.001 1–2 |
Angiotensin-converting enzyme inhibitors | 286 (69.2) | 229 (70.7) | 215 (75.7) | 0.075 |
Angiotensin 2 receptor antagonists | 126 (30.8) | 94 (29.0) | 68 (23.9) | 0.087 |
β-blockers | 362 (87.7) | 286 (88.3) | 257 (90.5) | 0.134 |
Calcium channel blockers | 262 (63.4) | 189 (58.3) | 192 (67.6) | 0.018 |
Loop diuretics | 181 (43.8) | 127 (39.2) | 145 (51.1) | 0.005 0.003 2–3 |
Thiazide-like diuretics | 182 (44.1) | 132 (40.7) | 141 (49.6) | 0.146 |
Statins | 378 (91.5) | 276 (85.2) | 254 (89.4) | 0.172 |
Mineralocorticoid receptor antagonists | 191 (46.2) | 133 (41.0) | 155 (54.6) | <0.001 0.001 2–3 |
Group 1 Without GMD n = 413 | Group 2 Prediabetes n = 324 | Group 3 Type 2 Diabetes n = 284 | p | |
---|---|---|---|---|
Total cholesterol (mmol/L) | 4.5 [3.7; 5.4] | 4.6 [3.8; 5.4] | 4.45 [3.6; 5.9] | 0.740 |
HDL cholesterol (mmol/L) | 1.1 [0.92; 1.34] | 1.05 [0.89;1.29] | 1.02 [0.87;1.2] | 0.006 1–3 |
LDL cholesterol (mmol/L) | 2.67 [2.12; 3.41] | 2.69 [2.15;3.53] | 2.66 [1.90;3.76] | 0.748 |
Triglycerides (mmol/L) | 1.4 [1.07; 1.95] | 1.55 [1.25;2.11] | 1.76 [1.33;2.30] | <0.001 0.017 1–2 < 0.001 1–3 |
Creatinine (µmol/L) | 76.0 [64.0; 88.0] | 78.0 [68.0;97.0] | 80.0 [65.0;92.0] | 0.296 |
GFR according to CKD-EPI (ml/min/1.73 m2) | 94.7 [82.2; 103.7] | 92.9 [74.1; 101.1] | 91.3 [76.0;98.4] | 0.010 0.008 1–3 |
Glucose metabolism indicators | ||||
HbA1c before CABG, % | 5.2 [4.9;5.5] | 5.8 [5.3;6.1] | 7 [6.3;7.9] | <0.001 <0.001 1–2, 2–3, 1–3 |
Fasting venous blood glucose before CABG, mmol/L | 5.1 [4.8; 5.5] | 5.8 [5.2; 6.2] | 7.3 [6.0; 8.8] | <0.001 <0.001 1–2, 2–3, 1–3 |
Fasting glucose according to OGTT, mmol/L | 4.6 [4.3;5.2] | 5.2 [4.6;5.7] | 6.2 [5.5;6.8] | <0.001 <0.001 1–2, 2–3, 1–3 |
Glucose 2 h after load according to the OGTT data, mmol/L | 5.8 [4.9;6.7] | 7.6 [5.9;8.7] | 11.2 [8.6;11.9] | <0.001 <0.001 1–2, 2–3, 1–3 |
Group 1 Without GMD n = 413 | Group 2 Prediabetes n = 324 | Group 3 Type 2 Diabetes n = 284 | p | |
---|---|---|---|---|
Echocardiography, Me [LQ; UQ]) | ||||
LV end-diastolic volume, mL | 154.0 [135.0;187.0] | 154.0 [135.0;194.0] | 154.0 [92.0;374.0] | 0.640 |
LV end-diastolic dimension, cm | 5.6 [5.3; 6.1 | 5.6 [5.3; 6.2] | 5.6 [4.5; 8.3] | 0.660 |
LV end-systolic volume, mL | 61.0 [49.0;93.0] | 62.0 [52.0;91.0] | 67.0 [53.0;104.0] | 0.291 |
LV end-systolic dimension, cm | 3.7 [3.4;4.3] | 3.7 [3.4;4.4] | 3.7 [2.8;7.4] | 0.541 |
Left atrium, cm | 4.3 [3.9; 4.6] | 4.3 [4.0; 4.7] | 4.4 [3.5; 6.4] | 0.014 0.004 1–3 |
Interventricular septum, mm | 1.1 [1,0;1.2] | 1.1 [1.0;1.2] | 1.1 [0.7;1.6] | 0.022 |
LV posterior wall, mm | 1.0 [1.0;1.2] | 1.1 [1.0;1.2] | 1.1 [0.7;1.6] | 0.068 |
Right ventricle, mm | 1.9 [1.8;2.0] | 1.9 [1.8;2.0] | 1.0 [1.0;3.4] | 0.135 |
Aorta, cm | 3.6 [3.4;3.8] | 3.6 [3.3;3.8] | 3.5 [3.3;3.7] | 0.348 |
LV ejection fraction, % | 62.0 [52.0;66.0] | 62.0 [54.0;65.0] | 62 [51.0;66.0] | 0.623 |
LV myocardial mass according to Deveraux and Reichek, g | 293.8 [150.5;187.0] | 310.7 [258.3;376.0] | 316.5 [267.2;390.2] | 0.016 0.014 1–3 |
Coronary angiography results (n, %) | ||||
1 vessel disease * | 82 (19.9) | 64 (19.8) | 21 (7.4) | <0.001 <0.001 1–3, 2–3 |
2 vessels disease * | 175 (42.4) | 85 (26.2) | 122 (42.9) | <0.001 <0.001 1–2, 2–3 |
3 vessels disease * | 169 (40.9) | 170 (52.5) | 132 (46.5) | 0.002 0.003 1–2 |
Stenosis of the left main coronary artery > 50% | 95 (23.0) | 66 (20.4) | 44 (15.5) | 0.015 <0.001 1–3 |
Group 1 Without GMD n = 413 | Group 2 Prediabetes n = 324 | Group 3 Type 2 Diabetes n = 284 | p | |
---|---|---|---|---|
Cardiopulmonary bypass (n, %) | 363 (87.9) | 294 (90.7) | 257 (90.4) | 0.259 |
Off pump (n, %) | 49 (11, 9) | 28 (8.6) | 26 (9.2) | 0.296 |
Off-pump to on-pump conversion (n, %) | 1 (0.2) | 2 (0.6) | 1 (0.3) | 0.715 |
Isolated CABG (n, %) | 319 (77.2) | 234 (72.2) | 198 (69.7) | 0.025 1–3 |
Combined operations (n, %) | 94 (22.8) | 90 (27.8) | 86 (30.4) | 0.025 1–3 |
| 2 (0.5) | 2 (0.6) | 3 (1.1) | 0.938 |
| 21 (5.1) | 13 (4.0) | 6 (2.1) | 0.097 |
| 2 (0.5) | 0 (0) | 3 (1.1) | 0.227 |
| 2 (0.5) | 3 (0.9) | 4 (1.4) | 0.987 |
| 0 (0) | 2 (0.6) | 2 (0.7) | 0.218 |
| 1 (0.2) | 0 (0) | 1 (0.4) | 0.654 |
CPB duration (minutes, Me [LQ; UQ]) | 84.5 [72.0;105.0] | 81 [67.0;104.0] | 85.5 [68.0;109.0] | 0.489 |
Aortic clamping time (minutes, Me [LQ;UQ]) | 55.0 [45.0;71.0] | 54 [44.0; 70.0] | 54.0 [43.0; 73.0] | 0.857 |
Cardioplegia frequency, Me [LQ;UQ]) | 2 [2; 3] | 2 [2; 3] | 2 [2; 3] | 0.340 |
Total duration of the operation (hours, Me [LQ;UQ]) | 3.4 [3.1; 4.2] | 3.5 [3.1; 4.3] | 3.5 [3.2; 4.3] | 0.302 |
Number of shunts (Me [LQ;UQ]) | 2 [2; 3] | 2 [2; 3] | 3 [2; 3] | 0.217 |
Number of distal anastomoses (Me [LQ;UQ]) | 2 [2; 3] | 2 [2; 3] | 3 [2; 3] | 0.364 |
Group 1 Without GMD n = 413 | Group 2 Prediabetes n = 324 | Group 3 Type 2 Diabetes n = 284 | p | |
---|---|---|---|---|
All significant complications | 206 (49.9) | 187 (57.7) | 148 (52.1) | 0.111 |
Hospital MACE | 10 (2.4) | 11 (3.4) | 12 (4.2) | 0.399 |
Hospital MACE + HF | 62 (15.0) | 60 (18.5) | 61 (21.5) | 0.078 |
Serious cardiovascular complications | 111 (26.9) | 107 (33.0) | 98 (34.6) | 0.059 |
All cardiovascular complications | 137 (33.2) | 133 (41.1) | 114 (40.1) | 0.053 |
Emergency PCI for ACS | 0 (0) | 2 (0.1) | 3 (0.1) | 0.132 |
Arrhythmias | 65 (15.7) | 75 (23.2) | 60 (21.1) | 0.031 |
Heart failure | 52 (12.6) | 53 (16.4) | 60 (21.1) | 0.010 0.003 1–3 |
Myocardial infarction | 3 (0.7) | 4 (1,2) | 6 (2.1) | 0.275 |
Stroke | 5 (1,2) | 5 (1.5) | 4 (1.4) | 0.991 |
Transient ischemic attack | 2 (0.5) | 1 (0.3) | 2 (0.7) | 0.782 |
Emergency surgery on the arteries of the lower extremities | 4 (1.0) | 3 (0.9) | 1 (0.4) | 0.419 |
Multiple organ failure syndrome | 2 (0.5) | 8 (2.5) | 10 (3.5) | 0.013 0.002 1–3 |
Extracorporeal hemocorrection | 1 (0.2) | 6 (1.8) | 7 (2.5) | 0.016 0.011 1–3 |
Gastrointestinal bleeding | 1 (0.2) | 1 (0.3) | 2 (1,1) | 0.269 |
Intestinal obstruction | 0 (0) | 2 (0.6) | 1 (0.3) | 0.300 |
Progression of renal failure in CKD | 9 (2.2) | 9 (2.8) | 11 (3.9) | 0.413 |
Diastasis of skin wound edges | 15 (3.6) | 19 (5.9) | 25 (8.8) | 0.015 0.004 1−3 |
Diastasis of the sternum | 1 (0.2) | 5 (1.5) | 5 (1.8) | 0.099 |
Remediastinotomy for mediastinitis | 2 (0.5) | 3 (0.9) | 2 (0.7) | 0.770 |
Remediastinotomy for bleeding | 9 (2.2) | 4 (1,2) | 7 (2.5) | 0.502 |
Pneumonia | 31 (7.5) | 27 (8.4) | 26 (9.2) | 0.727 |
Respiratory failure | 9 (2.2) | 15 (4.4) | 14 (5.0) | 0.097 |
Death in hospital | 1 (0.2) | 3 (0.9) | 5 (1.8) | 0.106 |
Hospital stays after CABG, days (Me [LQ; UQ]) | 13.0 [11.0; 17.0] | 14.0 [12.0; 21.0] | 14.0 [12.0; 20.0] | 0.006 0.003 1–3 0.016 1–2 |
Hospital stay after CABG > 10 days (n, %) | 317 (76, 7) | 274 (84.6) | 215 (75.7) | 0.013 0.008 1–2 0.006 2–3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sumin, A.N.; Bezdenezhnykh, N.A.; Belik, E.V.; Bezdenezhnykh, A.V.; Gruzdeva, O.V.; Barbarash, O.L. Active Detection of Glucose Metabolism Disorders Prior to Coronary Artery Bypass Grafting: Associations with In-Hospital Postoperative Complications. J. Clin. Med. 2025, 14, 3123. https://doi.org/10.3390/jcm14093123
Sumin AN, Bezdenezhnykh NA, Belik EV, Bezdenezhnykh AV, Gruzdeva OV, Barbarash OL. Active Detection of Glucose Metabolism Disorders Prior to Coronary Artery Bypass Grafting: Associations with In-Hospital Postoperative Complications. Journal of Clinical Medicine. 2025; 14(9):3123. https://doi.org/10.3390/jcm14093123
Chicago/Turabian StyleSumin, Alexey N., Natalia A. Bezdenezhnykh, Ekaterina. V. Belik, Andrew V. Bezdenezhnykh, Olga V. Gruzdeva, and Olga L. Barbarash. 2025. "Active Detection of Glucose Metabolism Disorders Prior to Coronary Artery Bypass Grafting: Associations with In-Hospital Postoperative Complications" Journal of Clinical Medicine 14, no. 9: 3123. https://doi.org/10.3390/jcm14093123
APA StyleSumin, A. N., Bezdenezhnykh, N. A., Belik, E. V., Bezdenezhnykh, A. V., Gruzdeva, O. V., & Barbarash, O. L. (2025). Active Detection of Glucose Metabolism Disorders Prior to Coronary Artery Bypass Grafting: Associations with In-Hospital Postoperative Complications. Journal of Clinical Medicine, 14(9), 3123. https://doi.org/10.3390/jcm14093123