Continuous Measurement of Radial Free Forearm Flap Tissue Perfusion for Flap Monitoring After Microvascular Head and Neck Reconstruction—Systemic Blood Pressure as a Potential Confounder in the Early Postoperative Period
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Blood Pressure Measurement Data
2.3. Flap Perfusion Measurement Data
2.4. Statistical Analysis
3. Results
3.1. Study Population
3.2. Flap Tissue Perfusion Measurement Values over Time
3.3. Association of Flap Tissue Perfusion Measurement Values and Blood Pressure Values
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RFFF | Radial free forearm flap |
O2C | Oxygen-2-See |
SBP | Systolic blood pressure |
DBP | Diastolic blood pressure |
MBP | Mean arterial blood pressure |
References
- Abouyared, M.; Katz, A.P.; Ein, L.; Ketner, J.; Sargi, Z.; Nicolli, E.; Leibowitz, J.M. Controversies in free tissue transfer for head and neck cancer: A review of the literature. Head Neck 2019, 41, 3457–3463. [Google Scholar] [CrossRef] [PubMed]
- Gabrysz-Forget, F.; Tabet, P.; Rahal, A.; Bissada, E.; Christopoulos, A.; Ayad, T. Free versus pedicled flaps for reconstruction of head and neck cancer defects: A systematic review. J. Otolaryngol. Head Neck Surg. 2019, 48, 13. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.-Y.; Lin, Y.-S.; Chen, L.-W.; Yang, K.-C.; Huang, W.-C.; Liu, W.-C. Risk of Free Flap Failure in Head and Neck Reconstruction: Analysis of 21,548 Cases From A Nationwide Database. Ann. Plast. Surg. 2020, 84, S3–S6. [Google Scholar] [CrossRef] [PubMed]
- Hathorn, T.; Nickel, C.; Sharma, A.; Shabani, S.; Padhya, T.; Mifsud, M. How do I salvage that flap? An evidence-based primer on salvage techniques for head & neck microvascular free flaps. Oral. Oncol. 2022, 136, 106246. [Google Scholar]
- Hölzle, F.; Loeffelbein, D.J.; Nolte, D.; Wolff, K.-D. Free flap monitoring using simultaneous non-invasive laser Doppler flowmetry and tissue spectrophotometry. J. Craniomaxillofac. Surg. 2006, 34, 25–33. [Google Scholar] [CrossRef]
- Chen, K.-T.; Mardini, S.; Chuang, D.C.-C.; Lin, C.-H.; Cheng, M.-H.; Lin, Y.-T.; Huang, W.-C.; Tsao, C.-K.; Wei, F.-C. Timing of presentation of the first signs of vascular compromise dictates the salvage outcome of free flap transfers. Plast. Reconstr. Surg. 2007, 120, 187–195. [Google Scholar] [CrossRef]
- Abdel-Galil, K.; Mitchell, D. Postoperative monitoring of microsurgical free tissue transfers for head and neck reconstruction: A systematic review of current techniques—Part I. Non-invasive techniques. Br. J. Oral Maxillofac. Surg. 2009, 47, 351–355. [Google Scholar] [CrossRef]
- Hölzle, F.; Rau, A.; Loeffelbein, D.J.; Mücke, T.; Kesting, M.R.; Wolff, K.-D. Results of monitoring fasciocutaneous, myocutaneous, osteocutaneous and perforator flaps: 4-year experience with 166 cases. Int. J. Oral Maxillofac. Surg. 2010, 39, 21–28. [Google Scholar] [CrossRef]
- Chao, A.H.; Meyerson, J.; Povoski, S.P.; Kocak, E. A review of devices used in the monitoring of microvascular free tissue transfers. Expert. Rev. Med. Devices 2013, 10, 649–660. [Google Scholar] [CrossRef]
- Smit, J.M.; Negenborn, V.L.; Jansen, S.M.; Jaspers, M.E.H.; de Vries, R.; Heymans, M.W.; Winters, H.A.H.; van Leeuwen, T.G.; Mullender, M.G.; Krekel, N.M.A. Intraoperative evaluation of perfusion in free flap surgery: A systematic review and meta-analysis. Microsurgery 2018, 38, 804–818. [Google Scholar] [CrossRef]
- Ooms, M.; Winnand, P.; Heitzer, M.; Peters, F.; Bock, A.; Katz, M.; Hölzle, F.; Modabber, A. Flap perfusion monitoring with an attached surface probe in microvascular reconstruction of the oral cavity. Clin. Oral Investig. 2023, 27, 5577–5585. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, J. Anaesthesia for reconstructive surgery. Anaesth. Intensive Care Med. 2006, 7, 31–35. [Google Scholar]
- Kwasnicki, R.M.; Noakes, A.J.; Banhidy, N.; Hettiaratchy, S. Quantifying the Limitations of Clinical and Technology-based Flap Monitoring Strategies using a Systematic Thematic Analysis. Plast. Reconstr. Surg. Glob. Open 2021, 9, e3663. [Google Scholar]
- McCauley, P.; Moore, M.; Duggan, E. Anaesthesia for reconstructive free flap surgery for head and neck cancer. Br. J. Hosp. Med. 2022, 83, 1–9. [Google Scholar]
- Lorenzetti, F.; Kuokkanen, H.; von Smitten, K.; Asko-Seljavaara, S. Intraoperative evaluation of blood flow in the internal mammary or thoracodorsal artery as a recipient vessel for a free TRAM flap. Ann. Plast. Surg. 2001, 46, 590–593. [Google Scholar]
- Schrey, A.; Kinnunen, I.; Vahlberg, T.; Minn, H.; Grénman, R.; Taittonen, M.; Aitasalo, K. Blood pressure and free flap oxygenation in head and neck cancer patients. Acta Otolaryngol. 2011, 131, 757–763. [Google Scholar]
- Massaro, A.; Gomez, J.; Weyh, A.M.; Bunnell, A.; Warrick, M.; Pirgousis, P.; Fernandes, R. Serial Perioperative Assessment of Free Flap Perfusion with Laser Angiography. Craniomaxillofac. Trauma. Reconstr. 2021, 14, 16–22. [Google Scholar] [CrossRef]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E., Jr.; Collins, K.J.; Himmelfarb, C.D.; De Palma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM /AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2018, 71, 1269–1324. [Google Scholar]
- Beckert, S.; Witte, M.B.; Königsrainer, A.; Coerper, S. The impact of the Micro-Lightguide O2C for the quantification of tissue ischemia in diabetic foot ulcers. Diabetes Care 2004, 27, 2863–2867. [Google Scholar]
- Wax, M.K.; Azzi, J. Perioperative considerations in free flap surgery: A review of pressors and anticoagulation. Oral Oncol. 2018, 83, 154–157. [Google Scholar] [CrossRef]
- Burkhard, J.-P.; Wepfer, A.; Löffel, L.M.; Bachmann, K.F.; Wuethrich, P.Y. The Role of Intraoperative and Early Postoperative Blood Pressure Variations, Fluid Balance and Inotropics in Fibula Free Flap Head and Neck Reconstruction: A Retrospective Analysis. J. Clin. Med. 2023, 12, 7753. [Google Scholar] [CrossRef] [PubMed]
- Tenland, T.; Salerud, E.G.; Nilsson, G.E.; Oberg, P.A. Spatial and temporal variations in human skin blood flow. Int. J. Microcirc. Clin. Exp. 1983, 2, 81–90. [Google Scholar] [PubMed]
- Abel, G.; Allen, J.; Drinnan, M. A pilot study of a new spectrophotometry device to measure tissue oxygen saturation. Physiol. Meas. 2014, 35, 1769–1780. [Google Scholar] [CrossRef]
- Zhang, X.U.; Faber, D.J.; van Leeuwen, T.G.; Sterenborg, H.J.C.M. Effect of probe pressure on skin tissue optical properties measurement using multi-diameter single fiber reflectance spectroscopy. J. Phys. Photonics 2020, 2, 34008. [Google Scholar] [CrossRef]
- Ooms, M.; Winnand, P.; Heitzer, M.; Peters, F.; Bock, A.; Katz, M.S.; Hölzle, F.; Modabber, A. Attached compared with unattached surface probes for monitoring flap perfusion in microvascular head and neck reconstruction: A feasibility study. Sci. Rep. 2023, 13, 15939. [Google Scholar]
- He, H.-W.; Liu, W.-L.; Zhou, X.; Long, Y.; Liu, D.-W. Effect of mean arterial pressure change by norepinephrine on peripheral perfusion index in septic shock patients after early resuscitation. Chin. Med. J. 2020, 133, 2146–2152. [Google Scholar]
- Motakef, S.; Mountziaris, P.M.; Ismail, I.K.; Agag, R.L.; Patel, A. Emerging paradigms in perioperative management for microsurgical free tissue transfer: Review of the literature and evidence-based guidelines. Plast. Reconstr. Surg. 2015, 135, 290–299. [Google Scholar] [CrossRef]
- Goh, C.S.L.; Ng, M.J.M.; Song, D.H.; Ooi, A.S.H. Perioperative Vasopressor Use in Free Flap Surgery: A Systematic Review and Meta-Analysis. J. Reconstr. Microsurg. 2019, 35, 529–540. [Google Scholar]
- Clifford, P.S. Local control of blood flow. Adv. Physiol. Educ. 2011, 35, 5–15. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar]
- Eley, K.A.; Young, J.D.; Watt-Smith, S.R. Epinephrine, norepinephrine, dobutamine, and dopexamine effects on free flap skin blood flow. Plast. Reconstr. Surg. 2012, 130, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Saugel, B.; Bebert, E.-J.; Briesenick, L.; Hoppe, P.; Greiwe, G.; Yang, D.; Ma, C.; Mascha, E.J.; Sessler, D.I.; Rogge, D.E. Mechanisms contributing to hypotension after anesthetic induction with sufentanil, propofol, and rocuronium: A prospective observational study. J. Clin. Monit. Comput. 2022, 36, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Kato, R.; Pinsky, M.R. Personalizing blood pressure management in septic shock. Ann. Intensive Care 2015, 5, 41. [Google Scholar] [CrossRef]
- Futier, E.; Lefrant, J.-Y.; Guinot, P.-G.; Godet, T.; Lorne, E.; Cuvillon, P.; Bertran, S.; Leone, M.; Pastene, B.; Piriou, V.; et al. Effect of Individualized vs Standard Blood Pressure Management Strategies on Postoperative Organ Dysfunction Among High-Risk Patients Undergoing Major Surgery: A Randomized Clinical Trial. JAMA 2017, 318, 1346–1357. [Google Scholar] [CrossRef]
- De Backer, D.; Foulon, P. Minimizing catecholamines and optimizing perfusion. Crit. Care 2019, 23, 149. [Google Scholar] [CrossRef]
Variable | (n = 14) |
Sex (n) | |
Male | 5 (35.7%) |
Female | 9 (64.3%) |
Age (years) | 68.5 (28.0) |
BMI (kg/m2) | 26.0 (10.0) |
ASA (n) | |
1 | 0 (0.0%) |
2 | 5 (35.7%) |
3 | 9 (64.3%) |
4 | 0 (0.0%) |
Flap location (n) | |
intraoral | |
tongue | 4 (28.6%) |
mouth floor | 2 (14.3%) |
mandible | 3 (21.4%) |
cheek | 1 (7.1%) |
extraoral | |
buccal | 2 (14.3%) |
infraorbital | 1 (7.1%) |
orbital | 1 (7.1%) |
Arterial anastomosis recipient vessel (n) | |
facial artery | 8 (57.1%) |
lingual artery | 1 (7.1%) |
superior thyroid artery | 5 (35.7%) |
Venous anastomosis recipient vessel (n) | |
internal jugular vein | 9 (64.3%) |
internal jugular vein + other vein | 3 (21.4%) |
other vein | 2 (14.3%) |
Surgery duration (min) | 508.5 (151.0) |
Flap ischemia duration (min) | 81.5 (25.0) |
Time Interval (Hours) | Perfusion Parameters | |||
---|---|---|---|---|
Blood Flow (AU) | p-Value | Hemoglobin Oxygen Saturation (%) | p-Value | |
0–1 | 186.0 (76.0) | - | 78.0 (14.0) | - |
1–2 | 151.5 (70.0) | 0.018 | 78.0 (10.0) | 1.000 |
2–3 | 148.0 (63.0) | 1.000 | 76.0 (11.0) | 0.003 |
3–4 | 136.5 (62.0) | 1.000 | 76.0 (9.0) | 1.000 |
4–5 | 150.0 (78.0) | 0.820 | 74.5 (12.0) | 1.000 |
5–6 | 142.0 (75.0) | 1.000 | 77.0 (13.0) | 1.000 |
6–7 | 149.0 (72.0) | 1.000 | 76.0 (14.0) | 1.000 |
7–8 | 144.5 (102.0) | 1.000 | 73.5 (13.0) | 1.000 |
Blood Pressure Parameters | Perfusion Parameters | |||
---|---|---|---|---|
Blood Flow (AU) | p-Value | Hemoglobin Oxygen Saturation (%) | p-Value | |
SBP | ||||
Absolute values | −0.114 | 0.016 | −0.002 | 0.974 |
Relative values | 0.153 | 0.001 | 0.025 | 0.599 |
DBP | ||||
Absolute values | −0.014 | 0.768 | −0.053 | 0.266 |
Relative values | 0.191 | <0.001 * | −0.138 | 0.003 |
MBP | ||||
Absolute values | −0.062 | 0.191 | −0.036 | 0.448 |
Relative values | 0.213 | <0.001 * | −0.046 | 0.333 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ooms, M.; Winnand, P.; Heitzer, M.; Vohl, N.; Bock, A.; Bickenbach, J.; Hölzle, F.; Modabber, A. Continuous Measurement of Radial Free Forearm Flap Tissue Perfusion for Flap Monitoring After Microvascular Head and Neck Reconstruction—Systemic Blood Pressure as a Potential Confounder in the Early Postoperative Period. J. Clin. Med. 2025, 14, 2561. https://doi.org/10.3390/jcm14082561
Ooms M, Winnand P, Heitzer M, Vohl N, Bock A, Bickenbach J, Hölzle F, Modabber A. Continuous Measurement of Radial Free Forearm Flap Tissue Perfusion for Flap Monitoring After Microvascular Head and Neck Reconstruction—Systemic Blood Pressure as a Potential Confounder in the Early Postoperative Period. Journal of Clinical Medicine. 2025; 14(8):2561. https://doi.org/10.3390/jcm14082561
Chicago/Turabian StyleOoms, Mark, Philipp Winnand, Marius Heitzer, Nils Vohl, Anna Bock, Johannes Bickenbach, Frank Hölzle, and Ali Modabber. 2025. "Continuous Measurement of Radial Free Forearm Flap Tissue Perfusion for Flap Monitoring After Microvascular Head and Neck Reconstruction—Systemic Blood Pressure as a Potential Confounder in the Early Postoperative Period" Journal of Clinical Medicine 14, no. 8: 2561. https://doi.org/10.3390/jcm14082561
APA StyleOoms, M., Winnand, P., Heitzer, M., Vohl, N., Bock, A., Bickenbach, J., Hölzle, F., & Modabber, A. (2025). Continuous Measurement of Radial Free Forearm Flap Tissue Perfusion for Flap Monitoring After Microvascular Head and Neck Reconstruction—Systemic Blood Pressure as a Potential Confounder in the Early Postoperative Period. Journal of Clinical Medicine, 14(8), 2561. https://doi.org/10.3390/jcm14082561