The Influence of Step Load Periodisation Based on Time Under Tension in Hypoxic Conditions on Hormone Concentrations and Postoperative ACL Rehabilitation of a Judo Athlete: A Case Study
Abstract
:1. ACL in Judo
1.1. ACL in Judo
1.2. Return to Sport
1.3. The Rehabilitation Process
1.4. Hypoxic Training
2. Materials and Methods
2.1. Surgical Procedure
2.1.1. Diagnosis
2.1.2. Treatment
2.2. Participant
2.3. An Experimental Approach to the Problem
- -
- 60°/s−1 verification repetition and 5 test repetitions;
- -
- 120°/s−1 verification repetition and 5 test repetitions;
- -
- 180°/s−1 verification repetition and 15 test repetitions.
VO2max (Maximum Oxygen Uptake)
2.4. Resistance Training
3. Results
4. Discussion
4.1. The Influence of Tempo of Movement and TUT on GH and IGF Concentrations
4.2. Effect of Hypoxia and Rest Break on GH and IGF-1
4.3. Summary of the Effects on GH and IGF
4.4. EPO Concentration
4.5. ACL Periodisation Process in Hypoxia
4.6. VO2max
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koshida, S.; Deguchi, T.; Miyashita, K.; Iwai, K.; Urabe, Y. The Common Mechanisms of Anterior Cruciate Ligament Injuries in Judo: A Retrospective Analysis. Br. J. Sports Med. 2010, 44, 856–861. [Google Scholar] [CrossRef]
- Degoutte, F.; Jouanel, P.; Filaire, E. Energy Demands during a Judo Match and Recovery. Br. J. Sports Med. 2003, 37, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Franchini, E.; Nunes, A.V.; Moraes, J.M.; Del Vecchio, F.B. Physical Fitness and Anthropometrical Profile of the Brazilian Male Judo Team. J. Physiol. Anthropol. 2007, 26, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Prados-Barbero, F.J.; Sánchez-Romero, E.A.; Cuenca-Zaldívar, J.N.; Selva-Sarzo, F. Differences in Movement Patterns Related to Anterior Cruciate Ligament Injury Risk in Elite Judokas According to Sex: A Cross-Sectional Clinical Approach Study. Electron. J. Gen. Med. 2024, 21, em574. [Google Scholar] [CrossRef]
- Akoto, R.; Lambert, C.; Balke, M.; Bouillon, B.; Frosch, K.-H.; Höher, J. Epidemiology of Injuries in Judo: A Cross-Sectional Survey of Severe Injuries Based on Time Loss and Reduction in Sporting Level. Br. J. Sports Med. 2018, 52, 1109–1115. [Google Scholar] [CrossRef] [PubMed]
- Kujala, U.M.; Taimela, S.; Antti-Poika, I.; Orava, S.; Tuominen, R.; Myllynen, P. Acute Injuries in Soccer, Ice Hockey, Volleyball, Basketball, Judo, and Karate: Analysis of National Registry Data. BMJ 1995, 311, 1465–1468. [Google Scholar] [CrossRef]
- Malliaropoulos, N.G.; Callan, M.; Johnson, J. Comprehensive Training Programme for Judo Players Nine plus 9+: Possible Lower Limb Primary Injury Prevention. Muscles Ligaments Tendons J. 2014, 4, 262–268. [Google Scholar] [CrossRef]
- Majewski, M.; Susanne, H.; Klaus, S. Epidemiology of Athletic Knee Injuries: A 10-Year Study. Knee 2006, 13, 184–188. [Google Scholar] [CrossRef]
- Takahashi, S.; Nagano, Y.; Ito, W.; Kido, Y.; Okuwaki, T. A Retrospective Study of Mechanisms of Anterior Cruciate Ligament Injuries in High School Basketball, Handball, Judo, Soccer, and Volleyball. Medicine 2019, 98, e16030. [Google Scholar] [CrossRef]
- Kasahara; Martin, D.; Humberstone, C.; Yamamoto, T.; Nakamura, T. Classification of Sports Injuries in Japanese University Judo Players and Analysis of Associated Physical Fitness Characteristics. J. Sci. Med. Sport 2015, 19, e50. [Google Scholar] [CrossRef]
- Motowidło, J.; Stronska-Garbien, K.; Bichowska-Pawęska, M.; Kostrzewa, M.; Zając, A.; Ficek, K.; Drozd, M. Effect of Step Load Based on Time under Tension in Hypoxia on the ACL Pre-Operative Rehabilitation and Hormone Levels: A Case Study. J. Clin. Med. 2024, 13, 2792. [Google Scholar] [CrossRef] [PubMed]
- Amann, M.; Romer, L.M.; Subudhi, A.W.; Pegelow, D.F.; Dempsey, J.A. Severity of Arterial Hypoxaemia Affects the Relative Contributions of Peripheral Muscle Fatigue to Exercise Performance in Healthy Humans. J. Physiol. 2007, 581, 389–403. [Google Scholar] [CrossRef] [PubMed]
- Feriche, B.; García-Ramos, A.; Morales-Artacho, A.J.; Padial, P. Resistance Training Using Different Hypoxic Training Strategies: A Basis for Hypertrophy and Muscle Power Development. Sports Med. Open 2017, 3, 12. [Google Scholar] [CrossRef] [PubMed]
- Scott, B.R.; Slattery, K.M.; Sculley, D.V.; Dascombe, B.J. Hypoxia and Resistance Exercise: A Comparison of Localized and Systemic Methods. Sports Med. 2014, 44, 1037–1054. [Google Scholar] [CrossRef]
- Lorenz, D.S.; Reiman, M.P.; Walker, J.C. Periodization: Current Review and Suggested Implementation for Athletic Rehabilitation. Sports Health 2010, 2, 509–518. [Google Scholar] [CrossRef]
- Harries, S.K.; Lubans, D.R.; Callister, R. Systematic Review and Meta-Analysis of Linear and Undulating Periodized Resistance Training Programs on Muscular Strength. J. Strength Cond. Res. 2015, 29, 1113–1125. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Ratamess, N.A.; Flanagan, S.D.; Shurley, J.P.; Todd, J.S.; Todd, T.C. Understanding the Science of Resistance Training: An Evolutionary Perspective. Sports Med. 2017, 47, 2415–2435. [Google Scholar] [CrossRef]
- Flagg, K.Y.; Karavatas, S.G.; Thompson, S.; Bennett, C. Current Criteria for Return to Play after Anterior Cruciate Ligament Reconstruction: An Evidence-Based Literature Review. Ann. Transl. Med. 2019, 7, S252. [Google Scholar] [CrossRef]
- Mayr, H.O.; Stoehr, A.; Herberger, K.T.; Haasters, F.; Bernstein, A.; Schmal, H.; Prall, W.C. Histomorphological Alterations of Human Anterior Cruciate Ligament Grafts During Mid-Term and Long-Term Remodeling. Orthop. Surg. 2021, 13, 314–320. [Google Scholar] [CrossRef]
- Hollings, S.; Hopkins, W.; Hume, P. Environmental and Venue-Related Factors Affecting the Performance of Elite Male Track Athletes. Eur. J. Sport. Sci. 2012, 12, 201–206. [Google Scholar] [CrossRef]
- Hamlin, M.J.; Hopkins, W.G.; Hollings, S.C. Effects of Altitude on Performance of Elite Track-and-Field Athletes. Int. J. Sports Physiol. Perform. 2015, 10, 881–887. [Google Scholar] [CrossRef] [PubMed]
- McLean, B.D.; Buttifant, D.; Gore, C.J.; White, K.; Liess, C.; Kemp, J. Physiological and Performance Responses to a Preseason Altitude-Training Camp in Elite Team-Sport Athletes. Int. J. Sports Physiol. Perform. 2013, 8, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Ishii, Y.; Deie, M.; Adachi, N.; Yasunaga, Y.; Sharman, P.; Miyanaga, Y.; Ochi, M. Hyperbaric Oxygen as an Adjuvant for Athletes. Sports Med. 2005, 35, 739–746. [Google Scholar] [CrossRef] [PubMed]
- Chycki, J.; Czuba, M.; Gołaś, A.; Zając, A.; Fidos-Czuba, O.; Młynarz, A.; Smółka, W. Neuroendocrine Responses and Body Composition Changes Following Resistance Training Under Normobaric Hypoxia. J. Hum. Kinet. 2016, 53, 91–98. [Google Scholar] [CrossRef]
- Kon, M.; Ikeda, T.; Homma, T.; Akimoto, T.; Suzuki, Y.; Kawahara, T. Effects of Acute Hypoxia on Metabolic and Hormonal Responses to Resistance Exercise. Med. Sci. Sports Exerc. 2010, 42, 1279–1285. [Google Scholar] [CrossRef]
- Kon, M.; Ikeda, T.; Homma, T.; Suzuki, Y. Effects of Low-Intensity Resistance Exercise under Acute Systemic Hypoxia on Hormonal Responses. J. Strength Cond. Res. 2012, 26, 611–617. [Google Scholar] [CrossRef]
- Yan, B.; Lai, X.; Yi, L.; Wang, Y.; Hu, Y. Effects of Five-Week Resistance Training in Hypoxia on Hormones and Muscle Strength. J. Strength Cond. Res. 2016, 30, 184–193. [Google Scholar] [CrossRef]
- Mendias, C.L.; Enselman, E.R.S.; Olszewski, A.M.; Gumucio, J.P.; Edon, D.L.; Konnaris, M.A.; Carpenter, J.E.; Awan, T.M.; Jacobson, J.A.; Gagnier, J.J.; et al. The Use of Recombinant Human Growth Hormone to Protect Against Muscle Weakness in Patients Undergoing Anterior Cruciate Ligament Reconstruction: A Pilot, Randomized Placebo-Controlled Trial. Am. J. Sports Med. 2020, 48, 1916–1928. [Google Scholar] [CrossRef]
- Humac Norm Testing & Rehabilitation System. Available online: https://docplayer.net/37846364-Humac-norm-testing-rehabilitation-system.html (accessed on 24 March 2023).
- Almosnino, S.; Stevenson, J.M.; Bardana, D.D.; Diaconescu, E.D.; Dvir, Z. Reproducibility of Isokinetic Knee Eccentric and Concentric Strength Indices in Asymptomatic Young Adults. Phys. Ther. Sport. 2012, 13, 156–162. [Google Scholar] [CrossRef]
- Buttar, K.; Scholar; Saboo, N.; Kacker, S. A Review: Maximal Oxygen Uptake (VO2 Max) and Its Estimation Methods. Int. J. Phys. Educ. Sports Health 2019, 6, 24–32. [Google Scholar]
- de Paula Simola, R.Á.; Harms, N.; Raeder, C.; Kellmann, M.; Meyer, T.; Pfeiffer, M.; Ferrauti, A. Assessment of Neuromuscular Function after Different Strength Training Protocols Using Tensiomyography. J. Strength Cond. Res. 2015, 29, 1339–1348. [Google Scholar] [CrossRef] [PubMed]
- Kojić, F.; Ranisavljev, I.; Ćosić, D.; Popović, D.; Stojiljković, S.; Ilić, V. Effects of Resistance Training on Hypertrophy, Strength and Tensiomyography Parameters of Elbow Flexors: Role of Eccentric Phase Duration. Biol. Sport. 2021, 38, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.D.; Haun, C.T.; Vann, C.G.; Osburn, S.C.; Young, K.C. Sarcoplasmic Hypertrophy in Skeletal Muscle: A Scientific “Unicorn” or Resistance Training Adaptation? Front. Physiol. 2020, 11, 816. [Google Scholar] [CrossRef]
- Henselmans, M.; Schoenfeld, B.J. The Effect of Inter-Set Rest Intervals on Resistance Exercise-Induced Muscle Hypertrophy. Sports Med. 2014, 44, 1635–1643. [Google Scholar] [CrossRef]
- Kakavas, G.; Malliaropoulos, N.; Bikos, G.; Pruna, R.; Valle, X.; Tsaklis, P.; Maffulli, N. Periodization in Anterior Cruciate Ligament Rehabilitation: A Novel Framework. Med. Princ. Pract. 2020, 30, 101–108. [Google Scholar] [CrossRef]
- Wilk, M.; Golas, A.; Stastny, P.; Nawrocka, M.; Krzysztofik, M.; Zajac, A. Does Tempo of Resistance Exercise Impact Training Volume? J. Hum. Kinet. 2018, 62, 241–250. [Google Scholar] [CrossRef]
- Kon, M.; Ohiwa, N.; Honda, A.; Matsubayashi, T.; Ikeda, T.; Akimoto, T.; Suzuki, Y.; Hirano, Y.; Russell, A.P. Effects of Systemic Hypoxia on Human Muscular Adaptations to Resistance Exercise Training. Physiol. Rep. 2014, 2, e12033. [Google Scholar] [CrossRef]
- Scott, B.R.; Slattery, K.M.; Sculley, D.V.; Lockhart, C.; Dascombe, B.J. Acute Physiological Responses to Moderate-Load Resistance Exercise in Hypoxia. J. Strength Cond. Res. 2017, 31, 1973. [Google Scholar] [CrossRef]
- Katayama, K.; Goto, K.; Ishida, K.; Ogita, F. Substrate Utilization during Exercise and Recovery at Moderate Altitude. Metabolism 2010, 59, 959–966. [Google Scholar] [CrossRef]
- Guardado, I.; Ureña, B.; Cardenosa, A.; Cardenosa, M.; Camacho, G.; Andrada, R. Effects of Strength Training under Hypoxic Conditions on Muscle Performance, Body Composition and Haematological Variables. Biol. Sport. 2020, 37, 121–129. [Google Scholar] [CrossRef]
- Friedmann, B.; Kinscherf, R.; Borisch, S.; Richter, G.; Bärtsch, P.; Billeter, R. Effects of Low-Resistance/High-Repetition Strength Training in Hypoxia on Muscle Structure and Gene Expression. Pflugers Arch. 2003, 446, 742–751. [Google Scholar] [CrossRef] [PubMed]
- Semenza, G.L. O2-Regulated Gene Expression: Transcriptional Control of Cardiorespiratory Physiology by HIF-1. J. Appl. Physiol. 2004, 96, 1173–1177, discussion 1170-1172. [Google Scholar] [CrossRef]
- Czuba, M.; Zając, A.; Maszczyk, A.; Roczniok, R.; Poprzęcki, S.; Garbaciak, W.; Zając, T. The Effects of High Intensity Interval Training in Normobaric Hypoxia on Aerobic Capacity in Basketball Players. J. Hum. Kinet. 2013, 39, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, R.W.A.; Watt, P.W.; Maxwell, N.S. Acute Normobaric Hypoxia Stimulates Erythropoietin Release. High. Alt. Med. Biol. 2008, 9, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Liao, K.-F.; Nassis, G.P.; Bishop, C.; Yang, W.; Bian, C.; Li, Y.-M. Effects of Unilateral vs. Bilateral Resistance Training Interventions on Measures of Strength, Jump, Linear and Change of Direction Speed: A Systematic Review and Meta-Analysis. Biol. Sport. 2022, 39, 485–497. [Google Scholar] [CrossRef]
- Cavanaugh, J.T.; Powers, M. ACL Rehabilitation Progression: Where Are We Now? Curr. Rev. Musculoskelet. Med. 2017, 10, 289–296. [Google Scholar] [CrossRef]
- Schwery, N.A.; Kiely, M.T.; Larson, C.M.; Wulf, C.A.; Heikes, C.S.; Hess, R.W.; Giveans, M.R.; Solie, B.S.; Doney, C.P. Quadriceps Strength Following Anterior Cruciate Ligament Reconstruction: Normative Values Based on Sex, Graft Type and Meniscal Status at 3, 6 & 9 Months. Int. J. Sports Phys. Ther. 2022, 17, 434–444. [Google Scholar] [CrossRef]
- Emery, C.A.; Roy, T.-O.; Whittaker, J.L.; Nettel-Aguirre, A.; van Mechelen, W. Neuromuscular Training Injury Prevention Strategies in Youth Sport: A Systematic Review and Meta-Analysis. Br. J. Sports Med. 2015, 49, 865–870. [Google Scholar] [CrossRef]
- Ebben, W.P.; Blackard, D.O. Strength and Conditioning Practices of National Football League Strength and Conditioning Coaches. J. Strength Cond. Res. 2001, 15, 48–58. [Google Scholar]
- Ebert, J.R.; Edwards, P.K.; Fick, D.P.; Janes, G.C. A Systematic Review of Rehabilitation Exercises to Progressively Load the Gluteus Medius. J. Sport. Rehabil. 2017, 26, 418–436. [Google Scholar] [CrossRef]
- Chaouachi, A.; Brughelli, M.; Chamari, K.; Levin, G.T.; Ben Abdelkrim, N.; Laurencelle, L.; Castagna, C. Lower Limb Maximal Dynamic Strength and Agility Determinants in Elite Basketball Players. J. Strength Cond. Res. 2009, 23, 1570–1577. [Google Scholar] [CrossRef] [PubMed]
- Hornsby, W.G.; Gentles, J.A.; Haff, G.G.; Stone, M.H.; Buckner, S.L.; Dankel, S.J.; Bell, Z.W.; Abe, T.; Loenneke, J.P. What Is the Impact of Muscle Hypertrophy on Strength and Sport Performance? Strength Cond. J. 2018, 40, 99–111. [Google Scholar] [CrossRef]
- Comfort, P.; Haigh, A.; Matthews, M.J. Are Changes in Maximal Squat Strength during Preseason Training Reflected in Changes in Sprint Performance in Rugby League Players? J. Strength Cond. Res. 2012, 26, 772–776. [Google Scholar] [CrossRef]
- Papla, M.; Krzysztofik, M.; Wojdala, G.; Roczniok, R.; Oslizlo, M.; Golas, A. Relationships between Linear Sprint, Lower-Body Power Output and Change of Direction Performance in Elite Soccer Players. Int. J. Environ. Res. Public. Health 2020, 17, 6119. [Google Scholar] [CrossRef]
- Mullican, K.; Nijem, R. Are Unilateral Exercises More Effective Than Bilateral Exercises? Strength Cond. J. 2016, 38, 68–70. [Google Scholar] [CrossRef]
- Whitcomb, E.; Ortiz, O.; Toner, J.; Kuruganti, U. The Bilateral Limb Deficit (BLD) Phenomenon during Leg Press: A Preliminary Investigation into Central and Peripheral Factors. BMC Sports Sci. Med. Rehabil. 2021, 13, 89. [Google Scholar] [CrossRef]
- Bračič, M.; Supej, M.; Peharec, S.; Bačič, P.; Čoh, M. An Investigation of the Influence of Bilateral Deficit on the Counter-Movement Jump Performance in Elite Sprinters. Kinesiology 2010, 42, 73–81. [Google Scholar]
- McCurdy, K.; O’Kelley, E.; Kutz, M.; Langford, G.; Ernest, J.; Torres, M. Comparison of Lower Extremity EMG between the 2-Leg Squat and Modified Single-Leg Squat in Female Athletes. J. Sport. Rehabil. 2010, 19, 57–70. [Google Scholar] [CrossRef]
- Chapman, A.R.; Vicenzino, B.; Blanch, P.; Hodges, P.W. Patterns of Leg Muscle Recruitment Vary between Novice and Highly Trained Cyclists. J. Electromyogr. Kinesiol. 2008, 18, 359–371. [Google Scholar] [CrossRef]
- Akima, H.; Kuno, S.; Takahashi, H.; Fukunaga, T.; Katsuta, S. The Use of Magnetic Resonance Images to Investigate the Influence of Recruitment on the Relationship between Torque and Cross-Sectional Area in Human Muscle. Eur. J. Appl. Physiol. 2000, 83, 475–480. [Google Scholar] [CrossRef]
- Gryzlo, S.M.; Patek, R.M.; Pink, M.; Perry, J. Electromyographic Analysis of Knee Rehabilitation Exercises. J. Orthop. Sports Phys. Ther. 1994, 20, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Bunn, H.F.; Poyton, R.O. Oxygen Sensing and Molecular Adaptation to Hypoxia. Physiol. Rev. 1996, 76, 839–885. [Google Scholar] [CrossRef] [PubMed]
- Czuba, M.; Waskiewicz, Z.; Zajac, A.; Poprzecki, S.; Cholewa, J.; Roczniok, R. The Effects of Intermittent Hypoxic Training on Aerobic Capacity and Endurance Performance in Cyclists. J. Sports Sci. Med. 2011, 10, 175–183. [Google Scholar]
- Helgerud, J.; Høydal, K.; Wang, E.; Karlsen, T.; Berg, P.; Bjerkaas, M.; Simonsen, T.; Helgesen, C.; Hjorth, N.; Bach, R.; et al. Aerobic High-Intensity Intervals Improve VO2max More than Moderate Training. Med. Sci. Sports Exerc. 2007, 39, 665–671. [Google Scholar] [CrossRef]
- Dufour, S.P.; Ponsot, E.; Zoll, J.; Doutreleau, S.; Lonsdorfer-Wolf, E.; Geny, B.; Lampert, E.; Flück, M.; Hoppeler, H.; Billat, V.; et al. Exercise Training in Normobaric Hypoxia in Endurance Runners. I. Improvement in Aerobic Performance Capacity. J. Appl. Physiol. 2006, 100, 1238–1248. [Google Scholar] [CrossRef]
- Roels, B.; Bentley, D.J.; Coste, O.; Mercier, J.; Millet, G.P. Effects of Intermittent Hypoxic Training on Cycling Performance in Well-Trained Athletes. Eur. J. Appl. Physiol. 2007, 101, 359–368. [Google Scholar] [CrossRef]
- Ventura, N.; Hoppeler, H.; Seiler, R.; Binggeli, A.; Mullis, P.; Vogt, M. The Response of Trained Athletes to Six Weeks of Endurance Training in Hypoxia or Normoxia. Int. J. Sports Med. 2003, 24, 166–172. [Google Scholar] [CrossRef]
- Truijens, M.J.; Toussaint, H.M.; Dow, J.; Levine, B.D. Effect of High-Intensity Hypoxic Training on Sea-Level Swimming Performances. J. Appl. Physiol. 2003, 94, 733–743. [Google Scholar] [CrossRef]
STAGE | Elevation (%) | SPEED (km/h) | Duration (min) |
---|---|---|---|
1 | 0 | 6 | 3 |
2 | 0 | 8 | 3 |
3 | 0 | 10 | 3 |
4 | 2.5 | 12 | 3 |
5 | 5 | 12 | 3 |
6 | 7.5 | 12 | 3 |
8 | 10 | 12 | 3 |
9 | 12.5 | 12 | 3 |
10 | 15 | 12 | 3 |
M | I | II | III | IV | ||||
---|---|---|---|---|---|---|---|---|
UNI/BIL | UNI | BIL | UNI | BIL | UNI | BIL | UNI | BIL |
1 | Dumbbell split squat | Dumbbell squat | Goblet split squat dumbbell | Dumbbell goblet squat | Bulgarian split squat | Back squat low bar | Weighted pistol squats | Front squat |
2 | Seated band leg curl | Stiff leg deadlift | Single-leg trap bar RDL | Trap bar deadlift | Single-leg deadlift | Deadlift | Dumbbell single-leg jump squat | Dumbbell jump squat |
3 | Dumbbell single-arm chest press | Bench press | Seated single-arm overhead dumbbell press | Seated overhead dumbbell press | Swiss ball dumbbell single arm chest press | Swiss ball dumbbell chest press | Hollow- body floor single-arm press | Hollow- body floor Press |
4 | Single-leg glute bridge | Glute bridge | Single-leg hip thrust | Hip thrust | Supported step-up | Dumbbell goblet squat | Single-leg elevated hip thrust jump | Elevated hip thrust jump |
5 | Single-arm towel-grip landmine row | Towel-grip landmine row | Single-arm face pull | Dumbbell face pull | Single-arm towel-grip landmine row | Towel-grip landmine row | Swiss ball single leg curl | Swiss ball leg curl |
6 | Single-leg press | Leg press | Landmine single-arm thruster | Landmine thruster | Single-leg press | Leg press | Landmine single arm thruster | Landmine thruster |
Resistance Training Variables | ||
---|---|---|
Variables | Unilateral | Bilateral |
RIR | 2–3 | 2–3 |
Sets (n) | 4 | 4 |
Rest between sets (s) | 80 | 80 |
Rest between exercises (s) | 180 | 180 |
Reps (n) | 16 (8 per side) | 12 |
Number of exercises (n) | 6 | 6 |
Time Under Tension | |||||
---|---|---|---|---|---|
Microcycle Tempo | TUT Exercise (s) | Total TUT Training Session (s) | Total TUT Training Session (min) | ||
TUT per Limb in a Series | TUT on Both Limbs in a Series | Total TUT in the Exercise | |||
3/0/2/0 | 40 | 80 | 360 | 2160 | 36 |
4/0/2/0 | 48 | 96 | 384 | 2304 | 38.4 |
5/0/2/0 | 56 | 112 | 448 | 2688 | 44.8 |
2/0/2/0 | 32 | 64 | 256 | 1536 | 25.6 |
Microcycle Tempo | TUT Exercise (s) | Total TUT Training Session (s) | Total TUT Training Session (min) | |
---|---|---|---|---|
TUT on Both Limbs in a Series | Total TUT in the Exercise | |||
3/0/2/0 | 60 | 240 | 1440 | 24 |
4/0/2/0 | 72 | 288 | 1368 | 22.8 |
5/0/2/0 | 84 | 336 | 2016 | 33.6 |
2/0/2/0 | 48 | 192 | 1152 | 19.2 |
Action | Duration/Time of Training in Hypoxia (min) | |||
---|---|---|---|---|
Mesocycle | ||||
1 Microcycle | 2 Microcycle | 3 Microcycle | 4 Microcycle | |
Staying Passive | 15 | 15 | 15 | 15 |
Warm-up | 15 | 15 | 15 | 15 |
Total TUT Training Session UNI/BIL | 36/24 | 38.4/22.8 | 44.8/33.6 | 25.6/19.2 |
Break between sets | 5.3 | 5.3 | 5.3 | 5.3 |
Break between exercises | 21 | 21 | 21 | 21 |
Running with a break (+/−) | 30 | 30 | 30 | 30 |
Staying passive | 5 | 5 | 5 | 5 |
Total time in hypoxia UNI | 127.3 | 129.7 | 136.1 | 116.9 |
Total time in hypoxia BIL | 115.3 | 114.1 | 124.9 | 100.5 |
Microcycle | 1 | 2 | 3 | 4 | ||||
---|---|---|---|---|---|---|---|---|
Training days | M 16–18 PM | U | M 16–18 PM | U | M 16–18 PM | U | M 16–18 PM | U |
W16–18 PM | R | W16–18 PM | R | W16–18 PM | R | W16–18 PM | R | |
F 16–18 PM | B | F 16–18 PM | B | F 16–18 PM | B | F 16–18 PM | B |
Mesocycle | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Training | 4 × 1 km R/180s B HR zone—159–169 Tempo—05:25–04:40 min/km | 4 × 1 km R/180s B HR zone—159–169 Tempo—05:25–04:40 min/km | 4 × 1 km R/180s B HR zone—159–169 Tempo—05:25–04:40 min/km | 4 × 1 km R/180s B HR zone—159 -169 Tempo—05:25–04:40 min/km |
Measurement | SpO2 (% +/−) |
---|---|
Before warm-up | 95–93 |
After warm-up | 91–87 |
After each exercise | 89–82 |
Variables | Baseline | After 2st Mesocycle | After 4st Mesocycle | 48 h After | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Tempo 3/0/2/0 | Tempo 4/0/2/0 | Tempo 5/0/2/0 | Tempo 2/0/2/0 | Tempo 3/0/2/0 | Tempo 4/0/2/0 | Tempo 5/0/2/0 | Tempo 2/0/2/0 | |||
GH | 2.7 | 16.3 | 18.2 | 18.4 | 17.1 | 17.2 | 17.6 | 20.3 | 17 | 2.8 |
IGF-1 | 187 | 197 | 208 | 210 | 207 | 206 | 221 | 220 | 226 | 220 |
EPO | 5.2 | - | - | - | 10.4 | - | - | - | 16.2 | 16.1 |
EXTENSORS | ||||||
---|---|---|---|---|---|---|
Variables | Operated Limb | Healthy Limb | ||||
Before | After | Growth % | Before | After | Growth % | |
Peak Torque 60′/s—(Nm) | 223 | 266 | 16.16 | 268 | 275 | 2.6 |
Peak Torque 120′/s—(Nm) | 182 | 207 | 13.73 | 202 | 210 | 3.9 |
Peak Torque 180′/s—(Nm) | 141 | 162 | 14.89 | 150 | 168 | 12 |
Variables | Deficit (%) | |
---|---|---|
Before | After | |
Peak torque 60′/s—(Nm/FFM) | 16.79 | 3.38 |
Peak torque 120′/s—(Nm/FFM) | 10.98 | 1.44 |
Peak Torque 180′/s—(Nm/FFM) | 6.38 | 3.7 |
FLEXORS | ||||||
---|---|---|---|---|---|---|
Variables | Operated Limb | Healthy Limb | ||||
Before | After | Growth % | Before | After | Growth % | |
Peak Torque 60′/s—(Nm) | 137 | 167 | 21.89 | 157 | 162 | 3.1 |
Peak Torque 120′/s—(Nm) | 104 | 139 | 33.6 | 135 | 138 | 2.2 |
Peak Torque 180′/s—(Nm) | 91 | 121 | 32.9 | 105 | 118 | 12.3 |
Variables | Deficit (%) | |
---|---|---|
Before | After | |
Peak torque 60′/s—(Nm/FFM) | 14.59 | 5.98 |
Peak torque 120′/s—(Nm/FFM) | 29.8 | 0.71 |
Peak Torque 180′/s—(Nm/FFM) | 15.38 | 2.47 |
Analysis | Before | After |
---|---|---|
Body height (cm) | 178 | 178 |
Body weight (kg) | 82.5 | 76.2 |
Bone mineral density (g/cm3) | 1377 | 1377 |
Soft tissue (kg) | 6.7 | 7 |
Fat tissue (kg) | 11 | 7 |
Muscle mass (kg) | 67.6 | 68 |
Region | Fat Mass (%) | Total Mass (kg) | Fat Mass (g) | Muscle Mass (g) | Bone Mineral Content (g) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | Before | After | Before | After | |
Right arm | 8.5 | 6 | 6.3 | 5.1 | 500 | 261 | 5449 | 6012 | 347 | 348 |
Left arm | 10.5 | 5.8 | 6.3 | 5 | 624 | 244 | 5321 | 5936 | 341 | 341 |
Operated limb | 12.5 | 8 | 13.9 | 6.9 | 1652 | 981 | 11,591 | 13,241 | 684 | 698 |
Healthy limb | 11.8 | 7.6 | 13.8 | 6.7 | 1551 | 1001 | 11,549 | 13,030 | 671 | 686 |
Torso | 16 | 9.4 | 16 | 13.2 | 11,015 | 8638 | 30,374 | 30,982 | 1183 | 1191 |
Variables | Before | After |
---|---|---|
Final load (km/h)/Elevation (%)/Time (s) | 12/10/120 | 12/15/90 |
Load at the LT threshold (km/h) | 10 | 12 |
VO2max (L/min) | 4.55 | 5.09 |
VO2max (mL/kg/min) | 54.2 | 65.8 |
VO2 at the LT threshold (mL/kg/min) | 42.3 | 50.6 |
VEmax (L/min) | 173.8 | 174.1 |
RERmax (VCO2/VO2) | 1.23 | 1.2 |
HRmax (ud/min) | 195 | 192 |
LAmax (mmol/L) | 10.67 | 11.6 |
ΔLA 12′ res (mmol/L) | 2.43 | 3.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drozd, M.; Luboń, W.; Turpin, J.A.P.; Grzyb, W. The Influence of Step Load Periodisation Based on Time Under Tension in Hypoxic Conditions on Hormone Concentrations and Postoperative ACL Rehabilitation of a Judo Athlete: A Case Study. J. Clin. Med. 2025, 14, 2549. https://doi.org/10.3390/jcm14082549
Drozd M, Luboń W, Turpin JAP, Grzyb W. The Influence of Step Load Periodisation Based on Time Under Tension in Hypoxic Conditions on Hormone Concentrations and Postoperative ACL Rehabilitation of a Judo Athlete: A Case Study. Journal of Clinical Medicine. 2025; 14(8):2549. https://doi.org/10.3390/jcm14082549
Chicago/Turabian StyleDrozd, Miłosz, Wojciech Luboń, Jose Antonio Perez Turpin, and Wojciech Grzyb. 2025. "The Influence of Step Load Periodisation Based on Time Under Tension in Hypoxic Conditions on Hormone Concentrations and Postoperative ACL Rehabilitation of a Judo Athlete: A Case Study" Journal of Clinical Medicine 14, no. 8: 2549. https://doi.org/10.3390/jcm14082549
APA StyleDrozd, M., Luboń, W., Turpin, J. A. P., & Grzyb, W. (2025). The Influence of Step Load Periodisation Based on Time Under Tension in Hypoxic Conditions on Hormone Concentrations and Postoperative ACL Rehabilitation of a Judo Athlete: A Case Study. Journal of Clinical Medicine, 14(8), 2549. https://doi.org/10.3390/jcm14082549