Diagnosis and Monitoring of Metabolic Dysfunction Associated with Fatty Liver Disease in Primary Care Patients with Risk Factors—EsteatoGal Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Variables
2.4. Statistical Analysis
3. Results
3.1. Population Characteristics
3.2. Prevalence of MAFLD and Hepatic Fibrosis
3.3. Correlation Between Different Diagnostic Tests
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NAFLD | Non-alcohol fatty liver disease |
PC | Primary care |
T2DM | Diabetes mellitus type 2 |
References
- Younossi, Z.M.; Golabi, P.; Paik, J.M.; Henry, A.; Van Dongen, C.; Henry, L. The Global Epidemiology of Nonalcoholic Fatty Liver Disease (NAFLD) and Nonalcoholic Steatohepatitis (NASH): A Systematic Review. Hepatology 2023, 77, 1335–1347. [Google Scholar] [CrossRef] [PubMed]
- Sieddek, A.S.; Muhammed, R.R.; Attia, D. Screening of Metabolic-Associated Fatty Liver Disease in General Population Attending Outpatient Clinic. SN Compr. Clin. Med. 2024, 6, 18. [Google Scholar] [CrossRef]
- Chung, N.-T.; Hsu, C.-Y.; Shih, N.-C.; Wu, J.-J. Elevated Concurrent Carotid Atherosclerosis Rates in Patients with Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) Compared to Non-Alcoholic Fatty Liver Disease (NAFLD): A Cross-Sectional Observational Study. Nutr. Metab. Cardiovasc. Dis. 2025, 35, 103767. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Liang, Z.; Hu, X.; Li, X.; Liu, Z.; Qiao, Y.; Cheng, Y.; Yao, H.; Liu, Y. Comparative Association of MAFLD/MASLD and Subtypes with Cardiovascular Diseases Outcomes. Nutr. Metab. Cardiovasc. Dis. 2025, 35, 104024. [Google Scholar] [CrossRef]
- Calori, G.; Lattuada, G.; Ragogna, F.; Garancini, M.P.; Crosignani, P.; Villa, M.; Bosi, E.; Ruotolo, G.; Piemonti, L.; Perseghin, G. Fatty Liver Index and Mortality: The Cremona Study in the 15th Year of Follow-Up. Hepatology 2011, 54, 145–152. [Google Scholar] [CrossRef]
- Wójcik-Cichy, K.; Koślińska-Berkan, E.; Piekarska, A. The Influence of NAFLD on the Risk of Atherosclerosis and Cardiovascular Diseases. Clin. Exp. Hepatol. 2018, 4, 1–6. [Google Scholar] [CrossRef]
- Hadadi, I.; Adam, M.; Musa, M.J.; Gareeballah, A.; Alqahtani, M.M.; Kanbayti, I.H.; Hazazi, A. Exploring the Prevalence and Coexistence of Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus Patients Using Ultrasound: A Cross-Sectional Study. Curr. Med. Imaging 2025, 21, e15734056354807. [Google Scholar] [CrossRef]
- Timakova, A.Y.; Skirdenko, Y.P.; Livzan, M.A.; Krolevets, T.S.; Nikolaev, N.A.; Nelidova, A.V. Cardiovascular Comorbidity in Non-Alcoholic Fatty Liver Disease. Exp. Clin. Gastroenterol. 2020, 10, 88–95. [Google Scholar] [CrossRef]
- Alharthi, J.; Gastaldelli, A.; Cua, I.H.; Ghazinian, H.; Eslam, M. Metabolic Dysfunction-Associated Fatty Liver Disease: A Year in Review. Curr. Opin. Gastroenterol. 2022, 38, 251. [Google Scholar] [CrossRef]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A Multisociety Delphi Consensus Statement on New Fatty Liver Disease Nomenclature. Ann. Hepatol. 2024, 29, 101133. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Blissett, D.; Blissett, R.; Henry, L.; Stepanova, M.; Younossi, Y.; Racila, A.; Hunt, S.; Beckerman, R. The Economic and Clinical Burden of Nonalcoholic Fatty Liver Disease in the United States and Europe. Hepatology 2016, 64, 1577–1586. [Google Scholar] [CrossRef] [PubMed]
- Sanyal, A.J.; Harrison, S.A.; Ratziu, V.; Abdelmalek, M.F.; Diehl, A.M.; Caldwell, S.; Shiffman, M.L.; Aguilar Schall, R.; Jia, C.; McColgan, B.; et al. The Natural History of Advanced Fibrosis Due to Nonalcoholic Steatohepatitis: Data From the Simtuzumab Trials. Hepatology 2019, 70, 1913–1927. [Google Scholar] [CrossRef] [PubMed]
- ElSayed, N.A.; McCoy, R.G.; Aleppo, G.; Bajaj, M.; Balapattabi, K.; Beverly, E.A.; Briggs Early, K.; Bruemmer, D.; Cusi, K.; Echouffo-Tcheugui, J.B.; et al. 4. Comprehensive Medical Evaluation and Assessment of Comorbidities: Standards of Care in Diabetes—2025. Diabetes Care 2025, 48, S59–S85. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C. Harmonizing the Metabolic Syndrome. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed]
- Achenbach, S.; Aleksandrova, K.; Amiano, P.; Sebastian, D.-S.; Amouyel, P.; Andersson, J.; Bakker, S.J.L.; Da Providencia Costa, R.B.; Beulens, J.W.J.; Blaha, M.; et al. SCORE2 Risk Prediction Algorithms: New Models to Estimate 10-Year Risk of Cardiovascular Disease in Europe. Eur. Heart J. 2021, 42, 2439–2454. [Google Scholar] [CrossRef]
- de Vries, T.I.; Cooney, M.T.; Selmer, R.M.; Hageman, S.H.J.; Pennells, L.A.; Wood, A.; Kaptoge, S.; Xu, Z.; Westerink, J.; Rabanal, K.S.; et al. SCORE2-OP Risk Prediction Algorithms: Estimating Incident Cardiovascular Event Risk in Older Persons in Four Geographical Risk Regions. Eur. Heart J. 2021, 42, 2455–2467. [Google Scholar] [CrossRef]
- Gutch, M.; Kumar, S.; Razi, S.M.; Gupta, K.K.; Gupta, A. Assessment of Insulin Sensitivity/Resistance. Indian J. Endocrinol. Metab. 2015, 19, 160. [Google Scholar] [CrossRef]
- Morieri, M.L.; Vitturi, N.; Avogaro, A.; Targher, G.; Fadini, G.P.; DARWIN-T2D Network of the Italian Diabetes Society. Prevalence of Hepatic Steatosis in Patients with Type 2 Diabetes and Response to Glucose-Lowering Treatments. A Multicenter Retrospective Study in Italian Specialist Care. J. Endocrinol. Investig. 2021, 44, 1879–1889. [Google Scholar] [CrossRef]
- Graupera, I.; Thiele, M.; Serra-Burriel, M.; Caballeria, L.; Roulot, D.; Wong, G.L.-H.; Fabrellas, N.; Guha, I.N.; Arslanow, A.; Expósito, C.; et al. Low Accuracy of FIB-4 and NAFLD Fibrosis Scores for Screening for Liver Fibrosis in the Population. Clin. Gastroenterol. Hepatol. 2022, 20, 2567–2576.e6. [Google Scholar] [CrossRef]
- Gracen, L.; Hayward, K.L.; Irvine, K.M.; Valery, P.C.; Powell, E.E. Low Accuracy of FIB-4 Test to Identify People with Diabetes at Low Risk of Advanced Fibrosis. J. Hepatol. 2022, 77, 1219–1221. [Google Scholar] [CrossRef]
- Vali, Y.; Lee, J.; Boursier, J.; Spijker, R.; Löffler, J.; Verheij, J.; Brosnan, M.J.; Böcskei, Z.; Anstee, Q.M.; Bossuyt, P.M.; et al. Enhanced Liver Fibrosis Test for the Non-Invasive Diagnosis of Fibrosis in Patients with NAFLD: A Systematic Review and Meta-Analysis. J. Hepatol. 2020, 73, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Ferraioli, G.; Berzigotti, A.; Barr, R.G.; Choi, B.I.; Cui, X.W.; Dong, Y.; Gilja, O.H.; Lee, J.Y.; Lee, D.H.; Moriyasu, F.; et al. Quantification of Liver Fat Content with Ultrasound: A WFUMB Position Paper. Ultrasound Med. Biol. 2021, 47, 2803–2820. [Google Scholar] [CrossRef] [PubMed]
- Sonaglioni, A.; Cerini, F.; Cerrone, A.; Argiento, L.; Nicolosi, G.L.; Rigamonti, E.; Lombardo, M.; Rumi, M.G.; Viganò, M. Liver Stiffness Measurement Identifies Subclinical Myocardial Dysfunction in Non-Advanced Non-Alcoholic Fatty Liver Disease Patients without Overt Heart Disease. Intern. Emerg. Med. 2022, 17, 1425–1438. [Google Scholar] [CrossRef] [PubMed]
- Stefanska, A.; Bergmann, K.; Suwała, S.; Mankowska-Cyl, A.; Kozinski, M.; Junik, R.; Krintus, M.; Panteghini, M. Performance Evaluation of a Novel Non-Invasive Test for the Detection of Advanced Liver Fibrosis in Metabolic Dysfunction-Associated Fatty Liver Disease. Metabolites 2024, 14, 52. [Google Scholar] [CrossRef]
- Kang, Y.-W.; Baek, Y.-H.; Moon, S.-Y. Sequential Diagnostic Approach Using FIB-4 and ELF for Predicting Advanced Fibrosis in Metabolic Dysfunction-Associated Steatotic Liver Disease. Diagnostics 2024, 14, 2517. [Google Scholar] [CrossRef]
- Jun, B.G.; Park, W.Y.; Park, E.J.; Jang, J.Y.; Jeong, S.W.; Lee, S.-H.; Kim, S.G.; Cha, S.-W.; Kim, Y.S.; Cho, Y.D.; et al. A Prospective Comparative Assessment of the Accuracy of the FibroScan in Evaluating Liver Steatosis. PLoS ONE 2017, 12, e0182784. [Google Scholar] [CrossRef]
n | Percentage | |
---|---|---|
Women | 46 | 46.9% |
Age | 61.2 (7.3) | |
Level of studies | ||
Basics | 43 | 43.9% |
Media | 31 | 31.6% |
University students | 24 | 24.5% |
Work activity | ||
Retired | 30 | 30.6% |
Unemployed | 4 | 6.1% |
Employed | 53 | 54.1% |
Domestic Acts | 7 | 7.1% |
Student | 2 | 2.0% |
Economic income | ||
TSI 001(Retired < €18,000 per year) | 17 | 17.3% |
TSI 002 (Retired between €18,000 and €100,000 per year) | 26 | 26.5% |
TSI 003 (Employed < €18,000 per year) | 33 | 33.7% |
TSI 004 (Employed between €18,000 and €100,000 per year) | 20 | 20.4% |
TSI 005 (>€100,000 per year) | 2 | 2.0% |
Personal background | ||
Type 2 diabetes | 30 | 30.6% |
Overweight | 42 | 42.9% |
Obesity | 54 | 55.1% |
Hypercholesterolemia | 58 | 59.8% |
Metabolic Syndrome | 46 | 47.9% |
Polycystic Ovary Syndrome | 3 | 3.1% |
Preexisting Cardiovascular Disease | 6 | 6.1% |
Physical activity | ||
Low | 34 | 34.7% |
Moderate | 48 | 49.0% |
Intense | 16 | 16.3% |
Smoking | ||
Smoker | 13 | 13.3% |
Ex-smoker | 38 | 38.8% |
Alcohol consumption | ||
None | 71 | 72.4% |
1 Standard drink | 20 | 20.4% |
2 Standard drinks | 4 | 4.1% |
≥3 Standard drinks | 3 | 3.1% |
Hepatic Steatosis | No Steatosis | p | |
---|---|---|---|
Women | 35.7% | 55.0% | 0.150 |
Age | 59.1 (10.8) | 61.9 (7.8) | 0.252 |
Level of studies | |||
Basics | 47.6% | 50.0% | 0.457 |
Media | 33.3% | 20.0% | |
University students | 19.0% | 30.0% | |
Work activity | |||
Retired | 33.3% | 55.0% | 0.376 |
Unemployed | 9.5% | 0.0% | |
Employed | 47.6% | 40.0% | |
Domestic Acts | 7.1% | 5.0% | |
Student | 2.4% | 0.0% | |
Economic income | |||
TSI 001(Retired < €18,000 per year) | 21.4% | 30.0% | 0.715 |
TSI 002 (Retired between €18,000 and €100,000 per year) | 31.0% | 30.0% | |
TSI 003 (Employed < €18,000 per year) | 21.4% | 25.0% | |
TSI 004 (Employed between €18,000 and €100,000 per year) | 23.8% | 10.0% | |
TSI 005 (>€100,000 per year) | 2.4% | 5.0% | |
Personal background | |||
Type 2 diabetes | 35.7% | 30.0% | 0.657 |
Overweight | 40.5% | 60.0% | 0.150 |
Obesity | 59.5% | 30.0% | 0.030 |
Hypercholesterolemia | 70.7% | 55.0% | 0.225 |
Metabolic Syndrome | 56.1% | 20.0% | 0.008 |
Polycystic Ovary Syndrome | 2.4% | 0.0% | 0.487 |
Preexisting cardiovascular disease | 7.1% | 0.0% | 0.220 |
Physical activity | |||
Low | 31.0% | 45.0% | 0.550 |
Moderate | 54.8% | 45.0% | |
Intense | 14.3% | 10.0% | |
Smoking | |||
Smoker | 2.4% | 15.0% | 0.126 |
Ex-smoker | 45.2% | 30.0% | |
Alcohol consumption | |||
None | 61.9% | 90.0% | 0.109 |
1 Standard drink | 28.6% | 5.0% | |
2 Standard drinks | 4.8% | 5.0% | |
≥3 Standard drinks | 4.8% | 0.0% |
Hepatic Steatosis | No Steatosis | p | |
---|---|---|---|
Weight (kg) | 89.8 (16.5) | 75.8 (11.9) | 0.001 |
BMI (kg/m2) | 31.8 (4.6) | 28.4 (3.5) | 0.004 |
Waist circumference (cm) | 109.5 (12.6) | 100.5 (10.0) | 0.007 |
FIB4 | 1.4 (0.7) | 1.3 (0.5) | 0.842 |
ELF | 9.6 (0.7) | 9.8 (0.6) | 0.266 |
ALT (UI/mL) | 37.1 (30.8) | 25.6 (13.6) | 0.117 |
AST (UI/mL) | 28.6 (17.5) | 24.1 (7.3) | 0.278 |
GGT (UI/mL) | 43.1 (18.3) | 27.3 (15.5) | 0.272 |
Alkaline phosphatase (UI/mL) | 72.6 (23.5) | 71.5 (20.0) | 0.858 |
Prothrombin time | 10.8 (0.9) | 11.2 (0.6) | 0.097 |
Blood glucose | 108.0 (25.2) | 102.6 (22.7) | 0.414 |
Glomerular rate (mL/min) | 94.0 (11.0) | 88.3 (13.8) | 0.084 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Varela, N.; Cinza-Sanjurjo, S.; Danif-Ferreira, T.; Medina Araujo, L.I.; Mosteiro Miguéns, D.G.; Rey-Aldana, D.; Portela-Romero, M.; on behalf of the EsteatoGal Researchers. Diagnosis and Monitoring of Metabolic Dysfunction Associated with Fatty Liver Disease in Primary Care Patients with Risk Factors—EsteatoGal Study. J. Clin. Med. 2025, 14, 3089. https://doi.org/10.3390/jcm14093089
Sánchez-Varela N, Cinza-Sanjurjo S, Danif-Ferreira T, Medina Araujo LI, Mosteiro Miguéns DG, Rey-Aldana D, Portela-Romero M, on behalf of the EsteatoGal Researchers. Diagnosis and Monitoring of Metabolic Dysfunction Associated with Fatty Liver Disease in Primary Care Patients with Risk Factors—EsteatoGal Study. Journal of Clinical Medicine. 2025; 14(9):3089. https://doi.org/10.3390/jcm14093089
Chicago/Turabian StyleSánchez-Varela, Nerea, Sergio Cinza-Sanjurjo, Tatiana Danif-Ferreira, Liseth I. Medina Araujo, Diego G. Mosteiro Miguéns, Daniel Rey-Aldana, Manuel Portela-Romero, and on behalf of the EsteatoGal Researchers. 2025. "Diagnosis and Monitoring of Metabolic Dysfunction Associated with Fatty Liver Disease in Primary Care Patients with Risk Factors—EsteatoGal Study" Journal of Clinical Medicine 14, no. 9: 3089. https://doi.org/10.3390/jcm14093089
APA StyleSánchez-Varela, N., Cinza-Sanjurjo, S., Danif-Ferreira, T., Medina Araujo, L. I., Mosteiro Miguéns, D. G., Rey-Aldana, D., Portela-Romero, M., & on behalf of the EsteatoGal Researchers. (2025). Diagnosis and Monitoring of Metabolic Dysfunction Associated with Fatty Liver Disease in Primary Care Patients with Risk Factors—EsteatoGal Study. Journal of Clinical Medicine, 14(9), 3089. https://doi.org/10.3390/jcm14093089