Muscle Strength Outcomes After ACL Reconstruction Before, During, and After COVID-19-Related Rehabilitation Disruptions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethics
2.2. Study Sample
2.3. Inclusion and Exclusion Criteria
2.4. Patients and Treatment Procedures
2.5. Outcome Measures
2.6. Statistical Analysis
3. Results
3.1. Baseline Patient Characteristics
3.2. Muscle Strength Testing Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Petersen, W. Does ACL Reconstruction Lead to Degenerative Joint Disease or Does It Prevent Osteoarthritis? How to Read Science. Arthrosc. J. Arthrosc. Relat. Surg. 2012, 28, 448–450. [Google Scholar] [CrossRef] [PubMed]
- Wright, R.W.; Dunn, W.R.; Amendola, A.; Andrish, J.T.; Bergfeld, J.; Kaeding, C.C.; Marx, R.G.; McCarty, E.C.; Parker, R.D.; Wolcott, M.; et al. Risk of Tearing the Intact Anterior Cruciate Ligament in the Contralateral Knee and Rupturing the Anterior Cruciate Ligament Graft during the First 2 Years after Anterior Cruciate Ligament Reconstruction: A Prospective MOON Cohort Study. Am. J. Sports Med. 2007, 35, 1131–1134. [Google Scholar] [CrossRef] [PubMed]
- Barber-Westin, S.D.; Noyes, F.R. Objective Criteria for Return to Athletics After Anterior Cruciate Ligament Reconstruction and Subsequent Reinjury Rates: A Systematic Review. Physician Sportsmed. 2011, 39, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Ahldén, M.; Samuelsson, K.; Sernert, N.; Forssblad, M.; Karlsson, J.; Kartus, J. The Swedish National Anterior Cruciate Ligament Register: A Report on Baseline Variables and Outcomes of Surgery for Almost 18,000 Patients. Am. J. Sports Med. 2012, 40, 2230–2235. [Google Scholar] [CrossRef]
- Paterno, M.V.; Rauh, M.J.; Schmitt, L.C.; Ford, K.R.; Hewett, T.E. Incidence of Contralateral and Ipsilateral Anterior Cruciate Ligament (ACL) Injury After Primary ACL Reconstruction and Return to Sport. Clin. J. Sport Med. 2012, 22, 116–121. [Google Scholar] [CrossRef]
- Brophy, R.H.; Schmitz, L.; Wright, R.W.; Dunn, W.R.; Parker, R.D.; Andrish, J.T.; McCarty, E.C.; Spindler, K.P. Return to Play and Future ACL Injury Risk After ACL Reconstruction in Soccer Athletes from the Multicenter Orthopaedic Outcomes Network (MOON) Group. Am. J. Sports Med. 2012, 40, 2517–2522. [Google Scholar] [CrossRef]
- Ardern, C.L.; Webster, K.E.; Taylor, N.F.; Feller, J.A. Return to Sport Following Anterior Cruciate Ligament Reconstruction Surgery: A Systematic Review and Meta-Analysis of the State of Play. Br. J. Sports Med. 2011, 45, 596–606. [Google Scholar] [CrossRef]
- Grindem, H.; Snyder-Mackler, L.; Moksnes, H.; Engebretsen, L.; Risberg, M.A. Simple Decision Rules Can Reduce Reinjury Risk by 84% after ACL Reconstruction: The Delaware-Oslo ACL Cohort Study. Br. J. Sports Med. 2016, 50, 804–808. [Google Scholar] [CrossRef]
- Zore, M.R.; Kregar Velikonja, N.; Hussein, M. Pre- and Post-Operative Limb Symmetry Indexes and Estimated Preinjury Capacity Index of Muscle Strength as Predictive Factors for the Risk of ACL Reinjury: A Retrospective Cohort Study of Athletes after ACLR. Appl. Sci. 2021, 11, 3498. [Google Scholar] [CrossRef]
- De Jong, S.N.; van Caspel, D.R.; van Haeff, M.J.; Saris, D.B.F. Functional Assessment and Muscle Strength Before and After Reconstruction of Chronic Anterior Cruciate Ligament Lesions. Arthrosc. J. Arthrosc. Relat. Surg. 2007, 23, 21.e1–21.e11. [Google Scholar] [CrossRef]
- Shaarani, S.R.; O’Hare, C.; Quinn, A.; Moyna, N.; Moran, R.; O’Byrne, J.M. Effect of Prehabilitation on the Outcome of Anterior Cruciate Ligament Reconstruction. Am. J. Sports Med. 2013, 41, 2117–2127. [Google Scholar] [CrossRef] [PubMed]
- Pietrosimone, B.G.; Lepley, A.S.; Ericksen, H.M.; Gribble, P.A.; Levine, J. Quadriceps Strength and Corticospinal Excitability as Predictors of Disability After Anterior Cruciate Ligament Reconstruction. J. Sport Rehabil. 2013, 22, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Abourezk, M.N.; Ithurburn, M.P.; McNally, M.P.; Thoma, L.M.; Briggs, M.S.; Hewett, T.E.; Spindler, K.P.; Kaeding, C.C.; Schmitt, L.C. Hamstring Strength Asymmetry at 3 Years After Anterior Cruciate Ligament Reconstruction Alters Knee Mechanics During Gait and Jogging. Am. J. Sports Med. 2017, 45, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, L.C.; Paterno, M.V.; Ford, K.R.; Myer, G.D.; Hewett, T.E. Strength Asymmetry and Landing Mechanics at Return to Sport after Anterior Cruciate Ligament Reconstruction. Med. Sci. Sports Exerc. 2015, 47, 1426–1434. [Google Scholar] [CrossRef]
- Kopka, M.; Fritz, J.-A.; Hiemstra, L.A.; Kerslake, S. COVID-19-Related Healthcare Closures Negatively Affect Patient Health and Postoperative Recovery. J. ISAKOS 2020, 5, 341–344. [Google Scholar] [CrossRef]
- Weaver, A.; Ness, B.; Roman, D.; Giampetruzzi, N.; Cleland, J. Short-Term Clinical Outcomes After Anterior Cruciate Ligament Reconstruction In Adolescents During The COVID-19 Pandemic. Int. J. Sports Phys. Ther. 2022, 17, 585–592. [Google Scholar] [CrossRef]
- Brukner, P.; Khan, K. Brukner & Khan’s Clinical Sports Medicine: Injuries, Volume 1, 5th ed.; Clarsen, B., Cook, J., Cools, A., Crossley, K., Hutchinson, M., McCrory, P., Bahr, R., Eds.; McGraw-Hill Education: North Ryde, Australia, 2021; ISBN 978-1-74376-138-0. [Google Scholar]
- Petersen, W.; Taheri, P.; Forkel, P.; Zantop, T. Return to Play Following ACL Reconstruction: A Systematic Review about Strength Deficits. Arch. Orthop. Trauma Surg. 2014, 134, 1417–1428. [Google Scholar] [CrossRef]
- Czaplicki, A.; Jarocka, M.; Walawski, J. Isokinetic Identification of Knee Joint Torques before and after Anterior Cruciate Ligament Reconstruction. PLoS ONE 2015, 10, e0144283. [Google Scholar] [CrossRef]
- Van Melick, N.; van der Weegen, W.; van der Horst, N. Quadriceps and Hamstrings Strength Reference Values for Athletes With and Without Anterior Cruciate Ligament Reconstruction Who Play Popular Pivoting Sports, Including Soccer, Basketball, and Handball: A Scoping Review. J. Orthop. Sports Phys. Ther. 2022, 52, 142–155. [Google Scholar] [CrossRef]
- Webster, K.E.; Klemm, H.J.; Devitt, B.M.; Whitehead, T.S.; Feller, J.A. Effect of COVID-19 Social Isolation Policies on Rehabilitation After Anterior Cruciate Ligament Reconstruction. Orthop. J. Sports Med. 2021, 9, 232596712110472. [Google Scholar] [CrossRef]
- Bouguennec, N.; Orce, A.; Laboudie, P.; Pelletier, S.; Dexhelet, J.; Graveleau, N. Association of COVID-19 Lockdown With Increased Rate of Cyclops Syndrome in Patients With Unexpected Home-Based Self-Guided Rehabilitation After ACL Reconstruction. Orthop. J. Sports Med. 2023, 11, 23259671221147869. [Google Scholar] [CrossRef]
- Danneskiold-Samsøe, B.; Bartels, E.M.; Bülow, P.M.; Lund, H.; Stockmarr, A.; Holm, C.C.; Wätjen, I.; Appleyard, M.; Bliddal, H. Isokinetic and Isometric Muscle Strength in a Healthy Population with Special Reference to Age and Gender. Acta Physiol. 2009, 197, 1–68. [Google Scholar] [CrossRef]
- Hilibrand, M.J.; Hammoud, S.; Bishop, M.; Woods, D.; Fredrick, R.W.; Dodson, C.C. Common Injuries and Ailments of the Female Athlete; Pathophysiology, Treatment and Prevention. Physician Sportsmed. 2015, 43, 403–411. [Google Scholar] [CrossRef]
- Snaebjörnsson, T.; Hamrin Senorski, E.; Sundemo, D.; Svantesson, E.; Westin, O.; Musahl, V.; Alentorn-Geli, E.; Samuelsson, K. Adolescents and Female Patients Are at Increased Risk for Contralateral Anterior Cruciate Ligament Reconstruction: A Cohort Study from the Swedish National Knee Ligament Register Based on 17,682 Patients. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 3938–3944. [Google Scholar] [CrossRef]
- Hunnicutt, J.L.; Xerogeanes, J.W.; Tsai, L.-C.; Sprague, P.A.; Newsome, M.; Slone, H.S.; Lyle, M.A. Terminal Knee Extension Deficit and Female Sex Predict Poorer Quadriceps Strength Following ACL Reconstruction Using All-Soft Tissue Quadriceps Tendon Autografts. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 3085–3095. [Google Scholar] [CrossRef]
- Bruder, A.M.; Culvenor, A.G.; King, M.G.; Haberfield, M.; Roughead, E.A.; Mastwyk, J.; Kemp, J.L.; Ferraz Pazzinatto, M.; West, T.J.; Coburn, S.L.; et al. Let’s Talk about Sex (and Gender) after ACL Injury: A Systematic Review and Meta-Analysis of Self-Reported Activity and Knee-Related Outcomes. Br. J. Sports Med. 2023, 57, 602–610. [Google Scholar] [CrossRef]
- Kregar Velikonja, N.; Erjavec, K.; Verdenik, I.; Hussein, M.; Velikonja, V.G. Association between Preventive Behaviour and Anxiety at the Start of the COVID-19 Pandemic in Slovenia. Slov. J. Public Health 2020, 60, 17–24. [Google Scholar] [CrossRef]
- Salanti, G.; Peter, N.; Tonia, T.; Holloway, A.; White, I.R.; Darwish, L.; Low, N.; Egger, M.; Haas, A.D.; Fazel, S.; et al. The Impact of the COVID-19 Pandemic and Associated Control Measures on the Mental Health of the General Population: A Systematic Review and Dose–Response Meta-Analysis. Ann. Intern. Med. 2022, 175, 1560–1571. [Google Scholar] [CrossRef]
- Heinsberg, L.W.; Weeks, D.E. Post Hoc Power Is Not Informative. Genet. Epidemiol. 2022, 46, 390–394. [Google Scholar] [CrossRef]
All | Control Group | 2020 | 2021 | 2022 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Factor | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | p-Value (ANOVA) | |||||
Age—Male (yrs) | 33.81 | (11.14) | 34.20 | (11.10) | 34.47 | (11.74) | 33.91 | (10.56) | 32.59 | (12.23) | 0.964 |
Age—Female (yrs) | 36.45 | (12.56) | 36.54 | (11.42) | 36.10 | (12.51) | 34.36 | (12.65) | 38.90 | (16.33) | 0.881 |
Body Mass—Male (kg) | 85.00 | (16.41) | 86.85 | (18.19) | 80.67 | (10.76) | 80.01 | (12.79) | 89.94 | (18.92) | 0.244 |
Body Mass—Female (kg) | 61.89 | (10.58) | 61.83 | (10.15) | 61.60 | (9.54) | 63.91 | (13.77) | 60.10 | (9.89) | 0.881 |
Body Height—Male (cm) | 1.80 | (0.07) | 1.81 | (0.08) | 1.80 | (0.06) | 1.79 | (0.06) | 1.81 | (0.08) | 0.846 |
Body Height—Female (cm) | 1.66 | (0.06) | 1.67 | (0.06) | 1.64 | (0.05) | 1.67 | (0.05) | 1.66 | (0.06) | 0.629 |
Body Mass Index—Male (kg/m2) | 26.07 | (4.56) | 26.51 | (5.35) | 24.84 | (2.33) | 24.97 | (4.09) | 27.32 | (4.75) | 0.350 |
Body Mass Index—Female (kg/m2) | 22.31 | (3.24) | 22.11 | (2.57) | 22.74 | (2.92) | 22.82 | (4.86) | 21.81 | (3.25) | 0.865 |
Tegner Activity Score—Male | 7.17 | (1.13) | 7.00 | (0.89) | 7.33 | (1.50) | 7.06 | (0.85) | 7.41 | (1.42) | 0.635 |
Tegner Activity Score—Female | 6.45 | (1.07) | 6.58 | (1.10) | 6.20 | (1.23) | 6.09 | (0.70) | 6.80 | (1.14) | 0.364 |
Time from surgery to testing—Male (weeks) | 22.54 | (4.73) | 22.86 | (4.49) | 24.05 | (7.68) | 22.68 | (3.44) | 20.84 | (3.11) | 0.357 |
Time from surgery to testing—Female (weeks) | 22.80 | (7.00) | 21.68 | (2.77) | 20.74 | (3.49) | 21.82 | (3.45) | 28.61 | (14.22) | 0.165 |
Gender, Male/Female, n | 70/56 | 26/24 | 12/10 | 16/11 | 16/11 |
Extension | Flexion | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ACLR | Nm/kg | Uninvolved | Nm/kg | Q-AI | ACLR | Nm/kg | Uninvolved | Nm/kg | H-AI | ||
Group | N | ||||||||||
Control | 26 | 170.46 | 2.00 | 218.62 | 2.6 | 23.20% | 129.77 | 1.5 | 146.77 | 1.7 | 11.80% |
(56.60) | (0.7) | (47.56) | (0.5) | (18.4) | (33.80) | (0.40) | (32.08) | (0.40) | (10.90) | ||
2020 | 12 | 174.67 | 2.2 | 229.00 | 2.9 | 22.50% | 136.25 | 1.7 | 144.67 | 1.8 | 5.60% |
(38.51) | (0.50) | (32.56) | (0.40) | (19.10) | (22.91) | (0.30) | (22.72) | (0.30) | (10.00) | ||
2021 | 16 | 165.94 | 2.1 | 223.56 | 2.8 | 26.10% | 121.63 | 1.55 | 140.25 | 1.78 | 13.99% |
(37.57) | (0.50) | (34.51) | (0.40) | (9.68) | (27.17) | (0.38) | (18.02) | (0.31) | (11.53) | ||
2022 | 16 | 174.18 | 2.00 | 221.82 | 2.55 | 22.98% | 121.82 | 1.41 | 147.59 | 1.69 | 16.91% |
(64.55) | (0.70) | (46.56) | (0.65) | (16.16) | (31.60) | (0.44) | (33.05) | (0.39) | (16.12) | ||
p value | 0.965 | 0.809 | 0.189 | 0.544 | 0.930 | 0.509 | 0.257 | 0.874 | 0.776 | 0.114 |
Extension | Flexion | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ACLR | Nm/kg | Uninvolved | Nm/kg | Q-AI | ACLR | Nm/kg | Uninvolved | Nm/kg | H-AI | ||
Group | N | ||||||||||
Control | 24 | 109.83 | 1.79 | 136.92 | 2.23 | 19.84 | 87.33 | 1.43 | 94.83 | 1.55 | 7.19 |
(27.60) | (0.42) | (27.83) | (0.39) | (12.37) | (13.86) | (0.25) | (16.73) | (0.28) | (9.97) | ||
2020 | 10 | 88.30 | 1.48 | 137.10 | 2.26 | 34.09 | 78.70 | 1.30 | 87.20 | 1.44 | 9.65 |
(20.20) | (0.44) | (27.62) | (0.47) | (14.59) | (12.68) | (0.27) | (12.30) | (0.28) | (10.52) | ||
2021 | 11 | 84.18 | 1.38 | 133.64 | 2.14 | 36.47 | 67.00 | 1.09 | 89.82 | 1.45 | 25.14 |
(26.50) | (0.52) | (26.58) | (0.48) | (16.36) | (12.73) | (0.31) | (12.77) | (0.28) | (11.41) | ||
2022 | 11 | 106.90 | 1.82 | 133.90 | 2.28 | 18.64 | 81.00 | 1.38 | 91.60 | 1.56 | 9.29 |
(28.09) | (0.57) | (35.13) | (0.71) | (14.49) | (15.46) | (0.34) | (25.26) | (0.47) | (12.58) | ||
p value | 0.027 *† | 0.049 †# | 0.984 | 0.918 | 0.002 *†#§ | 0.002 †§ | 0.014 †# | 0.662 | 0.692 | <0.001 †‡§ |
Male | Female | ||||
---|---|---|---|---|---|
Group | ACLR H/Q Ratio | Uninvolved H/Q Ratio | ACLR H/Q Ratio | Uninvolved H/Q Ratio | |
Control | 0.83 | 0.68 | 0.82 | 0.70 | |
SD | (0.27) | (0.09) | (0.15) | (0.09) | |
2020 | 0.82 | 0.63 | 0.93 | 0.65 | |
SD | (0.22) | (0.04) | (0.28) | (0.08) | |
2021 | 0.74 | 0.64 | 0.88 | 0.69 | |
SD | (0.10) | (0.09) | (0.39) | (0.10) | |
2022 | 0.74 | 0.67 | 0.78 | 0.70 | |
SD | (0.21) | (0.08) | (0.13) | (0.17) | |
p value | 0.507 | 0.257 | 0.464 | 0.585 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zore, M.R.; Kregar Velikonja, N.; Hussein, M. Muscle Strength Outcomes After ACL Reconstruction Before, During, and After COVID-19-Related Rehabilitation Disruptions. J. Clin. Med. 2025, 14, 2751. https://doi.org/10.3390/jcm14082751
Zore MR, Kregar Velikonja N, Hussein M. Muscle Strength Outcomes After ACL Reconstruction Before, During, and After COVID-19-Related Rehabilitation Disruptions. Journal of Clinical Medicine. 2025; 14(8):2751. https://doi.org/10.3390/jcm14082751
Chicago/Turabian StyleZore, Martin Rudolf, Nevenka Kregar Velikonja, and Mohsen Hussein. 2025. "Muscle Strength Outcomes After ACL Reconstruction Before, During, and After COVID-19-Related Rehabilitation Disruptions" Journal of Clinical Medicine 14, no. 8: 2751. https://doi.org/10.3390/jcm14082751
APA StyleZore, M. R., Kregar Velikonja, N., & Hussein, M. (2025). Muscle Strength Outcomes After ACL Reconstruction Before, During, and After COVID-19-Related Rehabilitation Disruptions. Journal of Clinical Medicine, 14(8), 2751. https://doi.org/10.3390/jcm14082751