Advances in Therapeutics for Chronic Lung Diseases: From Standard Therapies to Emerging Breakthroughs
Abstract
:1. Introduction
2. Current Standard Therapies
2.1. Pharmacological Approaches
2.2. Biological Agents
2.3. Non-Pharmacological Interventions
2.3.1. Bronchial Thermoplasty
2.3.2. Targeted Lung Denervation
2.3.3. Other Neuromodulatory Approaches
3. Emerging Therapeutic Innovations
3.1. Small Molecules
3.2. Targeted Monoclonal Antibodies
3.3. Gene-Based and RNA Therapies
3.4. Other Breakthrough Technologies
4. Late-Stage Therapies and Clinical Trials
5. Advances in Diagnostics and Their Impact on Personalized Therapy
5.1. Biomarkers
5.2. Advanced Imaging Techniques
5.3. AI-Supported Interpretation
6. Challenges and Opportunities
6.1. Implementation Science and Integration Within the Clinics
6.2. Health Disparities in Access to Novel Therapies
6.3. Cost-Effectiveness Considerations
6.4. Collaborative Solutions
7. Future Directions
7.1. Individualized Treatment and Precision Devices
7.2. Advances in Digital Health and Remote Monitoring
7.3. Integration of Non-Pharmacological Interventions
7.4. Economic and Implementation Considerations
8. Conclusions and Practical Clinical Guidelines
- Evaluate Symptom Severity and History of Exacerbations: Use validated tools (e.g., the COPD Assessment Test [CAT] or Asthma Control Questionnaire) alongside spirometry to categorize patients;
- Use Step-Up/Step-Down Strategies;
- Step-Down: Conversely, once stable control is achieved—particularly in those initially treated with high-dose ICS—consider reducing therapy intensity to minimize long-term side effects without compromising symptom control [24];
- 1.
- Initial Assessment
- 1.1.
- Evaluate Disease Severity
- ○
- ○
- ○
- Biomarker Profiling:
- 2.
- Determine Baseline Therapy
- 2.1.
- Mild Disease (FEV1 ≥ 80%; eosinophils < 150 cells/µL)
- 2.2.
- Moderate Disease (FEV1 50–79%; eosinophils 150–300 cells/µL)
- 2.3.
- Severe Disease (FEV1 < 50%; eosinophils > 300 cells/µL or recurrent exacerbations)
- 3.
- Advanced/Refractory Disease
- 3.1.
- Assess Suitability for Device-Based Therapies
- 3.2.
- Evaluate for Lung Transplantation
- ○
- In end-stage COPD, ILD, or cystic fibrosis with persistent hypoxemia, refer for transplant evaluation if standard therapies fail [37].
- 4.
- Step-Up/Step-Down Approach
- 4.1.
- Step Up
- ○
- Increase treatment intensity if uncontrolled symptoms, frequent exacerbations, or decline in FEV1, despite adherence and correct inhaler technique.
- ○
- Add biologics in severe asthma if eosinophils > 300 cells/µL persistently and repeated exacerbations occur [29].
- ○
- 4.2.
- Step Down
- ○
- If stable control is achieved for ≥3–6 months, consider tapering ICS dose or simplifying regimens to minimize side effects [24].
- ○
- Monitor for any deterioration in symptoms or lung function upon de-escalation.
- 5.
- Ongoing Monitoring and Reassessment
- ○
- Track changes in FEV1, eosinophil levels, and imaging findings.
- ○
- ○
- Reassess comorbidities (e.g., cardiovascular disease, anxiety, obesity) and psychosocial factors that may influence adherence and outcomes [68].
- 6.
- Addressing Health Disparities and Cost
Treatment Category | Drug/Intervention Name | Mechanism of Action | Clinical Efficacy | Major Side Effects | Development/ Approval Status | References |
---|---|---|---|---|---|---|
Standard Therapy | SABA (e.g., Albuterol) | β2-agonist that increases cAMP in airway smooth muscle, leading to rapid bronchodilation | Provides immediate symptom relief and transient improvement in FEV1 | Tachycardia, tremor, hypokalemia | Approved; used as rescue medication | [21] |
Standard Therapy | LABA (e.g., Salmeterol, Formoterol) | Prolonged β2 receptor stimulation for sustained bronchodilation | Reduces exacerbation frequency by ~26% in COPD | Palpitations, tremor; risk of pneumonia (especially with ICS) | Approved; standard maintenance therapy | [8] |
Standard Therapy | ICS (e.g., Fluticasone) | Suppresses inflammatory cytokine release to reduce airway inflammation | Decreases exacerbations by 50–90% in mild-to-moderate asthma | Systemic absorption leading to adrenal suppression, osteoporosis | Approved; standard in asthma/COPD management | [24] |
Standard Therapy | Oxygen Therapy | Provides supplemental oxygen to correct hypoxemia | Prolongs survival and improves exercise tolerance in severe COPD | Oxygen toxicity (if misused) | Approved; essential for advanced disease management | [43,44] |
Standard Therapy | Pulmonary Rehabilitation | Multidisciplinary intervention (exercise, education, psychosocial support) to enhance lung efficiency | Improves exercise capacity, reduces dyspnea, and enhances quality of life | Transient muscle soreness and fatigue | Approved; integral part of chronic care | [45,46] |
Emerging Therapy | Targeted Biologics (e.g., Benralizumab) | Monoclonal antibody targeting eosinophils to reduce inflammatory response | Up to 50% reduction in exacerbations in severe asthma; improved respiratory symptoms | Injection site reactions, potential immunogenicity | Approved for severe asthma; being evaluated in COPD | [10] |
Emerging Therapy | Gene Therapy (CRISPR-based approaches) | Gene editing to correct disease-causing mutations or modulate inflammatory pathways | Preclinical data suggest potential improvements in mucus clearance and lung function | Off-target effects, immune responses | Early clinical trials/preclinical stage | [67] |
Emerging Therapy | Stem Cell Therapy (e.g., MSCs) | Uses mesenchymal stem cells to regenerate and repair damaged lung tissue | Potential to restore alveolar–capillary barrier and improve lung function | Uncertain long-term risks; possible immunogenicity | Early clinical trials; experimental | [73] |
Emerging Therapy | Advanced Drug Delivery Systems | Nanoparticle-based or smart inhalers that provide precise, controlled drug release and deposition | Improved drug deposition and adherence; potential enhanced efficacy | Device-related issues, local irritation | Under development; pilot systems in use | [74] |
Emerging Therapy | Digital Health/AI-assisted Treatment | AI-driven platforms and smart inhalers for patient stratification, real-time feedback, and personalized therapy | May reduce exacerbation frequency and enable tailored therapy strategies | Data privacy concerns; potential algorithm bias | Pilot implementations; emerging field | [78,93] |
Study Identifier/Name | Patient Population | Intervention | Comparator | Primary Outcome | Key Findings | Phase | References |
---|---|---|---|---|---|---|---|
Tezepelumab in Severe Asthma | Patients with severe asthma with frequent exacerbations | Tezepelumab (monoclonal antibody targeting TSLP) | Placebo/Standard care | Reduction in exacerbation rate and improvement in lung function | Demonstrated significant reduction in exacerbations (up to ~50% reduction) | Phase III | [76] |
CT Biomarker-Guided Cell Therapy | Patients with progressive fibrotic lung disease | Novel cell-based therapy (e.g., mesenchymal stem cells) | Placebo/Standard care | Change in quantitative CT biomarkers and FVC improvement | Early data show potential to slow fibrosis progression using CT biomarkers | Phase II | [77] |
Digital Smart Inhaler Pilot | Asthma/COPD patients with suboptimal inhaler adherence | Smart inhaler with real-time feedback | Conventional inhaler | Improvement in adherence and symptom control | The pilot data indicate enhanced adherence and potential reduction in exacerbations | Pilot/Early Phase | [78] |
Next-Generation Biologics Safety Trial | Patients with severe asthma or COPD | Biologics engineered with modified Fc regions | Standard biologics | Safety and tolerability | Showed reduced immunogenicity and improved safety profile | Phase I/II | [79] |
Gene Therapy with Tissue-Specific Promoter | Patients with genetic lung disease (e.g., CF or IPF) | Gene therapy vector incorporating a tissue-specific promoter | Conventional gene therapy vectors | Reduction in off-target effects and lung function impact | Preclinical/early-phase data indicate improved targeting and safety | Preclinical/ Phase I | [80] |
Biomarker | Associated Disease Phenotype | Clinical Presentation | Recommended Therapy/Intervention | Prognostic Impact | References |
---|---|---|---|---|---|
Blood eosinophil count | Severe eosinophilic asthma and COPD with frequent exacerbations | Patients often present with recurrent wheezing, episodic breathlessness, and evidence of eosinophilic inflammation (e.g., elevated sputum eosinophils, atopic history) | Use of ICS and anti-IL-5 biologics (e.g., benralizumab) | Higher counts predict better response to ICS/biologics; increased risk for exacerbations | [29,47] |
FEV1 (% predicted) | Airflow limitation in COPD (reflecting disease severity) | Progressive dyspnea on exertion, exercise intolerance, chronic cough, and frequent exacerbations | Escalation to triple therapy (LABA + LAMA + ICS) or optimization of bronchodilator regimens | Lower FEV1 is associated with increased exacerbation rates and higher mortality | [8,25] |
Quantitative CT biomarkers | Extent of emphysema/fibrosis in COPD or interstitial lung disease | HRCT reveals structural changes such as areas of low density (emphysema) or fibrotic bands/honeycombing; patients may have reduced exercise tolerance and gas exchange abnormalities | Consider targeted interventions (e.g., lung volume reduction procedures, antifibrotic therapies) | CT density and structural changes correlate with disease progression and functional decline | [77] |
Genetic mutations | Genetic lung diseases (e.g., cystic fibrosis; predisposition in IPF) | Early-onset respiratory symptoms, family history of lung disease, and/or accelerated decline in lung function | Gene therapies (e.g., CRISPR-based correction) or mutation-specific treatments | Specific mutations can inform prognosis and predict response to targeted therapies | [64,67] |
MicroRNA (e.g., miR-21) | Idiopathic pulmonary fibrosis with active fibrogenesis | Patients typically show progressive dyspnea, non-productive cough, and imaging evidence of fibrosis; elevated miR-21 is associated with active fibrotic processes | RNA interference or antagomir strategies targeting miR-21 | Elevated levels are linked with faster disease progression and increased fibrogenesis | [70] |
Author Contributions
Funding
Conflicts of Interest
References
- GBD Chronic Respiratory Disease Collaborators. Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Respir. Med. 2020, 8, 585–596. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alomary, S.A.; Al Madani, A.J.; Althagafi, W.A.; Adam, I.F.; Elsherif, O.E.; Al-Abdullaah, A.A.; Al-Jahdali, H.; Jokhdar, H.A.; Alqahtani, S.H.; Nahhas, M.A.; et al. Prevalence of asthma symptoms and associated risk factors among adults in Saudi Arabia: A national survey from Global Asthma Network Phase I. World Allergy Organ. J. 2022, 15, 100623. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Meltzer, E.B.; Noble, P.W. Idiopathic pulmonary fibrosis. Orphanet. J. Rare. Dis. 2008, 3, 8. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Koudstaal, T.; Wijsenbeek, M.S. Idiopathic pulmonary fibrosis. Presse. Med. 2023, 52, 104166. [Google Scholar] [CrossRef] [PubMed]
- Matthay, M.A.; Zemans, R.L.; Zimmerman, G.A.; Arabi, Y.M.; Beitler, J.R.; Mercat, A.; Herridge, M.; Randolph, A.G.; Calfee, C.S. Acute respiratory distress syndrome. Nat. Rev. Dis. Primers. 2019, 5, 18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- O’Byrne, P.; Fabbri, L.M.; Pavord, I.D.; Papi, A.; Petruzzelli, S.; Lange, P. Asthma progression and mortality: The role of inhaled corticosteroids. Eur. Respir. J. 2019, 54, 1900491. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Agarwal, D. COPD generates substantial cost for health systems. Lancet Glob. Health. 2023, 11, e1138–e1139. [Google Scholar] [CrossRef] [PubMed]
- Wise, R.A.; Acevedo, R.A.; Anzueto, A.R.; Hanania, N.A.; Martinez, F.J.; Ohar, J.A.; Tashkin, D.P. Guiding Principles for the Use of Nebulized Long-Acting Beta2-Agonists in Patients with COPD: An Expert Panel Consensus. Chronic. Obstr. Pulm. Dis. 2016, 4, 7–20. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Quint, J.K.; Ariel, A.; Barnes, P.J. Rational use of inhaled corticosteroids for the treatment of COPD. NPJ Prim. Care Respir. Med. 2023, 33, 27. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McGregor, M.C.; Krings, J.G.; Nair, P.; Castro, M. Role of Biologics in Asthma. Am. J. Respir. Crit. Care Med. 2019, 199, 433–445. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Plichta, J.; Kuna, P.; Panek, M. Biologic drugs in the treatment of chronic inflammatory pulmonary diseases: Recent developments and future perspectives. Front. Immunol. 2023, 14, 1207641. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karampitsakos, T.; Vraka, A.; Bouros, D.; Liossis, S.N.; Tzouvelekis, A. Biologic Treatments in Interstitial Lung Diseases. Front. Med. 2019, 6, 41. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reid, C.E.; Maestas, M.M. Wildfire smoke exposure under climate change: Impact on respiratory health of affected communities. Curr. Opin. Pulm. Med. 2019, 25, 179–187. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sunyer, J. Urban air pollution and chronic obstructive pulmonary disease: A review. Eur. Respir. J. 2001, 17, 1024–1033. [Google Scholar] [CrossRef] [PubMed]
- Hussen, B.M.; Najmadden, Z.B.; Abdullah, S.R.; Rasul, M.F.; Mustafa, S.A.; Ghafouri-Fard, S.; Taheri, M. CRISPR/Cas9 gene editing: A novel strategy for fighting drug resistance in respiratory disorders. Cell Commun. Signal. 2024, 22, 329. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ren, F.; Aliper, A.; Chen, J.; Zhao, H.; Rao, S.; Kuppe, C.; Ozerov, I.V.; Zhang, M.; Witte, K.; Kruse, C.; et al. A small-molecule TNIK inhibitor targets fibrosis in preclinical and clinical models. Nat. Biotechnol. 2025, 43, 63–75. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Singh, S.J.; Baldwin, M.M.; Daynes, E.; Evans, R.A.; Greening, N.J.; Jenkins, R.G.; Lone, N.I.; McAuley, H.; Mehta, P.; Newman, J.; et al. Respiratory sequelae of COVID-19: Pulmonary and extrapulmonary origins, and approaches to clinical care and rehabilitation. Lancet Respir. Med. 2023, 11, 709–725. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Terry, P.; Heidel, R.E.; Wilson, A.Q.; Dhand, R. Risk of long covid in patients with pre-existing chronic respiratory diseases: A systematic review and meta-analysis. BMJ Open Respir. Res. 2025, 12, e002528. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lai, Y.J.; Liu, S.H.; Manachevakul, S.; Lee, T.A.; Kuo, C.T.; Bello, D. Biomarkers in long COVID-19: A systematic review. Front. Med. 2023, 10, 1085988. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Menezes, S.M.; Jamoulle, M.; Carletto, M.P.; Moens, L.; Meyts, I.; Maes, P.; Van Weyenbergh, J. Blood transcriptomic analyses reveal persistent SARS-CoV-2 RNA and candidate biomarkers in post-COVID-19 condition. Lancet Microbe. 2024, 5, 100849. [Google Scholar] [CrossRef] [PubMed]
- Plotnick, L.H.; Ducharme, F.M. Combined inhaled anticholinergic agents and beta-2-agonists for initial treatment of acute asthma in children. Cochrane. Database. Syst. Rev. 2000, CD000060. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Cattani-Cavalieri, I.; Nuñez, F.J.; Ostrom, R.S. Phosphodiesterase isoforms and cAMP compartments in the development of new therapies for obstructive pulmonary diseases. Curr. Opin. Pharmacol. 2020, 51, 34–42. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Scurek, M.; Brat, K. A narrative review of theophylline: Is there still a place for an old friend? J. Thorac. Dis. 2024, 16, 3450–3460. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dahl, R. Systemic side effects of inhaled corticosteroids in patients with asthma. Respir. Med. 2006, 100, 1307–1317. [Google Scholar] [CrossRef] [PubMed]
- Vanfleteren, L.; Fabbri, L.M.; Papi, A.; Petruzzelli, S.; Celli, B. Triple therapy (ICS/LABA/LAMA) in COPD: Time for a reappraisal. Int. J. Chron. Obstruct. Pulmon. Dis. 2018, 13, 3971–3981. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ma, J.; Sun, X.; Wang, X.; Liu, B.; Shi, K. Factors Affecting Patient Adherence to Inhalation Therapy: An Application of SEIPS Model 2.0. Patient Prefer. Adherence. 2023, 17, 531–545. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chee, A.; Sin, D.D. Treatment of mild chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2008, 3, 563–573. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alfaedi, S.A.; Kubbara, M.F.; Alaithan, A.A.; Alhudhaif, H.M.; Al Abdullah, A.A.; Sahool, H.M.; Al Jawad, M.S.; Almatar, M.A.; Alnakhli, I.R.; Altawili, M.A. Beneath the Surface: Exploring Hidden Threats of Long-Term Corticosteroid Therapy to Bone Density. Cureus 2024, 16, e55109. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Principe, S.; Porsbjerg, C.; Bolm Ditlev, S.; Kjaersgaard Klein, D.; Golebski, K.; Dyhre-Petersen, N.; van Dijk, Y.E.; van Bragt, J.J.M.H.; Dankelman, L.L.H.; Dahlen, S.E.; et al. Treating severe asthma: Targeting the IL-5 pathway. Clin. Exp. Allergy 2021, 51, 992–1005. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bonella, F.; Spagnolo, P.; Ryerson, C. Current and Future Treatment Landscape for Idiopathic Pulmonary Fibrosis. Drugs 2023, 83, 1581–1593. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bourdin, A.; Brusselle, G.; Couillard, S.; Fajt, M.L.; Heaney, L.G.; Israel, E.; McDowell, P.J.; Menzies-Gow, A.; Martin, N.; Mitchell, P.D.; et al. Phenotyping of Severe Asthma in the Era of Broad-Acting Anti-Asthma Biologics. J. Allergy Clin. Immunol. Pract. 2024, 12, 809–823. [Google Scholar] [CrossRef] [PubMed]
- Clini, E.; Costi, S.; Lodi, S.; Rossi, G. Non-pharmacological treatment for chronic obstructive pulmonary disease. Med. Sci. Monit. 2003, 9, RA300–5. [Google Scholar] [PubMed]
- Savvaides, T.M.; Demetres, M.R.; Aronson, K.I. Current Landscape and Future Directions of Patient Education in Adults with Interstitial Lung Disease. ATS Sch. 2023, 5, 184–205. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bonta, P.I.; Chanez, P.; Annema, J.T.; Shah, P.L.; Niven, R. Bronchial Thermoplasty in Severe Asthma: Best Practice Recommendations from an Expert Panel. Respiration 2018, 95, 289–300. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tan, L.D.; Yoneda, K.Y.; Louie, S.; Hogarth, D.K.; Castro, M. Bronchial Thermoplasty: A Decade of Experience: State of the Art. J. Allergy Clin. Immunol. Pract. 2019, 7, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, J.A.; Husain, A.N. One Step Forward, Two Steps Back: Bronchial Thermoplasty for Asthma. Am. J. Respir. Crit. Care Med. 2021, 203, 153–154. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Valipour, A.; Shah, P.L.; Herth, F.J.; Pison, C.; Schumann, C.; Hübner, R.H.; Bonta, P.I.; Kessler, R.; Gesierich, W.; Darwiche, K.; et al. AIRFLOW-2 Trial Study Group. Two-Year Outcomes for the Double-Blind, Randomized, Sham-Controlled Study of Targeted Lung Denervation in Patients with Moderate to Severe COPD: AIRFLOW-2. Int. J. Chron. Obstruct. Pulmon. Dis. 2020, 15, 2807–2816. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mayse, M.L.; Norman, H.S.; Peterson, A.D.; Rouw, K.T.; Johnson, P.J. Targeted lung denervation in sheep: Durability of denervation and long-term histologic effects on bronchial wall and peribronchial structures. Respir. Res. 2020, 21, 117. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Slebos, D.J.; Degano, B.; Valipour, A.; Shah, P.L.; Deslée, G.; Sciurba, F.C. AIRFLOW-3 Trial Study Group. Design for a multicenter, randomized, sham-controlled study to evaluate safety and efficacy after treatment with the Nuvaira® lung denervation system in subjects with chronic obstructive pulmonary disease (AIRFLOW-3). BMC Pulm. Med. 2020, 20, 41. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ghattas, C.; Sue, R.D.; Lamb, C.R.; Soto Soto, J.M.; Petkovich, B.; Kopas, L.M.; Cumbo-Nacheli, G.; Hogarth, D.K.K.; de Cardenas, J.; Semaan, R.; et al. Targeted lung denervation in copd: Outcomes from the airflow-3 open label cohort. Chest 2024, 166, A6465–A6467. [Google Scholar] [CrossRef]
- Gifford, A.H.; Mahler, D.A.; Waterman, L.A.; Ward, J.; Kraemer, W.J.; Kupchak, B.R.; Baird, J.C. Neuromodulatory effect of endogenous opioids on the intensity and unpleasantness of breathlessness during resistive load breathing in COPD. J. Chronic Obstr. Pulm. Dis. 2011, 8, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Tharu, N.S.; Suthar, A.; Gerasimenko, Y.; Castillo, C.; Ng, A.; Ovechkin, A. Noninvasive Electrical Modalities to Alleviate Respiratory Deficits Following Spinal Cord Injury. Life 2024, 14, 1657. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stoller, J.K.; Panos, R.J.; Krachman, S.; Doherty, D.E.; Make, B.; Long-term Oxygen Treatment Trial Research Group. Oxygen therapy for patients with COPD: Current evidence and the long-term oxygen treatment trial. Chest 2010, 138, 179–187. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Azoulay, E.; Lemiale, V.; Mokart, D.; Nseir, S.; Argaud, L.; Pène, F.; Kontar, L.; Bruneel, F.; Klouche, K.; Barbier, F.; et al. High-flow nasal oxygen vs. standard oxygen therapy in immunocompromised patients with acute respiratory failure: Study protocol for a randomized controlled trial. Trials 2018, 19, 157. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gloeckl, R.; Marinov, B.; Pitta, F. Practical recommendations for exercise training in patients with COPD. Eur. Respir. Rev. 2013, 22, 178–186. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rochester, C.L.; Alison, J.A.; Carlin, B.; Jenkins, A.R.; Cox, N.S.; Bauldoff, G.; Bhatt, S.P.; Bourbeau, J.; Burtin, C.; Camp, P.G.; et al. Pulmonary Rehabilitation for Adults with Chronic Respiratory Disease: An Official American Thoracic Society Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2023, 208, e7–e26. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Noble, P.B.; Langton, D.; Foo, C.T.; Thompson, B.R.; Cairncross, A.; Hackmann, M.J.; Thien, F.; Donovan, G.M. Beyond bronchial thermoplasty-where to now? EClinicalMedicine 2024, 79, 103017. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, J.; Lai, X.; Song, Y.; Su, X. Neuroimmune recognition and regulation in the respiratory system. Eur. Respir. Rev. 2024, 33, 240008. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Horn, C.C.; Ardell, J.L.; Fisher, L.E. Electroceutical Targeting of the Autonomic Nervous System. Physiology 2019, 34, 150–162. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Konkimalla, A.; Tata, A.; Tata, P.R. Lung Regeneration: Cells, Models, and Mechanisms. Cold Spring Harb. Perspect. Biol. 2022, 14, a040873. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alysandratos, K.D.; Herriges, M.J.; Kotton, D.N. Epithelial Stem and Progenitor Cells in Lung Repair and Regeneration. Annu. Rev. Physiol. 2021, 83, 529–550. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Planer, J.D.; Morrisey, E.E. After the Storm: Regeneration, Repair, and Reestablishment of Homeostasis Between the Alveolar Epithelium and Innate Immune System Following Viral Lung Injury. Annu. Rev. Pathol. 2023, 18, 337–359. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zheng, Z.; Peng, F.; Zhou, Y. Pulmonary fibrosis: A short- or long-term sequelae of severe COVID-19? Chin. Med. J. Pulm. Crit. Care Med. 2023, 1, 77–83. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Parekh, K.R.; Nawroth, J.; Pai, A.; Busch, S.M.; Senger, C.N.; Ryan, A.L. Stem cells and lung regeneration. Am. J. Physiol. Cell Physiol. 2020, 319, C675–C693. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Y.; Wang, L.; Ma, S.; Cheng, L.; Yu, G. Repair and regeneration of the alveolar epithelium in lung injury. FASEB J. 2024, 38, e23612. [Google Scholar] [CrossRef] [PubMed]
- Leszczyńska, K.; Jakubczyk, D.; Górska, S. The NLRP3 inflammasome as a new target in respiratory disorders treatment. Front. Immunol. 2022, 13, 1006654. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zulfikar, S.; Mulholland, S.; Adamali, H.; Barratt, S.L. Inhibitors of the Autotaxin-Lysophosphatidic Acid Axis and Their Potential in the Treatment of Interstitial Lung Disease: Current Perspectives. Clin. Pharmacol. 2020, 12, 97–108. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mackie, A.; Rascher, J.; Schmid, M.; Endriss, V.; Brand, T.; Seibold, W. First clinical trials of the inhaled epithelial sodium channel inhibitor BI 1265162 in healthy volunteers. ERJ Open. Res. 2021, 7, 00447–02020. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Blume, S.Y.; Garg, A.; Martí-Mateos, Y.; Midha, A.D.; Chew, B.T.L.; Lin, B.; Yu, C.; Dick, R.; Lee, P.S.; Situ, E.; et al. HypoxyStat, a small-molecule form of hypoxia therapy that increases oxygen-hemoglobin affinity. Cell 2025, 188, 1580–1588. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Gao, W.; Hu, H.; Zhou, S. Why 90% of clinical drug development fails and how to improve it? Acta. Pharm. Sin. B. 2022, 12, 3049–3062. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Papathanassiou, E.; Loukides, S.; Bakakos, P. Severe asthma: Anti-IgE or anti-IL-5? Eur. Clin. Respir. J. 2016, 3, 31813. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stevens, J.H.; O’Hanley, P.; Shapiro, J.M.; Mihm, F.G.; Satoh, P.S.; Collins, J.A.; Raffin, T.A. Effects of anti-C5a antibodies on the adult respiratory distress syndrome in septic primates. J. Clin. Investig. 1986, 77, 1812–1816. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vlaar, A.P.J.; de Bruin, S.; Busch, M.; Timmermans, S.A.M.E.G.; van Zeggeren, I.E.; Koning, R.; Ter Horst, L.; Bulle, E.B.; van Baarle, F.E.H.P.; van de Poll, M.C.G.; et al. Anti-C5a antibody IFX-1 (vilobelimab) treatment versus best supportive care for patients with severe COVID-19 (PANAMO): An exploratory, open-label, phase 2 randomised controlled trial. Lancet Rheumatol. 2020, 2, e764–e773. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schnittert, J.; Bansal, R.; Storm, G.; Prakash, J. Integrins in wound healing, fibrosis and tumor stroma: High potential targets for therapeutics and drug delivery. Adv. Drug. Deliv. Rev. 2018, 129, 37–53. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.; Kudchodkar, S.B.; Chung, C.N.; Park, Y.K.; Xu, Z.; Pardi, N.; Abdel-Mohsen, M.; Muthumani, K. Expanding the Reach of Monoclonal Antibodies: A Review of Synthetic Nucleic Acid Delivery in Immunotherapy. Antibodies 2023, 12, 46. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mosch, R.; Guchelaar, H.J. Immunogenicity of Monoclonal Antibodies and the Potential Use of HLA Haplotypes to Predict Vulnerable Patients. Front. Immunol. 2022, 13, 885672. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Harris, H.; Kittur, J. Unlocking the potential of CRISPR-Cas9 for cystic fibrosis: A systematic literature review. Gene 2025, 942, 149257. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wen, Y.; Shan, X.; Ma, X.; Yang, C.; Cheng, X.; Zhao, Y.; Li, J.; Mi, S.; Huo, H.; et al. Charge-assisted stabilization of lipid nanoparticles enables inhaled mRNA delivery for mucosal vaccination. Nat. Commun. 2024, 15, 9471. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, X.; Mangala, L.S.; Rodriguez-Aguayo, C.; Kong, X.; Lopez-Berestein, G.; Sood, A.K. RNA interference-based therapy and its delivery systems. Cancer Metastasis Rev. 2018, 37, 107–124. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, G.; Friggeri, A.; Yang, Y.; Milosevic, J.; Ding, Q.; Thannickal, V.J.; Kaminski, N.; Abraham, E. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J. Exp. Med. 2010, 207, 1589–1597. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, Z.; Xie, Y.; Wei, Q.; Zhang, X.; Xu, Z. Revisiting the role of MicroRNAs in the pathogenesis of idiopathic pulmonary fibrosis. Front. Cell Dev. Biol. 2024, 12, 1470875. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Paunovska, K.; Loughrey, D.; Dahlman, J.E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet. 2022, 23, 265–280. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cao, C.; Zhang, L.; Liu, F.; Shen, J. Therapeutic Benefits of Mesenchymal Stem Cells in Acute Respiratory Distress Syndrome: Potential Mechanisms and Challenges. J. Inflamm. Res. 2022, 15, 5235–5246. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, Z.; Kłodzińska, S.N.; Wan, F.; Nielsen, H.M. Nanoparticle-mediated pulmonary drug delivery: State of the art towards efficient treatment of recalcitrant respiratory tract bacterial infections. Drug. Deliv. Transl. Res. 2021, 11, 1634–1654. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Voelker, M.T.; Laudi, S.; Henkelmann, J.; Bercker, S. Extracorporeal Membrane Oxygenation and Perfluorocarbon in a Therapy Refractory Case of Acute Respiratory Distress Syndrome. Ann. Thorac. Surg. 2022, 113, e355–e358. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Menzies-Gow, A.; Wechsler, M.E.; Brightling, C.E.; Korn, S.; Corren, J.; Israel, E.; Chupp, G.; Bednarczyk, A.; Ponnarambil, S.; Caveney, S.; et al. DESTINATION study investigators. Long-term safety and efficacy of tezepelumab in people with severe, uncontrolled asthma (DESTINATION): A randomised, placebo-controlled extension study. Lancet Respir. Med. 2023, 11, 425–438. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, I.; Isin, E.M.; Barton, P.; Cillero-Pastor, B.; Heeren, R.M.A. Multimodal molecular imaging in drug discovery and development. Drug. Discov. Today 2022, 27, 2086–2099. [Google Scholar] [CrossRef] [PubMed]
- Bosnic-Anticevich, S.; Bakerly, N.D.; Chrystyn, H.; Hew, M.; van der Palen, J. Advancing Digital Solutions to Overcome Longstanding Barriers in Asthma and COPD Management. Patient Prefer. Adherence 2023, 17, 259–272. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wilkinson, I.; Anderson, S.; Fry, J.; Julien, L.A.; Neville, D.; Qureshi, O.; Watts, G.; Hale, G. Fc-engineered antibodies with immune effector functions completely abolished. PLoS ONE 2021, 16, e0260954. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, J.H.; Gessler, D.J.; Zhan, W.; Gallagher, T.L.; Gao, G. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct. Target. Ther. 2024, 9, 78. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Santos, N.C.D.; Miravitlles, M.; Camelier, A.A.; Almeida, V.D.C.; Maciel, R.R.B.T.; Camelier, F.W.R. Prevalence and Impact of Comorbidities in Individuals with Chronic Obstructive Pulmonary Disease: A Systematic Review. Tuberc. Respir. Dis. 2022, 85, 205–220. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Malkovskiy, A.V.; Yacob, A.A.; Dunn, C.E.; Zirbes, J.M.; Ryan, S.P.; Bollyky, P.L.; Rajadas, J.; Milla, C.E. Salivary Thiocyanate as a Biomarker of Cystic Fibrosis Transmembrane Regulator Function. Anal. Chem. 2019, 91, 7929–7934. [Google Scholar] [CrossRef] [PubMed]
- Fortune, E.E.; Zaleta, A.K.; Saxton, M.C. Biomarker testing communication, familiarity, and informational needs among people living with breast, colorectal, and lung cancer. Patient Educ. Couns. 2023, 112, 107720. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, X.; Segars, W.P.; Samei, E. Comparison of patient specific dose metrics between chest radiography, tomosynthesis, and CT for adult patients of wide ranging body habitus. Med. Phys. 2014, 41, 023901. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thakur, Y.; Bjarnason, T.A.; Baxter, P.; Griffith, M.; Eaton, K. Radiation Dose Survey for Common Computed Tomography Exams: 2013 British Columbia Results. Can. Assoc. Radiol. J. 2016, 67, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Garrison, L.P., Jr.; Jiao, B.; Dabbous, O. Gene therapy may not be as expensive as people think: Challenges in assessing the value of single and short-term therapies. J. Manag. Care Spec. Pharm. 2021, 27, 674–681. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gracie, J.; Jimenez, R.; Winkfield, K.M. The Burden of Insurance Prior Authorization on Cancer Care: A Review of Evidence from Radiation Oncology. Adv. Radiat. Oncol. 2024, 10, 101654. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hussain, T.; Ullah, S.; Fernández-García, R.; Gil, I. Wearable Sensors for Respiration Monitoring: A Review. Sensors 2023, 23, 7518. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Drummond, D.; Adejumo, I.; Hansen, K.; Poberezhets, V.; Slabaugh, G.; Hui, C.Y. Artificial intelligence in respiratory care: Perspectives on critical opportunities and challenges. Breathe 2024, 20, 230189. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tsai, C.H.; Eghdam, A.; Davoody, N.; Wright, G.; Flowerday, S.; Koch, S. Effects of Electronic Health Record Implementation and Barriers to Adoption and Use: A Scoping Review and Qualitative Analysis of the Content. Life 2020, 10, 327. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hoagland, A.; Kipping, S. Challenges in Promoting Health Equity and Reducing Disparities in Access Across New and Established Technologies. Can. J. Cardiol. 2024, 40, 1154–1167. [Google Scholar] [CrossRef] [PubMed]
- Zietse, M.; van der Zeeuw, S.L.; Gebbink, A.K.; de Vries, A.C.; Crombag, M.B.S.; van Leeuwen, R.W.F.; Hoedemakers, M.J. Cost-Effective and Sustainable Drug Use in Hospitals: A Systematic and Practice-Based Approach. Appl. Health Econ. Health Policy 2025, 23, 183–195. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Al-Anazi, S.; Al-Omari, A.; Alanazi, S.; Marar, A.; Asad, M.; Alawaji, F.; Alwateid, S. Artificial intelligence in respiratory care: Current scenario and future perspective. Ann. Thorac. Med. 2024, 19, 117–130. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brewer, K.D.; Santo, N.V.; Samanta, A.; Nag, R.; Trotsyuk, A.A.; Rajadas, J. Advances in Therapeutics for Chronic Lung Diseases: From Standard Therapies to Emerging Breakthroughs. J. Clin. Med. 2025, 14, 3118. https://doi.org/10.3390/jcm14093118
Brewer KD, Santo NV, Samanta A, Nag R, Trotsyuk AA, Rajadas J. Advances in Therapeutics for Chronic Lung Diseases: From Standard Therapies to Emerging Breakthroughs. Journal of Clinical Medicine. 2025; 14(9):3118. https://doi.org/10.3390/jcm14093118
Chicago/Turabian StyleBrewer, Kyle D., Niki V. Santo, Ankur Samanta, Ronjon Nag, Artem A. Trotsyuk, and Jayakumar Rajadas. 2025. "Advances in Therapeutics for Chronic Lung Diseases: From Standard Therapies to Emerging Breakthroughs" Journal of Clinical Medicine 14, no. 9: 3118. https://doi.org/10.3390/jcm14093118
APA StyleBrewer, K. D., Santo, N. V., Samanta, A., Nag, R., Trotsyuk, A. A., & Rajadas, J. (2025). Advances in Therapeutics for Chronic Lung Diseases: From Standard Therapies to Emerging Breakthroughs. Journal of Clinical Medicine, 14(9), 3118. https://doi.org/10.3390/jcm14093118