The Washout Resistance of Bioactive Root-End Filling Materials—A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology
Study Design
- Studies that were testing bioactive root-end filling materials
- Studies that were testing washout resistance in dentistry
- Studies that were in English
- In-vitro studies
- Studies that tested only solubility, not washout
- Nonhuman studies
- Reviews and book chapters
2.2. Search Strategy in the Databases
2.3. Study Selection
2.4. Data Extraction from the Eligible Studies
2.5. Risk of Bias Assessment
3. Results
3.1. Search Details
3.2. Washout in Dentistry
3.3. Standardized Washout Test in Engineering
3.4. Tested Materials
3.4.1. EndoCem MTA (Maruchi, Wonju-si, Republic of Korea)
3.4.2. ProRoot MTA (Maillefer Dentysply, Tulsa, OK, USA)
3.4.3. Ceramicrete-D (Tulsa Dental Specialities/Argonne National Laboratory, Argonne, IL, USA)
3.4.4. Capasio (Primus Consulting, Bradenton, FL, USA)
3.4.5. Generex-A (Dentsply Tulsa Dental Specialities, Tulsa, OK, USA)
3.4.6. Biodentine (Septodont, St Maur-des-Fosses, France)
3.4.7. BioAggregate (Innovative Bioceramix, Vancouver, BC, Canada)
3.4.8. MTA-Angelus (Angelus, Londrina, PR, Brazil)
3.4.9. MTA-Plus (PrevestDenpro, Jammu, India Avalon Biomed Inc., Bradenton, FL, USA)
3.4.10. MTA HP (Angelus, Londrina, PR, Brazil)
3.5. Washout Tests
3.6. Washout of Materials in Analyzed Studies
4. Discussion
5. Conclusions
6. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, S.; Kratchman, S. Modern endodontic surgery concepts and practice: A review. J. Endod. 2006, 32, 601–623. [Google Scholar] [PubMed]
- Rud, J.; Rud, V.; Munksgaard, E.C. Periapical healing of mandibular molars after root-end sealing with dentine-bonded composite. Int. Endod. J. 2001, 34, 285–292. [Google Scholar] [PubMed]
- Song, M.; Chung, W.; Lee, S.J.; Kim, E. Long-term outcome of the cases classified as successes based on short-term follow-up in endodontic microsurgery. J Endod. 2012, 38, 1192–1196. [Google Scholar] [CrossRef] [PubMed]
- Von Arx, T.; Jensen, S.S.; Hanni, S.; Friedman, S. Five-year longitudinal assessment of the prognosis of apical microsurgery. J Endod. 2012, 38, 570–579. [Google Scholar] [CrossRef]
- Salah, H.M.; Hashem, A.A.R.; Mustafa, T.; Soliman, A.H.; Khallaf, M.; Haddadeen, H. The impact of root end filling material type and the application of bone graft on healing of periapical tissues after endodontic microsurgery (a clinical randomized controlled trial). Sci. Rep. 2024, 14, 25378. [Google Scholar]
- Grung, B.; Molven, O.; Halse, A. Periapical surgery in a Norwegian country hospital: Follow-up findings of 477 teeth. J. Endod. 1990, 16, 411–447. [Google Scholar] [CrossRef]
- Harrison, J.W.; Johnson, S.A. Excisional wound healing following the use of IRM as a root-end filling material. J. Endod. 1997, 23, 20–26. [Google Scholar]
- Badar, A.E. Marginal adaptation and cytotoxicity of bone cement compared with amalgam and mineral trioxide aggregate as root-end filling materials. J. Endod. 2010, 36, 1056–1060. [Google Scholar] [CrossRef]
- Kohli, M.R.; Berenji, H.; Setzer, F.C.; Lee, S.M.; Karabucak, B. Outcome of endodontic surgery: A meta-analysis of the literature—Part 3: Comparison of endodontic microsurgical microsurgical techniques with 2 different root-end filling materials. J. Endod. 2018, 44, 923–931. [Google Scholar]
- Parirokh, M.; Torabinejad, M. Mineral trioxide aggregate: A comprehensive literature review—Part I: Chemical, physical, and antibacterial properties. J. Endod. 2010, 36, 16–27. [Google Scholar]
- Camilleri, J. Classification of hydraulic cements used in dentistry. Front. Dent. Med. 2020, 1, 9. [Google Scholar] [CrossRef]
- Kang, C.M.; Seong, S.; Song, J.S.; Shin, Y. The role of hydraulic silicate cements on long-term properties and biocompatibility of partial pulpotomy in permanent teeth. Materials 2021, 14, 305. [Google Scholar] [CrossRef] [PubMed]
- Ashi, T.; Mancino, D.; Hardan, L.; Bourgi, R.; Zghal, J.; Macaluso, V.; Al-Ashkar, S.; Alkhouri, S.; Haikel, Y.; Kharouf, N. Physicochemical and antibacterial properties of bioactive retrograde filling materials. Bioengineering 2022, 9, 624. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, L.; Xiang, H.; Ye, J. Influence of anti-washout agents on the rheological properties and injectibility of a calcium phosphate cement. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 81, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Grech, L.; Mallia, B.; Camilleri, J. Investigation of the physical properties of tricalcium silicate cement-based root-end filling materials. Dent. Mater. 2013, 29, 20–28. [Google Scholar] [CrossRef]
- Megahed, A.E.; Adam, I.; Farghal, O.; Sayed, M.O. Influence of mixture composition on washout resistance, fresh properties and relative strength of self compacting underwater concrete. J. Eng. Sci. 2016, 44, 244–258. [Google Scholar] [CrossRef]
- Cavenago, B.C.; Pereira, T.C.; Duarte, M.A.H.; Ordinola-Zapata, R.; Marciano, M.A.; Bramante, C.M.; Bernardineli, N. Influence of powder-to-water ratio on radiopacity, setting time, pH, calcium ion release and a micro-CT volumetric solubility of white mineral trioxide aggregate. Int. Endod. J. 2014, 47, 120–126. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statment: An updated guideline for reporting systematic reviews. J. Clin. Epidemiol. 2021, 372, 71. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. J. Clin. Epidemiol. 2009, 62, 1006–1012. [Google Scholar] [CrossRef]
- Munn, Z.; Baker, T.H.; Moola, S.; Tufanaru, C.; Stern, C.; McArthur, A.; Stephenson, M.; Aromataeis, E. Methodological quality of case series studies: An introduction to the JBI critical appraisal tool. JBI Evid. Synth. 2020, 18, 2127–2133. [Google Scholar] [CrossRef]
- Jang, G.Y.; Park, S.J.; Heo, S.M.; Yu, M.K.; Lee, K.W.; Min, K.S. Washout resistance of Fast-setting pozzolan cement under various Root canal irrigants. Restor. Dent. Endod. 2013, 38, 248–252. [Google Scholar] [PubMed]
- Smith, J.B.; Loushine, R.J.; Weller, R.N.; Rueggeberg, F.A.; Whitford, G.M.; Pashley, H.; Tay, F.R. Metrologic Evaluation of the Surface of White MTA After the Use of Two Endodontic Irrigants. J. Endod. 2007, 33, 463–467. [Google Scholar] [CrossRef] [PubMed]
- Porter, M.L.; Bertó, A.; Primus, C.M.; Watanabe, I. Physical and Chemical Properties of New-generation Endodontic Materials. J. Endod. 2010, 36, 524–528. [Google Scholar] [CrossRef] [PubMed]
- Formosa, L.M.; Mallia, B.; Camilleri, J. A quantitative method for determining the antiwashout characteristics of cement-based dental materials including mineral trioxide aggregate. Int. Endod. J. 2012, 46, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Falkowska, J.; Chady, T.; Dura, W.; Droździk, A.; Tomasik, M.; Marek, E.; Safranow, K.; Lipski, M. The washout resistance of bioactive root-end filling materials. Materials 2023, 16, 5757. [Google Scholar] [CrossRef]
- Jitaru, S.; Hodisan, I.; Timis, L.; Lucian, A.; Bud, M. The use of bioceramics in endodontics—Literature review. Clujul Med. 2016, 89, 470–473. [Google Scholar] [CrossRef]
- Sato, T.; Kikuchi, M.; Aizawa, M. Preparation of hydroxyapatite/collagen injectable bone paste with an anti-washout property utilizing sodium alginate. Part 1: Influences of excess supplementation of calcium compounds. J. Mater. Sci. Mater. Med. 2017, 28, 49. [Google Scholar]
- Sonebi, M.; Bartos, P.J.M.; Khayat, K.H. Assessment of washout resistance of underwater concrete: A comparison between CRD C61 and new MC-1 tests. Mater. Struct. 1999, 32, 273–281. [Google Scholar] [CrossRef]
- Parirokh, M.; Torabinejad, M.; Dummer, P.M.H. Mineral trioxide aggregate and other bioactive endodontic cements: An updated overview—Part I: Vital pulp therapy. Int. Endod. J. 2018, 51, 177–205. [Google Scholar] [CrossRef]
- Balpreet, K.; Renu, B.S.; Mann, J.S.; Navjot, S.K. Research article review of bioceramic in conservative dentistry & endodontics. Int. J. Curr. 2020, 12, 13202–13210. [Google Scholar]
- Rajasekharan, S.; Martens, L.C.; Cauwels, R.G.E.G.; Anthonappa, R.P. Biodentine TM material characteristics and clinical applications: A 3 year literature review and update. Eur. Arch. Paediatr. Dent. 2018, 19, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Ertas, H.; Kucukyilmaz, E.; Ok, E.; Uysal, B. Push-out bond strength of different mineral trioxide aggregates. Eur. J. Dent. 2014, 8, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, J.; Formosa, L.; Damidot, D. The setting characteristics of MTA Plus in different environmental conditions. Int. Endod. J. 2013, 46, 831–840. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, B.M.; Prati, C.; Duarte, M.A.H.; Bramante, C.M.; Gandolfi, M.G. Physicochemical properties of calcium silicate-based formulations MTA Repair HP and MTA Vitalcem. J. Appl. Oral Sci. 2018, 26, e2017115. [Google Scholar] [PubMed]
- Choi, Y.; Park, S.J.; Lee, S.H.; Hwang, Y.C.; Yu, M.K.; Min, K.S. Biological Effects and Washout Resistance of a Newly Developed Fast-setting Pozzolan Cement. J. Endod. 2013, 39, 467–472. [Google Scholar]
- Küçükkaya, E.S. Clinical applications of calcium silicate-based materials: A narrative review. Aust. Dent. J. 2023, 68, 96–109. [Google Scholar]
- Ortega, M.A.; Rios, L.; Fraile-Martonez, O.; Boaru, D.L.; De Leon-Oliva, D.; Barrena-Blázquez, S.; Pereda-Cerquella, C.; Garrido-Gil, M.J.; Manteca, L.; Buján, J.; et al. Bioceramic versus traditional biomaterials for endodontic sealers according to the ideal properties. Histol. Histopathol. 2024, 39, 279–292. [Google Scholar]
- Seron, M.A.; Nunes, G.P.; Ferrisse, T.M.; Strazzi-Sahyon, H.B.; Dos Santos, P.H.; Gomes-Filho, J.E.; Cintra, L.T.A.; Sivieri-Araujo, G. Influence of bioceramic sealers on dentinal tubule penetration and antimicrobial effectiveness: A systematic review and meta-analysis of in vitro studies. Odontology 2024, 112, 672–699. [Google Scholar]
- Komora, P.; Vámos, O.; Gede, N.; Hegyi, P.; Kelemen, K.; Galvács, A.; Varga, G.; Kerémi, B.; Vág, J. Comparison of bioactive material failure rates in vial pulp treatment of permanent matured teeth- a systematic review and network meta-analysis. Sci. Rep. 2024, 14, 18421. [Google Scholar]
- Christiansen, R.; Kirkevang, L.-L.; Hørsted-Bindslev, P.; Wenzel, A. Randomized clinical trial of root-end resection followed by root-end filling with mineral trioxide aggregate or smoothing of the orthograde gutta-percha root filling—1-Year follow-up. Int. Endod. J. 2009, 42, 105–114. [Google Scholar]
Acronym | Definition | Description | Description of the Components of PICO in This Systematic Review |
---|---|---|---|
P | Patient, population, or problem | Can be a patient, a group of patients with a particular condition, or a health problem. What is the nature of the problem? | Washout of bioactive root-end filling materials |
I | Intervention | Represents the intervention of interest. What is the primary solution being considered? | Root-end filling materials that are washout resistant |
C | Control or comparison | Defined as a standard intervention, the most used intervention, or no intervention | Comparison of different materials |
O | Outcome | Expected result | Highlighting materials that are less prone to washout and therefore provide a better seal |
Study | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | % Yes | Risk |
---|---|---|---|---|---|---|---|---|---|---|
Jang et al., 2013 [21] | + | + | + | + | + | + | + | + | 100 | Low |
Smith et al., 2007 [22] | + | + | + | + | + | + | + | + | 100 | Low |
Porter et al., 2010 [23] | + | + | + | + | + | + | + | + | 100 | Low |
Grech et al., 2013 [15] | + | + | + | + | + | + | + | + | 100 | Low |
Formosa et al., 2013 [24] | + | + | + | + | + | + | + | + | 100 | Low |
Falkowska et al., 2023 [25] | + | + | + | + | + | + | + | + | 100 | Low |
Author | Test Type | Test Duration | Solution | Tested Material | Evaluation |
---|---|---|---|---|---|
Jang et al., 2013 [21] | Material was placed into acrylic molds, on saline-moisted oasis, then exposed to solution under gentle shaking | 5 min + shaking, 24 h in incubator at 95 ± 5% humidity and 37 °C | Physiologic saline, 2.5% sodium hypochlorite (NaOCl), 2% chlorhexidine (CHX) | EndoCem (Maruchi, Republic of Korea), ProRoot MTA (Tulsa Dental Specialities, USA) | Scoring scanning electron microscope (SEM) images, 3 independent dentists according to the listed criteria |
Smith et al., 2007 [22] | MTA condensed into cylindrical wells created in plexiglass platforms | EDTA 5 min, MTAD 1, 3 or 5 min. | 17% EDTA, BioPure MTAD, | ProRoot white MTA (Dentsply Tulsa Dental, USA) | 3-D profilometry |
Porter et al., 2010 [23] | novel test developed for washout resistance | 5 mL with flow rate of 0.33 mL/s | Water | White MTA ProRoot (Dentsply Company, USA), Capasio (Primus Consulting, USA), Ceramicrete-D (Tulsa Dental Specialities, USA), Generex-A (Dentsply Tulsa Dental Specialities, USA) | Using photos to determine the percentage of margin remaining by two independent evaluators. |
Grech et al., 2013 [15] | novel basket-drop method | The cylinder was left at the bottom for 15 s then brought out of the water in 5 ± 1 s and allowed to drip for 2 min. Three drop cycles per specimen. | Water | Tricalcium silicate cement (Mineral Research Processing, France) replaced with 20% zirconium oxide (ZrO2; Sigma–Aldrich, Germany)—TCS-20-Z; BiodentineTM (Septodont, France); BioaggregateT (Verio Dental Co., Ltd., Canada); Intermediate restorative material (Dentsply DeTrey, Germany)—IRM; | Loss of mass of the sample is calculated using Equation. |
Formosa et al., 2013 [24] | a quantitative method, modified CRD-C 661-06 | The cylinder was left at the bottom for 15 s, then brought out of the water in 5 ± 1 s and allowed to drip for 2 min. Three drop cycles per specimen. | Distilled water, HBBS | MTA-Plus (Avalon Biomed, India), Portland cement (PC; CEM 1, 52.5 N; LaFarge Cement, UK), MTA-Angelus (Angelus, Brazil), IRM (Dentsply, Germany), amalgam (AB Ardent, Sweden). | Loss of mass of the sample is calculated using the Equation. |
Falkowska et al., 2023 [25] | novel test developed for washout resistance | The rinsing started immediately: 5 mL for 15 s. Then immersed in solution for 15 min | Saline | Intermediate Restorative Material (IRM; Dentsply Sirona, Charlotte, NC, USA), MTA Angelus White (Angelus, Londrina, Brazil), Biodentine (Septodont, Saint-Maur-des-Fossés, Cedex, France), EndoCem Zr (Maruchi, Wonju, Republic of Korea), MTA HP (Angelus, Londrina, Brazil). | Evaluation under the microscope and depth map created using a 3D dental scanner (KaVo ARCTICA AutoScan). |
Author | Tested Material | Results | Conclusions |
---|---|---|---|
Jang et al., 2013 [21] | EndoCem (Maruchi, Republic of Korea), ProRoot MTA (Tulsa Dental Specialities, USA) | ProRoot showed higher washout scores than Endocem (p < 0.05). | Endocem is more resistant to washout than ProRoot |
Smith et al., 2007 [22] | ProRoot white MTA (Dentsply Tulsa Dental, USA) | Irrigation with EDTA and BioPure MTAD resulted in only minor volume reductions of the set MTA. | ProRoot white MTA is not susceptible to washout |
Porter et al., 2010 [23] | White MTA ProRoot (Tulsa Dental Specialities, USA), Capasio (Primus Consulting, USA), Ceramicrete-D (Tulsa Dental Specialities, USA), Generex-A (Dentsply, USA) | No material loss: Ceramicrete-D, Generex-A and Capasio Significant washout: White MTA ProRoot | White MTA ProRoot is more prone to washout than Ceramicrete-D, Generex-A and Capasio were that were resistant to rinsing |
Grech et al., 2013 [15] | Tricalcium silicate cement (Mineral Research Processing, France) replaced with 20% zirconium oxide (Sigma–Aldrich, Germany), BiodentineTM (Septodont, France), BioaggregateT (Verio Dental, Canada), | Very low washout: tricalcium silicate cement, Bioaggregate and IRM high washout: Biodentine | Radiopacified tricalcium silicate, Bioaggregate and IRM exhibit low washout. Biodentine demonstrated a very high washout tendency. |
Formosa et al., 2012 [24] | MTA-Plus (Avalon Biomed, India), Portland cement (PC, LaFarge Cement, UK), MTA-Angelus (Angelus, Brazil), IRM (Dentsply, Germany, amalgam (AB Ardent, Sweden) | Results expressed in mass loss: 0% IRM and amalgam, 0.9% MTA-AW (MTA with an antiwashout gel), 0.4–4% MTA-Plus, 2–7% PC, 5–10% MTA Angelus | The antiwashout gel used with MTA-Plus reduced the material washout and was similar to IRM and amalgam. |
Falkowska et al., 2023 [25] | IRM (Dentsply, USA), MTA Angelus White (Angelus, Brazil), Biodentine (Septodont, France), EndoCem Zr (Maruchi, Republic of Korea), MTA HP (Angelus, Brazil). | No washout: IRM Very low washout: EndoCem MTA Zr and MTA HP Slightly greater washout: MTA Angelus White Significant washout: Biodentine | IRM, EndoCem MTA Zr and MTA HP showed good washout resistance. MTA Angelus White showed relatively good washout resistance. The Biodentine material was prone to washout, which is worrying and requires further research. |
Materials with Very Good Washout Resistance | EndoCem (Maruchi, Republic of Korea) [21,25]; Capasio (Primus Consulting, USA) [23]; Ceramicrete-D (Tulsa Dental Specialities, USA) [23]; Generex-A (Dentsply, USA) [23]; Bioaggregate (Verio Dental Co., Ltd., Canada) [15]; MTA-Plus (Avalon Biomed, India) [24]; MTA HP (Angelus, Brazil) [25] |
Materials with Good Washout Resistance | ProRoot (Tulsa Dental Specialities, USA), [21,22,23]; MTA-Angelus [24]/MTA Angelus White (Angelus, Brazil) [25] |
Materials Prone to Washout | Biodentine (Septodont, France) [15,25] |
Author | Evaluation | Unit of Measurement |
---|---|---|
Jang et al., 2013 [21] | SEM images | Images were evaluated using a developed scoring system. Percentage (%) of defect area. |
Smith et al., 2007 [22] | 3-D profilometry | The volume loss (mm3) |
Porter et al., 2010 [23] | Photos (10×) | Marginal integrity of the materials was scored using photos to determine the percentage (%) of margin remaining. |
Grech et al., 2013 [15] | Loss of mass of the sample calculated using Equation. | Percentage (%) washout by mass (g) of the test materials |
Formosa et al., 2013 [24] | Loss of mass of the sample calculated using Equation. | Percentage (%) washout by mass (g) of the test materials |
Falkowska et al., 2023 [25] | Evaluation under the microscope (60×) and depth map created using a 3D dental scanner (KaVo ARCTICA AutoScan). | Images were scored using a developed scoring system (1–3). Depth map: volume change (mm3 and %) and depth (mm) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falkowska-Ostrowska, J.; Dura, W. The Washout Resistance of Bioactive Root-End Filling Materials—A Systematic Review. J. Clin. Med. 2025, 14, 2446. https://doi.org/10.3390/jcm14072446
Falkowska-Ostrowska J, Dura W. The Washout Resistance of Bioactive Root-End Filling Materials—A Systematic Review. Journal of Clinical Medicine. 2025; 14(7):2446. https://doi.org/10.3390/jcm14072446
Chicago/Turabian StyleFalkowska-Ostrowska, Joanna, and Włodzimierz Dura. 2025. "The Washout Resistance of Bioactive Root-End Filling Materials—A Systematic Review" Journal of Clinical Medicine 14, no. 7: 2446. https://doi.org/10.3390/jcm14072446
APA StyleFalkowska-Ostrowska, J., & Dura, W. (2025). The Washout Resistance of Bioactive Root-End Filling Materials—A Systematic Review. Journal of Clinical Medicine, 14(7), 2446. https://doi.org/10.3390/jcm14072446