Role of Positron Emission Tomography (PET) in the Diagnosis of Musculoskeletal Disorders
Abstract
:1. Introduction
2. Radiotracers for Musculoskeletal Imaging
- (A)
- [18F]-Flurodeoxyglucose (FDG)
- (B)
- [18F]-Sodium Fluoride (NaF)
3. Imaging Techniques in Various Musculoskeletal Conditions (Figure 1)
3.1. Osteoporosis
3.2. Bone Tumors and Soft Tissue Sarcoma
3.3. Inflammatory Bone Diseases
3.4. Musculoskeletal Infections
3.5. Inflammatory Arthropathies
3.6. Osteoarthritis
3.7. Metabolic Bone Diseases
3.7.1. Paget’s Disease
3.7.2. Osteomalacia
4. Limitations
5. Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chaudhari, A.J.; Raynor, W.Y.; Gholamrezanezhad, A.; Werner, T.J.; Rajapakse, C.S.; Alavi, A. Total-Body PET Imaging of Musculoskeletal Disorders. PET Clin. 2021, 16, 99–117. [Google Scholar] [CrossRef]
- Kogan, F.; Broski, S.M.; Yoon, D.; Gold, G.E. Applications of PET-MRI in musculoskeletal disease. J. Magn. Reson. Imaging 2018, 48, 27–47. [Google Scholar] [CrossRef]
- Gholamrezanezhad, A.; Basques, K.; Batouli, A.; Olyaie, M.; Matcuk, G.; Alavi, A.; Jadvar, H. Non-oncologic Applications of PET/CT and PET/MRI in Musculoskeletal, Orthopedic, and Rheumatologic Imaging: General Considerations, Techniques, and Radiopharmaceuticals. J. Nucl. Med. Technol. 2017, 46, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Aaltonen, L.; Koivuviita, N.; Seppänen, M.; Tong, X.; Kröger, H.; Löyttyniemi, E.; Metsärinne, K. Correlation between 18F-sodium fluoride positron emission tomography and bone histomorphometry in dialysis patients. Bone 2020, 134, 115267. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.A.; Goyal, A. Fludeoxyglucose (18F). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557653/ (accessed on 1 April 2025).
- Jadvar, H.; Desai, B.; Conti, P.S. Sodium 18F-fluoride PET/CT of bone, joint, and other disorders. Semin. Nucl. Med. 2015, 45, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Bois, F.; Noirot, C.; Dietemann, S.; Mainta, I.C.; Zilli, T.; Garibotto, V.; Walter, M.A. [68Ga]Ga-PSMA-11 in prostate cancer: A comprehensive review. Am. J. Nucl. Med. Mol. Imaging 2020, 10, 349–374. [Google Scholar]
- Leung, K. [11C]Choline. In Molecular Imaging and Contrast Agent Database (MICAD); National Center for Biotechnology Information: Bethesda, MD, USA, 2004. Available online: https://www.ncbi.nlm.nih.gov/books/NBK23549/ (accessed on 1 April 2025).
- Chauveau, F.; Becker, G.; Boutin, H. Have (R)-[11C]PK11195 challengers fulfilled the promise? A scoping review of clinical TSPO PET studies. Eur. J. Nucl. Med. Mol. Imaging 2021, 49, 201–220. [Google Scholar] [CrossRef]
- Hjørnevik, T.; Cipriano, P.W.; Shen, B.; Park, J.H.; Gulaka, P.; Holley, D.; Gandhi, H.; Yoon, D.; Mittra, E.S.; Zaharchuk, G.; et al. Biodistribution and Radiation Dosimetry of 18F-FTC-146 in Humans. J. Nucl. Med. 2017, 58, 2004–2009. [Google Scholar] [CrossRef]
- WHO Scientific Group on the Prevention and Management of Osteoporosis (2000: Geneva, Switzerland). Prevention and Management of Osteoporosis: Report of a WHO Scientific Group. World Health Organization. 2003. Available online: https://iris.who.int/handle/10665/42841 (accessed on 1 April 2025).
- Guglielmi, G.; Muscarella, S.; Bazzocchi, A. Integrated Imaging Approach to Osteoporosis: State-of-the-Art Review and Update. RadioGraphics 2011, 31, 1343–1364. [Google Scholar] [CrossRef]
- Link, T.M. Osteoporosis imaging: State of the art and advanced imaging. Radiology 2012, 263, 3–17. [Google Scholar] [CrossRef]
- Frost, M.L.; Fogelman, I.; Blake, G.M.; Marsden, P.K.; Cook, G., Jr. Dissociation between global markers of bone formation and direct measurement of spinal bone formation in osteoporosis. J. Bone Miner. Res. 2004, 19, 1797–1804. [Google Scholar] [CrossRef]
- Rhodes, S.; Batzdorf, A.; Sorci, O.; Peng, M.; Jankelovits, A.; Hornyak, J.; An, J.; Noël, P.B.; Høilund-Carlsen, P.F.; Alavi, A.; et al. Assessment of femoral neck bone metabolism using 18F-sodium fluoride PET/CT imaging. Bone 2020, 136, 115351. [Google Scholar] [CrossRef]
- Uchida, K.; Nakajima, H.; Miyazaki, T.; Yayama, T.; Kawahara, H.; Kobayashi, S.; Tsuchida, T.; Okazawa, H.; Fujibayashi, Y.; Baba, H. Effects of alendronate on bone metabolism in glucocorticoid-induced osteoporosis measured by 18F-fluoride PET: A prospective study. J. Nucl. Med. 2009, 50, 1808–1814. [Google Scholar] [CrossRef] [PubMed]
- Rizi, M.M.; Salari, A.; Salesi, M.; Rasooli, L.; Karimifar, M. Comparison of bone mineral density of osteoporotic and osteopenia menopausal women treated with oral bisphosphonates before stopping the treatment and 1 year after drug holiday period. Clin. Rheumatol. 2024, 43, 1375–1379. [Google Scholar] [CrossRef]
- Frost, M.L.; Cook, G.J.; Blake, G.M.; Marsden, P.K.; Benatar, N.A.; Fogelman, I. A prospective study of risedronate on regional bone metabolism and blood flow at the lumbar spine measured by 18F-fluoride positron emission tomography. J. Bone Miner. Res. 2003, 18, 2215–2222. [Google Scholar] [CrossRef] [PubMed]
- Frost, M.L.; Siddique, M.; Blake, G.M.; Moore, A.E.; Schleyer, P.J.; Dunn, J.T.; Somer, E.J.; Marsden, P.K.; Eastell, R.; Fogelman, I. Differential effects of teriparatide on regional bone formation using 18F-fluoride positron emission tomography. J. Bone Miner. Res. 2011, 26, 1002–1011. [Google Scholar] [CrossRef]
- Burningham, Z.; Hashibe, M.; Spector, L.; Schiffman, J.D. The epidemiology of sarcoma. Clin. Sarcoma Res. 2012, 2, 14. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues-Alfonso, B.; Mucientes Rasilla, J.; Casanovas, M.; Cubedo, R. 18F-FDG PET in STS; when to image? Rev. Española Med. Nucl. Imagen Mol. 2014, 33, 43–49. [Google Scholar]
- Sorensen, S.A.; Mulvihill, J.J.; Nielsen, A. Long-term follow up of von Recklinghausen neurofibromatosis. N. Engl. J. Med. 1986, 314, 1010–1015. [Google Scholar] [CrossRef]
- D’Agostino, A.N.; Soule, E.H.; Miller, R.H. Sarcomas of the peripheral nerves and somatic soft tissue associated with multiple neurofibromatosis (von Recklinghausen’s disease). Cancer 1963, 16, 1015–1027. [Google Scholar] [CrossRef]
- Ioannidis, J.P.; Lau, J. 18F-FDG PET for diagnosis and grading of soft tissue sarcoma: A meta-analysis. J. Nucl. Med. 2003, 37, 257–261. [Google Scholar]
- Lodge, M.A.; Lucas, J.D.; Marsden, M.P.K.; Cronin, B.F.; O’Doherty, M.J.; Smith, M.A. A PET study of 18FDG uptake in soft tissue masses. Eur. J. Nucl. Med. 1999, 26, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Dancheva, Z.; Bochev, P.; Chaushev, B.; Yordanova, T.; Klisarova, A. Dual-time point 18FDG-PET/CT imaging may be useful in assessing local recurrent disease in high grade bone and soft tissue sarcoma. Nucl. Med. Rev. Cent. East. Eur. 2016, 19, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Lucas, J.D.; O’Dohetry, M.J.; Wong, J.C.; Bingham, J.B.; McKee, P.H.; Fletcher, C.D.M.; Smith, M.A. Evaluation of Fluorodeoxyglucose positron emission tomography in the management of soft tissue sarcomas. J. Bone Jt. Surg. Br. Vol. 1998, 80, 441–447. [Google Scholar] [CrossRef]
- Volker, T.; Denecke, T.; Steffen, I.; Misch, D.; Schönberger, S.; Plotkin, M.; Ruf, J.; Furth, C.; Stöver, B.; Hautzel, H.; et al. Positron emission tomography for staging of pediatric sarcoma patients: Results of a prospective multicenter trial. J. Clin. Oncol. 2007, 25, 5435–5441. [Google Scholar] [CrossRef]
- Ricard, F.; Cimarelli, S.; Deshayes, E.; Mognetti, T.; Thiesse, P.; Giammarile, F. Additional benefit of F-18 FDG PET/CT in the staging and follow-up of pediatric rhabdomyosarcoma. Clin. Nucl. Med. 2011, 36, 672–677. [Google Scholar] [CrossRef]
- Al-Ibraheem, A.; Buck, A.K.; Benz, M.R.; Rudert, M.; Beer, A.J.; Mansour, A.; Pomykala, K.L.; Haller, B.; Juenger, H.; Scheidhauer, K.; et al. 18F-fluorodeoxyglucose positron emission tomography/computed tomography for the detection of recurrent bone and soft tissue sarcoma. Cancer 2013, 119, 1227–1234. [Google Scholar] [CrossRef]
- Franzius, C.; Daldrup-Link, H.E.; Wagner-Bohn, A.; Sciuk, J.; Heindel, W.L.; Jürgens, H.; Schober, O. FDG-PET for detection of recurrences from malignant primary bone tumors: Comparison with conventional imaging. Ann. Oncol. 2002, 13, 157–160. [Google Scholar] [CrossRef]
- Evilevitch, V.; Weber, W.A.; Tap, W.D.; Allen-Auerbach, M.; Chow, K.; Nelson, S.D.; Eilber, F.R.; Eckardt, J.J.; Elashoff, R.M.; Phelps, M.E.; et al. Reduction of glucose metabolic activity is more accurate than change in size at predicting histopathologic response to neoadjuvant therapy in high-grade soft tissue sarcomas. Clin. Cancer Res. 2008, 14, 715–718. [Google Scholar] [CrossRef]
- Benz, M.R.; Czernin, J.; Allen-Auerbach, M.S.; Tap, W.D.; Dry, S.M.; Elashoff, D.; Chow, K.; Evilevitch, V.; Eckardt, J.J.; Phelps, M.E.; et al. FDG-PET/CT imaging predicts histopathologic treatment responses after the initial cycle of neoadjuvant chemotherapy in high-grade soft-tissue sarcomas. Clin. Cancer Res. 2009, 15, 2856–2863. [Google Scholar] [CrossRef]
- Chodyla, M.; Barbato, F.; Dirksen, U.; Kirchner, J.; Schaarschmidt, B.M.; Schweiger, B.; Forsting, M.; Herrmann, K.; Umutlu, L.; Grueneisen, J. Utility of Integrated PET/MRI for the Primary Diagnostic Work-Up of Patients with Ewing Sarcoma: Preliminary Results. Diagnostics 2022, 12, 2278. [Google Scholar] [CrossRef] [PubMed]
- Platzek, I.; Beuthien-Baumann, B.; Schramm, G.; Maus, J.; Laniado, M.; Kotzerke, J.; van den Hoff, J.; Schuler, M. FDG PET/MR in initial staging of sarcoma: Initial experience and comparison with conventional imaging. Clin. Imaging 2017, 42, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Grueneisen, J.; Schaarschmidt, B.; Demircioglu, A.; Chodyla, M.; Martin, O.; Bertram, S.; Wetter, A.; Bauer, S.; Fendler, W.P.; Podleska, L.; et al. 18F-FDG PET/MRI for Therapy Response Assessment of Isolated Limb Perfusion in Patients with Soft-Tissue Sarcomas. J. Nucl. Med. 2019, 60, 1537–1542. [Google Scholar] [CrossRef] [PubMed]
- Gormsen, L.C.; Hess, S. Challenging but clinically useful: Fluorodeoxyglucose PET/computed tomography in inflammatory and infectious diseases. PET Clin. 2020, 15, xi–xii. [Google Scholar] [CrossRef]
- Alavi, A.; Hess, S.; Werner, T.J.; Høilund-Carlsen, P.F. An update on the unparalleled impact of FDG-PET imaging on the day-to-day practice of medicine with emphasis on management of infectious/inflammatory disorders. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 18–27. [Google Scholar]
- Sathekge, M.; Maes, A.; Wiele, C.V.d. FDG-PET imaging in HIV infection and tuberculosis. Semin. Nucl. Med. 2013, 43, 349–366. [Google Scholar]
- Termaat, M.F.; Raijmakers, P.G.; Scholten, H.J.; Bakker, F.; Patka, P.; Haarman, H. The accuracy of diagnostic imaging for the assessment of chronic osteomyelitis: A systematic review and meta-analysis. J. Bone Jt. Surg. Am. 2005, 87, 2464–2471. [Google Scholar] [CrossRef]
- Kouijzer, I.J.E.; Scheper, H.; de Rooy, J.W.J.; Bloem, J.L.; Janssen, M.J.R.; Hoven, L.v.D.; Hosman, A.J.F.; Visser, L.G.; Oyen, W.J.G.; Bleeker-Rovers, C.P.; et al. The diagnostic value of 18F-FDG-PET/CT and MRI in suspected vertebral osteomyelitis—A prospective study. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 798–805. [Google Scholar] [CrossRef]
- Nielsen, O.L.; Afzelius, P.; Bender, D.; Schønheyder, H.C.; Leifsson, P.S.; Nielsen, K.M.; Larsen, J.O.; Jensen, S.B.; Alstrup, A.K.O. Comparison of autologous 111In-leukocytes, 18F-FDG, 11Cmethionine, 11C-PK11195 and 68Ga-citrate for diagnostic nuclear imaging in a juvenile haematogenous staphylococcus aureus osteomyelitis model. Am. J. Nucl. Med. Mol. Imaging. 2015, 5, 169–182. [Google Scholar]
- Diaz, L.A., Jr.; Foss, C.A.; Thornton, K.; Nimmagadda, S.; Endres, C.J.; Uzuner, O.; Seyler, T.M.; Ulrich, S.D.; Conway, J.; Bettegowda, C.; et al. Imaging of musculoskeletal bacterial infections by [124I]FIAU-PET/CT. PLoS ONE 2007, 2, e1007. [Google Scholar] [CrossRef]
- Hao, R.; Yuan, L.; Kan, Y.; Yang, J. 18F-FDG PET for diagnosing painful arthroplasty/prosthetic joint infection. Clin. Transl. Imaging 2017, 5, 315–322. [Google Scholar] [CrossRef]
- Thapa, P.; Kalshetty, A.; Basu, S. FDG PET/CT in assessment of prosthetic joint infection. In PET/CT in Infection and Inflammation; Wagner, T., Basu, S., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 43–54. [Google Scholar]
- Zhuang, H.; Duarte, P.S.; Pourdehnad, M.; Maes, A.; Van Acker, F.; Shnier, D.; Garino, J.P.; Fitzgerald, R.H.; Alavi, A. The promising role of 18F-FDG PET in detecting infected lower limb prosthesis implants. J. Nucl. Med. 2001, 42, 44–48. [Google Scholar] [PubMed]
- Hotta, M.; Minamimoto, R.; Kaneko, H.; Yamashita, H. Fluorodeoxyglucose PET/CT of arthritis in rheumatic diseases: A pictorial review. Radiographics 2020, 40, 223–240. [Google Scholar] [CrossRef]
- Lee, S.J.; Jeong, J.H.; Lee, C.H.; Ahn, B.C.; Eun, J.S.; Kim, N.R.; Kang, J.W.; Nam, E.J.; Kang, Y.-M. Development and validation of an 18F-fluorodeoxyglucosepositron emission tomography with computed tomography-based tool for the evaluation of joint counts and disease activity in patients with rheumatoid arthritis. Arthritis Rheumatol. 2019, 71, 1232–1240. [Google Scholar] [CrossRef] [PubMed]
- Vijayant, V.; Sarma, M.; Aurangabadkar, H.; Bichile, L.; Basu, S. Potential of 18F-FDG-PET as a valuable adjunct to clinical and response assessment in rheumatoid arthritis and seronegative spondyloarthropathies. World J. Radiol. 2012, 4, 462–468. [Google Scholar] [CrossRef]
- Fosse, P.; Kaiser, M.-J.; Namur, G.; de Seny, D.; Malaise, M.G.; Hustinx, R. 18F- FDG PET/CT joint assessment of early therapeutic response in rheumatoid arthritis patients treated with rituximab. Eur. J. Hybrid Imaging 2018, 2, 6. [Google Scholar] [CrossRef]
- Roivainen, A.; Parkkola, R.; Yli-Kerttula, T.; Lehikoinen, P.; Viljanen, T.; Möttönen, T.; Nuutila, P.; Minn, H. Use of positron emission tomography with methyl-11Ccholine and 2-18F-fluoro-2-deoxy-D-glucose in comparison with magnetic resonance imaging for the assessment of inflammatory proliferation of synovium. Arthritis Rheum. 2003, 48, 3077–3084. [Google Scholar] [CrossRef]
- Zhu, Z.; Yin, Y.; Zheng, K.; Li, F.; Chen, X.; Zhang, F.; Zhang, X. Evaluation of synovial angiogenesis in patients with rheumatoid arthritis using 68Ga-PRGD2 PET/CT: A prospective proof-of-concept cohort study. Ann. Rheum. Dis. 2014, 73, 1269–1272. [Google Scholar] [CrossRef]
- Miese, F.; Scherer, A.; Ostendorf, B.; Heinzel, A.; Lanzman, R.S.; Kröpil, P.; Blondin, D.; Hautzel, H.; Wittsack, H.-J.; Schneider, M.; et al. Hybrid 18FFDG PET-MRI of the hand in rheumatoid arthritis: Initial results. Clin. Rheumatol. 2011, 30, 1247–1250. [Google Scholar] [CrossRef]
- Jena, A.; Goyal, N.; Vaishya, R. 18F-NaF simultaneous PET/MRI in osteoarthritis: Initial observations with case illustration. J. Clin. Orthop. Trauma 2021, 22, 101569. [Google Scholar] [CrossRef]
- Savic, D.; Pedoia, V.; Seo, Y.; Yang, J.; Bucknor, M.; Franc, B.L.; Majumdar, S. Imaging bone–cartilage interactions in osteoarthritis using [18F]-NaF PET-MRI. Mol. Imaging 2016, 15, 1–12. [Google Scholar] [CrossRef]
- Kogan, F.; Fan, A.; McWalter, E.; Oei, E.H.G.; Quon, A.; Gold, G.E. PET/MRI of metabolic activity in osteoarthritis: A feasibility study. J. Magn. Reson. Imaging 2017, 45, 1736–1745. [Google Scholar] [CrossRef] [PubMed]
- Kogan, F.; Fan, A.P.; Monu, U.; Iagaru, A.; Hargreaves, B.A.; Gold, G.E. Quantitative imaging of bone cartilage interactions in ACL-injured patients with PET-MRI. Osteoarthr. Cartil. 2018, 26, 790–796. [Google Scholar] [CrossRef]
- Tibrewala, R.; Bahroos, E.; Mehrabian, H.; Foreman, S.C.; Link, T.M.; Pedoia, V.; Majumdar, S. [18F]-Sodium fluoride PET/MR imaging for bone–cartilage interactions in hip osteoarthritis: A feasibility study. J. Orthop. Res. 2019, 37, 2671–2680. [Google Scholar] [CrossRef] [PubMed]
- Watkins, L.; MacKay, J.; Haddock, B.; Mazzoli, V.; Uhlrich, S.; Gold, G.; Kogan, F. Evaluating the relationship between dynamic Na[18F]F-uptake parameters and MRI knee osteoarthritis findings. J. Nucl. Med. 2020, 61, 182. [Google Scholar]
- MacKay, J.W.; Watkins, L.; Gold, G.; Kogan, F. [18F]NaF PET-MRI provides direct in-vivo evidence of the association between bone metabolic activity and adjacent synovitis in knee osteoarthritis: A cross-sectional study. Osteoarthr. Cartil. 2021, 29, 1155–1162. [Google Scholar] [CrossRef]
- Watkins, L.; MacKay, J.; Haddock, B.; Mazzoli, V.; Uhlrich, S.; Gold, G.; Kogan, F. Assessment of quantitative [18F]Sodium fluoride PET measures of knee subchondral bone perfusion and mineralization in osteoarthritic and healthy subjects. Osteoarthr. Cartil. 2021, 29, 849–858. [Google Scholar] [CrossRef]
- Jena, A.; Goyal, N.; Rana, P.; Taneja, S.; Vaish, A.; Botchu, R.; Vaishya, R. Differential 18F-NaF uptake in various compartments in knee osteoarthritis: An observational study using PET/MRI. Clin. Radiol. 2022, 77, 613–620. [Google Scholar] [CrossRef]
- Jena, A.; Goyal, N.; Rana, P.; Taneja, S.; Vaish, A.; Botchu, R.; Vaishya, R. Qualitative and Quantitative Evaluation of Morpho-Metabolic Changes in Bone Cartilage Complex of Knee Joint in Osteoarthritis Using Simultaneous 18F-NaF PET/MRI—A Pilot Study. Indian J. Radiol. Imaging 2023, 33, 173–182. [Google Scholar] [CrossRef]
- Cook, G.J.; Maisey, M.N.; Fogelman, I. Fluorine-18-FDG PET in Paget’s disease of bone. J. Nucl. Med. 1997, 38, 1495–1497. [Google Scholar]
- Woo, J.H.; Kim, S.; Choi, S.J.; Lee, Y.H.; Ji, J.D.; Song, G.G. Diagnosis of Paget’s disease of the pelvis using F-18 FDG PET/CT. Int. J. Rheum. Dis. 2010, 13, e51–e54. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Sanabria, A.D.; Valero, M.A.; Mantilla-Hernández, R.D.; Ordóñez-Rubiano, E.G. The role of 18F-FDG PET/CT for diagnosis of Paget’s disease of bone with cranial and spinal compromise: Case report and literature review. Rev. Colomb. Reumatol. (Engl. Ed.) 2023, 30, 166–172. [Google Scholar] [CrossRef]
- Cucchi, F.; Simonsen, L.; Abild-Nielsen, A.G.; Broholm, R. 18F-Sodium Fluoride PET/CT in Paget Disease. Clin. Nucl. Med. 2017, 42, 553–554. [Google Scholar] [CrossRef]
- Installé, J.; Nzeusseu, A.; Bol, A.; Depresseux, G.; Devogelaer, J.P.; Lonneux, M. (18)F-fluoride PET for monitoring therapeutic response in Paget’s disease of bone. J. Nucl. Med. 2005, 46, 1650–1658. [Google Scholar] [PubMed]
- Dupond, J.L.; Mahammedi, H.; Prie, D.; Collin, F.; Gil, H.; Blagosklonov, O.; Ricbourg, B.; Meaux-Ruault, N.; Kantelip, B. Oncogenic osteomalacia: Diagnostic importance of fibroblast growth factor 23 and F-18 fluorodeoxyglucose PET/CT scan for the diagnosis and follow-up in one case. Bone 2005, 36, 375–378. [Google Scholar] [CrossRef]
- Chua, S.C.; O’Connor, S.R.; Wong, W.L.; Ganatra, R.H. Solitary plasmacytoma of bone with oncogenic osteomalacia: Recurrence of tumour confirmed by PET/CT. A case report with a review of the radiological literature. Br. J. Radiol. 2008, 81, e110–e114. [Google Scholar] [CrossRef]
- Khadgawat, R.; Singh, Y.; Kansara, S.; Tandon, N.; Bal, C.; Seith, A.; Kotwal, P. PET/CT localisation of a scapular haemangiopericytoma with tumour-induced osteomalacia. Singap. Med. J. 2009, 50, e55–e57. [Google Scholar]
- Jagtap, V.S.; Sarathi, V.; Lila, A.R.; Malhotra, G.; Sankhe, S.S.; Bandgar, T.; Menon, P.; Shah, N.S. Tumor-induced osteomalacia: A single center experience. Endocr. Pract. 2011, 17, 177–184. [Google Scholar] [CrossRef]
- Seo, H.J.; Choi, Y.J.; Kim, H.J.; Jeong, Y.H.; Cho, A.; Lee, J.H.; Yun, M.; Lee, J.D.; Kang, W.J. Using 18F-FDG PET/CT to Detect an Occult Mesenchymal Tumor Causing Oncogenic Osteomalacia. Nucl. Med. Mol. Imaging 2011, 45, 233–237. [Google Scholar] [CrossRef]
- Agrawal, K.; Bhadada, S.; Mittal, B.R.; Shukla, J.; Sood, A.; Bhattacharya, A.; Bhansali, A. Comparison of 18F-FDG and 68Ga DOTATATE PET/CT in localization of tumor causing oncogenic osteomalacia. Clin. Nucl. Med. 2015, 40, e6–e10. [Google Scholar] [CrossRef]
- Clifton-Bligh, R.J.; Hofman, M.S.; Duncan, E.; Sim, I.-W.; Darnell, D.; Clarkson, A.; Wong, T.; Walsh, J.P.; Gill, A.J.; Ebeling, P.R.; et al. Improving Diagnosis of Tumor-Induced Osteomalacia With Gallium-68 DOTATATE PET/CT. J. Clin. Endocrinol. Metab. 2013, 98, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Kunikowska, J.; Andryszak, N.; Skowrońska-Jóźwiak, E.; Pełka, K.; Zygmunt, A.; Lewiński, A.; Ruchała, M.; Czepczyński, R. Tumour-Induced Osteomalacia—A Long Way to the Diagnosis Facilitated by [68Ga]Ga-DOTATATE PET/CT. J. Clin. Med. 2024, 13, 1817. [Google Scholar] [CrossRef]
- Abadi, Y.; Mileva, M.; Léger, M.A.; Sidiras, P.; Artigas, C.; Flamen, P.; Karfis, I. Phosphaturic mesenchymal tumor demonstrated by 68Ga-DOTATATE PET/CT in a patient: A case report. EJNMMI Rep. 2024, 8, 30. [Google Scholar] [CrossRef] [PubMed]
- Jingjing, Z.; Zhaohui, Z. A prospective study of 68Ga-DOTATATE PET/CT in 113 osteomalacia patients and the correlation with somatostatin receptor subtypes. J. Nucl. Med. 2016, 57, 21. [Google Scholar]
- Lee, D.Y.; Lee, S.H.; Kim, B.J.; Kim, W.; Yoon, P.W.; Lee, S.J.; Oh, S.J.; Koh, J.-M.; Ryu, J.-S. Usefulness of 68Ga-DOTATOC PET/CT to localize the culprit tumor inducing osteomalacia. Sci. Rep. 2021, 11, 1819. [Google Scholar] [CrossRef] [PubMed]
- van der Heijden, R.A.; Biswal, S. Up-and-coming Radiotracers for Imaging Pain Generators. Semin. Musculoskelet. Radiol. 2023, 27, 661–675. [Google Scholar] [CrossRef]
- 99Tc-MDP Treatment for Knee Osteoarthritis. Sponsors and Collaborators: Xinhua Hospital, Shanghai Jiao Tong University School of Medicine. Location: Department of Nuclear Medicine, Tenth People’s Hospital of Tongji University, Shanghai, China. 2016. Available online: https://clinicaltrials.gov/ct2/show/NCT02993029 (accessed on 16 February 2025).
- Pan, Q.; Yang, H.; Zhou, Z.; Li, M.; Jiang, X.; Li, F.; Luo, Y.; Li, M. [68 Ga]Ga-FAPI-04 PET/CT may be a predictor for early treatment response in rheumatoid arthritis. EJNMMI Res. 2024, 14, 2. [Google Scholar] [CrossRef]
- Broski, S. Ga-DOTATATE PET for Localization of Phosphaturic Mesenchymal Tumors in Patients with Tumor Induced Osteomalacia. 2023. Available online: https://clinicaltrials.gov/ (accessed on 6 March 2025).
- Gitto, S.; Serpi, F.; Albano, D.; Risoleo, G.; Fusco, S.; Messina, C.; Sconfienza, L.M. AI applications in musculoskeletal imaging: A narrative review. Eur. Radiol. Exp. 2024, 8, 22. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hasan, F.; Mudey, A.; Joshi, A. Role of Internet of Things (IoT), Artificial Intelligence and Machine Learning in Musculoskeletal Pain: A Scoping Review. Cureus 2023, 15, e37352. [Google Scholar] [CrossRef]
Radiotracer | Target/ Mechanism | Primary Applications in Musculoskeletal Imaging | Advantages | Limitations |
---|---|---|---|---|
[18F]-FDG (Fluorodeoxyglucose) [2] | Glucose uptake, metabolic activity |
|
|
|
[18F]-NaF (Sodium Fluoride) [3] | Bone metabolism, hydroxyapatite exchange |
|
|
|
[68Ga]-PSMA-11 [7] | Binding to PSMA | Metastasis in prostate cancer |
|
|
[11C]-Choline [8] | Cell proliferation | Proliferative changes in arthritic synovium |
| Short half-life |
[11C]-(R)-PK11195 [9] | Activated Macrophages | Specificity to active inflammation |
| Short Half-life |
[18F]-FTC-146 [10] | Binding to Sigma 1 Receptor | Active neuropathic pain |
|
|
Imaging Technique | Condition | Target/Mechanism | Key Applications | Advantages | Limitations |
---|---|---|---|---|---|
[18F]-NaF PET [16,17,18,19] | Osteoporosis | Bone turnover, osteoblastic activity |
|
|
|
[18F]-NaF PET [60,61,62] | Osteoarthritis (OA) | Bone remodelling, subchondral bone changes |
|
| Primarily targets bone |
[18F]-NaF PET/CT [64,65,66] | Paget’s Disease (PD) | Bone turnover, osteoblastic activity |
|
| Requires specialized equipment and expertise |
[18F]-NaF PET/MR [60,61,62] | Osteoarthritis (OA) | Bone remodeling, cartilage biochemistry, MR biometrics |
|
| Requires specialized equipment and expertise |
[18F]-FDG PET [57,58,59] | Osteoarthritis (OA) | Glucose uptake, inflammation |
| Provides metabolic information | Minimal uptake in bone remodelling |
[18F]-FDG PET [37,38,39] | Inflammatory Bone Diseases | Glucose uptake, inflammatory cell activity |
|
| Not specific to bone inflammation, can show inflammation anywhere. |
[18F]-FDG PET [64,65,66] | Paget’s Disease (PD) | Glucose uptake, metabolic activity |
|
| Often shows minimal uptake in benign PD |
[18F]-FDG PET [51,52] | Inflammatory Arthropathies | Glucose uptake, inflammatory activity |
|
| Not specific to RA, can show inflammation anywhere. |
[18F]-FDG PET/CT [21,22,23,24,25,26,27,28] | Bone Tumors and Soft Tissue Sarcoma (STS) | Glucose uptake, metabolic activity |
|
|
|
[18F]-FDG PET/CT [69,70,71,72,73] | Osteomalacia | Glucose uptake, metabolic activity |
| Whole-body imaging | Limited sensitivity |
[18F]-FDG PET/CT [40] | Musculoskeletal Infections | Glucose uptake, inflammatory cell activity |
|
| Can have false positives due to non-infectious inflammation |
Musculoskeletal Infections | Glucose uptake, soft tissue and bone marrow detail |
|
| Less widely available than PET/CT | |
[18F]-FDG PET/MR [41] | Inflammatory Arthropathies | Glucose uptake, marrow oedema, synovitis |
|
| Further research needed to fully evaluate the potential |
[68Ga]-DOTA-TATE PET/CT [74,75,76,77,78,79] | Osteomalacia | Somatostatin receptor binding |
|
| Requires specialized radiotracers and expertise |
MRI [55,56,57,58,59] | Osteoarthritis (OA) | Soft tissue and cartilage assessment |
|
| Less sensitive to early metabolic changes |
MRI [34,35,36] | Bone Tumors and Soft Tissue Sarcoma (STS) | Soft tissue detail, anatomical information | Initial diagnosis, surgical planning | High soft tissue resolution | Less sensitive to metabolic activity. |
MRI [42] | Musculoskeletal Infections | Signal changes in bone marrow and soft tissue. | Early detection of osteomyelitis | High sensitivity for early disease. | [18F]-FDG-PET/CT has superior diagnostic accuracy in chronic cases. |
Radiography [54] | Osteoarthritis (OA) | Structural changes (joint space narrowing, osteophytes) | Primary diagnostic tool |
|
|
DXA (Dual-Energy X-ray Absorptiometry) [11,12] | Osteoporosis | Bone mineral density (BMD) |
|
|
|
Radiography [54] | Osteoarthritis (OA) | Structural changes (joint space narrowing, osteophytes) |
|
|
|
DXA (Dual-Energy X-ray Absorptiometry) [11,12] | Osteoporosis | Bone mineral density (BMD) |
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaishya, R.; Amarnath, J.; Rana, P.; Botchu, R.; Vaish, A. Role of Positron Emission Tomography (PET) in the Diagnosis of Musculoskeletal Disorders. J. Clin. Med. 2025, 14, 3080. https://doi.org/10.3390/jcm14093080
Vaishya R, Amarnath J, Rana P, Botchu R, Vaish A. Role of Positron Emission Tomography (PET) in the Diagnosis of Musculoskeletal Disorders. Journal of Clinical Medicine. 2025; 14(9):3080. https://doi.org/10.3390/jcm14093080
Chicago/Turabian StyleVaishya, Raju, Jena Amarnath, Prerana Rana, Rajesh Botchu, and Abhishek Vaish. 2025. "Role of Positron Emission Tomography (PET) in the Diagnosis of Musculoskeletal Disorders" Journal of Clinical Medicine 14, no. 9: 3080. https://doi.org/10.3390/jcm14093080
APA StyleVaishya, R., Amarnath, J., Rana, P., Botchu, R., & Vaish, A. (2025). Role of Positron Emission Tomography (PET) in the Diagnosis of Musculoskeletal Disorders. Journal of Clinical Medicine, 14(9), 3080. https://doi.org/10.3390/jcm14093080