Advances and New Therapies in Traumatic Spinal Cord Injury
Abstract
:1. Introduction
2. Pathophysiology of Traumatic Spinal Cord Injury
3. Hemodynamic Management
3.1. Neurogenic Shock
3.2. Hemodynamic Management Targeting MAP
3.3. Effect of MAP Increase on Neurological Improvement
3.4. Variability of MAP in the Acute Phase of tSCI
3.5. Pharmacological Agents for Increasing MAP
3.6. Hemodynamic Management Targeting on SCPP and Cerebrospinal Fluid Drainage
4. Surgical Approach
4.1. Surgical Procedure
4.2. Surgery Timing
4.3. Neurological Recovery from tSCI After Surgical Treatment
4.4. Evaluating the Effectiveness of Surgical Treatment in tSCI
4.5. Intraoperative Ultrasound Imaging
5. Pharmacological Neuroprotection
6. Stem Cells in Traumatic Spinal Cord Injury
6.1. Stem Cell Therapy: A Novel Frontier in SCI Treatment
6.2. Types of Stem Cells
6.2.1. Mesenchymal Stem Cells
6.2.2. Hematopoietic Stem Cells
6.2.3. Neural Stem or Progenitor Cells
6.2.4. Embryonic Stem Cells
6.2.5. Induced Pluripotent Stem Cells
6.3. Stem Cell Delivery Strategies
6.4. Safety and Challenges
6.5. Ongoing and Future Trials
7. Spinal Cord Stimulation
7.1. Epidural Spinal Cord Stimulation: Motor Improvement Applications and Mechanisms in SCI
7.2. Transcutaneous Spinal Cord Stimulation in Individuals with SCI
7.2.1. tSCS Effect on Upper Extremity
7.2.2. tSCS Effect on Respiratory Function
7.2.3. tSCS Effect on Trunk Function
7.2.4. tSCS for Motor and Gait Recovery and Spasticity Management
8. New Technologies Applied to Rehabilitation of Spinal Cord Injury
8.1. Robotic Systems and Exoskeletons for Gait Rehabilitation
8.1.1. Robot-Assisted Gait Training Systems
8.1.2. Overground Robotic Exoskeletons
8.2. Virtual Reality Systems in SCI Rehabilitation
8.3. Wearable Sensors and Monitoring Technologies
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
tSCI | Traumatic Spinal Cord Injury |
SCI | Spinal Cord Injury |
SCPP | Spinal Cord Perfusion Pressure |
MAP | Mean Arterial Pressure |
SCBF | Spinal Cord Blood Flow |
SBP | Systolic Blood Pressure |
ICU | Intensive Care Unit |
AANS | American Association of Neurological Surgeons |
CNS | Congress of Neurological Surgeons |
GRADE | Grade of Recommendation, Assessment, Development, and Evaluation |
AIS | ASIA Impairment Scale |
CSF | Cerebrospinal Fluid |
ISNCSCI | International Standards for the Neurological Classification of Spinal Cord Injury |
ASIA | American Spinal Injury Association |
ITP | Intrathecal Pressure |
SCPP | Spinal Cord Perfusion Pressure |
ISP | Intraspinal Pressure |
CSFP | Cerebrospinal Fluid Pressure |
CSFD | Cerebrospinal Fluid Drainage |
MRI | Magnetic Resonance Imaging |
SCIWORA | Spinal Cord injury Without Radiological Abnormalities |
DISCUS | Duroplasty for Injured Cervical Spinal Cord with Uncontrolled Swelling |
G-CSF | Granulocyte Colony-Stimulating Factor |
MP | Methylprednisolone |
NASCIS | National Acute Spinal Cord Injury Study |
TNF-alpha | Tumor Necrosis Factor alpha |
RGMa | Repulsive Guidance Molecule A |
ESCs | Embryonic Stem Cells |
HSCs | Hematopoietic Stem Cells |
MSCs | Mesenchymal Stem Cells |
iPSCs | Induced Pluripotent Stem Cells |
NSCs | Neural Stem Cells |
BM-MSCs | Bone Marrow Mesenchymal Stem Cells |
hUC-MSCs | Human Umbilical Cord Mesenchymal Stem Cells |
AD-MSCs | Adipose Tissue Mesenchymal Stem Cells |
WJ-MSCs | Wharton’s Jelly Mesenchymal Stem Cells |
eSCS | Epidural Spinal Cord Stimulation |
tSCS | Transcutaneous Spinal Cord Stimulation |
SCS | Spinal Cord Stimulation |
EMG | Electromyography |
IMT | Inspiratory Muscle Training |
RAGT | Robot-Assisted Gait Training Systems |
ORE | Overground Robotic Exoskeletons |
BWST | Body-Weight Support |
WISCI | Walking Index Spinal Cord Injury |
HAL | Hybrid Assistive Limb |
VR | Virtual Reality |
HMDs | Head-Mounted Displays |
References
- Badhiwala, J.H.; Ahuja, C.S.; Fehlings, M.G. Time is spine: A review of translational advances in spinal cord injury. J. Neurosurg. Spine 2018, 30, 1–18. [Google Scholar]
- Ahuja, C.S.; Badhiwala, J.H.; Fehlings, M.G. “Time is spine”: The importance of early intervention for traumatic spinal cord injury. Spinal Cord. 2020, 58, 1037–1039. [Google Scholar] [PubMed]
- Ahuja, C.S.; Wilson, J.R.; Nori, S.; Kotter, M.R.N.; Druschel, C.; Curt, A.; Fehlings, M.G. Traumatic spinal cord injury. Nat. Rev. Dis. Primers 2017, 3, 17018. [Google Scholar] [PubMed]
- Venkatesh, K.; Ghosh, S.K.; Mullick, M.; Manivasagam, G.; Sen, D. Spinal cord injury: Pathophysiology, treatment strategies, asso-ciated challenges, and future implications. Cell Tissue Res. 2019, 377, 125–151. [Google Scholar] [PubMed]
- Montoto-Meijide, R.; Meijide-Faílde, R.; Díaz-Prado, S.M.; Montoto-Marqués, A. Mesenchymal Stem Cell Therapy in Traumatic Spinal Cord Injury: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 11719. [Google Scholar] [CrossRef]
- Tator, C.H.; Fehlings, M.G. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J. Neurosurg. 1991, 75, 15–26. [Google Scholar]
- Ahuja, C.S.; Mothe, A.; Khazaei, M.; Badhiwala, J.H.; Gilbert, E.A.; Kooy, D.; Morshead, C.M.; Tator, C.; Fehlings, M.G. The leading edge: Emerging neuroprotective and neuroregenerative cell-based therapies for spinal cord injury. STEM CELLS Transl. Med. 2020, 9, 1509–1530. [Google Scholar]
- Rempel, L.; Sachdeva, R.; Krassioukov, A.V. Making the invisible visible: Understanding autonomic dysfunctions following spinal cord injury. Phys. Med. Rehabil. Clin. N. Am. 2025, 36, 17–32. [Google Scholar]
- Kwon, B.K.; Tetreault, L.A.; Martin, A.R.; Arnold, P.M.; Marco, R.A.; Newcombe, V.F.; Zipser, C.M.; McKenna, S.L.; Korupolu, R.; Neal, C.J.; et al. A Clinical Practice Guideline for the Management of Patients with Acute Spinal Cord Injury: Recommendations on Hemodynamic Management. Glob. Spine J. 2024, 14 (Suppl. S3), 187S–211S. [Google Scholar]
- Consortium for Spinal Cord Medicine. Early acute management in adults with spinal cord injury: A clinical practice guideline for health-care professionals. J. Spinal Cord Med. 2008, 31, 403–479. [Google Scholar]
- Walters, B.C.; Hadley, M.N.; Hurlbert, R.J.; Aarabi, B.; Dhall, S.S.; Gelb, D.E.; Harrigan, M.R.; Rozelle, C.J.; Ryken, T.C.; Theodore, N. Guidelines for the Management of Acute Cervical Spine and Spinal Cord Injuries: 2013 Update. Neurosurgery 2013, 60, 82–91. Available online: https://academic.oup.com/neurosurgery/article/60/CN_suppl_1/82/2595462 (accessed on 2 February 2025). [CrossRef]
- Sabit, B.; Zeiler, F.A.; Berrington, N. The Impact of Mean Arterial Pressure on Functional Outcome Post Trauma-Related Acute Spinal Cord Injury: A Scoping Systematic Review of the Human Literature. J. Intensiv. Care Med. 2016, 33, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Saadeh, Y.S.; Smith, B.W.; Joseph, J.R.; Jaffer, S.Y.; Buckingham, M.J.; Oppenlander, M.E.; Szerlip, N.J.; Park, P. The impact of blood pressure management after spinal cord injury: A systematic review of the literature. Neurosurg. Focus. 2017, 43, E20. [Google Scholar] [CrossRef]
- Evaniew, N.; Mazlouman, S.J.; Belley-Côté, E.P.; Jacobs, W.B.; Kwon, B.K. Interventions to Optimize Spinal Cord Perfusion in Patients with Acute Traumatic Spinal Cord Injuries: A Systematic Review. J. Neurotrauma 2020, 37, 1127–1139. [Google Scholar] [CrossRef]
- Picetti, E.; Iaccarino, C.; Coimbra, R.; Abu-Zidan, F.; Tebala, G.D.; Balogh, Z.J.; Biffl, W.L.; Coccolini, F.; Gupta, D.; Maier, R.V.; et al. The acute phase management of spinal cord injury affecting polytrauma patients: The ASAP study. World J. Emerg. Surg. 2022, 17, 20. [Google Scholar] [CrossRef]
- Rask, F.; Uvelius, E.; Marklund, N. Adherence to international guidelines in neurocritical care of cervical traumatic spinal cord injury-a retrospective study. Brain Spine 2024, 4, 102821. [Google Scholar] [CrossRef]
- Långsjö, J.; Jordan, S.; Laurila, S.; Paaso, M.; Thesleff, T.; Huhtala, H.; Ronkainen, A.; Karlsson, S.; Koskinen, E.; Luoto, T. Traumatic cervical spinal cord injury: Comparison of two different blood pressure targets on neurological recovery. Acta Anaesthesiol. Scand. 2024, 68, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Garside, T.; Stanford, R.; Flower, O.; Li, T.; Dababneh, E.; Hammond, N.; Bass, F.; Middleton, J.; Tang, J.; Ball, J.; et al. Blood pressure management in acute spinal cord injury: A retrospective study of acute intensive care management of traumatic spinal cord injury in two New South Wales referral centres. Aust. Crit. Care 2024, 38, 101131. [Google Scholar] [CrossRef] [PubMed]
- Hejrati, N.; Srikandarajah, N.; Alvi, M.A.; Quddusi, A.; Tetreault, L.A.; Guest, J.D.; Marco, R.A.; Kirshblum, S.; Martin, A.R.; Strantzas, S.; et al. The Management of Intraoperative Spinal Cord Injury—A Scoping Review. Glob. Spine J. 2024, 14, 150S–165S. [Google Scholar] [CrossRef]
- Hawryluk, G.; Whetstone, W.; Saigal, R.; Ferguson, A.; Talbott, J.; Bresnahan, J.; Dhall, S.; Pan, J.; Beattie, M.; Manley, G. Mean Arterial Blood Pressure Correlates with Neurological Recovery after Human Spinal Cord Injury: Analysis of High Frequency Physiologic Data. J. Neurotrauma 2015, 32, 1958–1967. [Google Scholar] [CrossRef]
- Catapano, J.S.; Hawryluk, G.W.J.; Whetstone, W.; Saigal, R.; Ferguson, A.; Talbott, J.; Bresnahan, J.; Dhall, S.; Pan, J.; Beattie, M.; et al. Higher Mean Arterial Pressure Values Correlate with Neurologic Improvement in Patients with Initially Complete Spinal Cord Injuries. World Neurosurg. 2016, 96, 72–79. [Google Scholar] [PubMed]
- Weinberg, J.A.; Farber, S.H.; Kalamchi, L.D.; Brigeman, S.T.; Bohl, M.A.; Varda, B.M.; Sioda, N.A.B.; Radosevich, J.J.; Chapple, K.M.; Snyder, L.A. Mean arterial pressure maintenance following spinal cord injury: Does meeting the target matter? J. Trauma Acute Care Surg. 2021, 90, 97–106. [Google Scholar] [PubMed]
- LaRiccia, A.K.; Sperwer, K.; Lieber, M.L.; Spalding, M.C. Mean arterial pressure (MAP) augmentation in traumatic spinal cord injuries: Early hyperperfusion treatment influences neurologic outcomes. J. Spinal Cord Med. 2023, 47, 918–925. [Google Scholar]
- Martin, N.D.; Kepler, C.; Zubair, M.; Sayadipour, A.; Cohen, M.; Weinstein, M. Increased mean arterial pressure goals after spinal cord injury and functional outcome. J. Emerg. Trauma Shock 2015, 8, 94–98. [Google Scholar]
- Haldrup, M.; Dyrskog, S.; Thygesen, M.M.; Kirkegaard, H.; Kasch, H.; Rasmussen, M.M. Initial blood pressure is important for long-term outcome after traumatic spinal cord injury. J. Neurosurg. Spine 2020, 33, 256–260. [Google Scholar]
- Ehsanian, R.; Haefeli, J.; Quach, N.; Kosarchuk, J.; Torres, D.; Stuck, E.D.; Endo, J.; Crew, J.D.; Dirlikov, B.; Bresnahan, J.C.; et al. Exploration of surgical blood pressure management and expected motor recovery in individuals with traumatic spinal cord injury. Spinal Cord. 2020, 58, 377–386. [Google Scholar]
- Torres-Espín, A.; Haefeli, J.; Ehsanian, R.; Torres, D.; Almeida, C.A.; Huie, J.R.; Chou, A.; Morozov, D.; Sanderson, N.; Dirlikov, B.; et al. Topological network analysis of patient similarity for precision management of acute blood pressure in spinal cord injury. eLife 2021, 10, e68015. [Google Scholar] [PubMed]
- Agarwal, N.; Aabedi, A.A.; Torres-Espin, A.; Chou, A.; Wozny, T.A.; Mummaneni, P.V.; Burke, J.F.; Ferguson, A.R.; Kyritsis, N.; Dhall, S.S.; et al. Decision tree–based machine learning analysis of intraoperative vasopressor use to optimize neurological improvement in acute spinal cord injury. Neurosurg. Focus 2022, 52, E9. [Google Scholar]
- Gee, C.M.; Tsang, A.; Bélanger, L.M.; Ritchie, L.; Ailon, T.; Paquette, S.; Charest-Morin, R.; Dea, N.; Street, J.; Fisher, C.G.; et al. All over the MAP: Describing pressure variability in acute spinal cord injury. Spinal Cord 2022, 60, 470–475. [Google Scholar]
- Chen, X.-Y.; Wang, M.-H.; Xiao, X.; Dong, Y.-H.; Tan, B.; Dong, H.-R.; Zhou, L.-N.; Zhao, J.-L.; Xie, R. Blood Pressure Variability Associates with Six-Month Outcomes in Acute Cervical Spinal Cord Injury: An Analysis of 105 Patients. World Neurosurg. 2022, 168, e480–e489. [Google Scholar]
- Kong, C.Y.; Hosseini, A.M.; Belanger, L.M.; Ronco, J.J.; Paquette, S.J.; Boyd, M.C.; Dea, N.; Street, J.; Fisher, C.G.; Dvorak, M.F.; et al. A prospective evaluation of hemodynamic management in acute spinal cord injury patients. Spinal Cord. 2013, 51, 466–471. [Google Scholar] [PubMed]
- Mushlin, H.M.; Lessing, N.; Wessell, A.P.; Chryssikos, T.; Pratt, N.; Caffes, N.; Oliver, J.; Aarabi, B.; Schwartzbauer, G. The Effect of Elevated Mean Arterial Blood Pressure in Cervical Traumatic Spinal Cord Injury with Hemorrhagic Contusion. World Neurosurg. 2020, 144, e405–e413. [Google Scholar]
- Lee, K.-Z.; Liu, T.-T.; Chen, R.-Y. Therapeutic efficacy of adrenergic agents on systemic and spinal hemodynamics in an acute cervical spinal cord injury rodent model. Spine J. 2024, 24, 1964–1980. [Google Scholar]
- Streijger, F.; So, K.; Manouchehri, N.; Gheorghe, A.; Okon, E.B.; Chan, R.M.; Ng, B.; Shortt, K.; Sekhon, M.S.; Griesdale, D.E.; et al. A Direct Comparison between Norepinephrine and Phenylephrine for Augmenting Spinal Cord Perfusion in a Porcine Model of Spinal Cord Injury. J. Neurotrauma 2018, 35, 1345–1357. [Google Scholar]
- Readdy, W.J.; Whetstone, W.D.; Ferguson, A.R.; Talbott, J.F.; Inoue, T.; Saigal, R.; Bresnahan, J.C.; Beattie, M.S.; Pan, J.Z.; Manley, G.T.; et al. Complications and outcomes of vasopressor usage in acute traumatic central cord syndrome. J. Neurosurg. Spine 2015, 23, 574–580. [Google Scholar] [PubMed]
- Inoue, T.; Manley, G.T.; Patel, N.; Whetstone, W.D. Medical and Surgical Management after Spinal Cord Injury: Vasopressor Usage, Early Surgerys, and Complications. J. Neurotrauma 2014, 31, 284–291. [Google Scholar] [PubMed]
- Entezari, S.; Thygesen, M.M.; Staehr, C.; Melnikova, E.; Skov, M.; Rajanathan, R.; Rasmussen, M.; Rasmussen, M.M.; Matchkov, V.V. Spinal cord blood flow elevation with systemic vasopressor noradrenaline is partly mediated by vasodilation of spinal arteries due to reduced expression of alpha adrenoreceptors. Spine J. 2024, 25, 609–619. [Google Scholar]
- Altaf, F.; Griesdale, D.E.; Belanger, L.; Ritchie, L.; Markez, J.; Ailon, T.; Boyd, M.C.; Paquette, S.; Fisher, C.G.; Street, J.; et al. The differential effects of norepinephrine and dopamine on cerebrospinal fluid pressure and spinal cord perfusion pressure after acute human spinal cord injury. Spinal Cord. 2017, 55, 33–38. [Google Scholar]
- Iovine, J.A.; Villanueva, R.D.; Werth, C.M.; Hlavacek, N.L.; Rollstin, A.D.; Tawil, I.; Sarangarm, P. Contemporary hemodynamic management of acute spinal cord injuries with intravenous and enteral vasoactive agents: A narrative review. Am. J. Health Pharm. 2022, 79, 1521–1530. [Google Scholar]
- Yue, J.K.; Tsolinas, R.E.; Burke, J.F.; Deng, H.; Upadhyayula, P.S.; Robinson, C.K.; Lee, Y.M.; Chan, A.K.; Winkler, E.A.; Dhall, S.S. Vasopressor support in managing acute spinal cord injury: Current knowledge. J. Neurosurg. Sci. 2019, 63, 308–317. [Google Scholar]
- Niemann, B.; Zarfoss, E.; Victory, J.; Smida, T.; Petros, K.; Sestito, M.; Bardes, J. Evaluation of Oral Vasoactive Medications to Maintain Mean Arterial Pressure in Spinal Cord Injury. J. Surg. Res. 2024, 302, 339–346. [Google Scholar] [PubMed]
- Hamed, M.; Elseidy, S.A.; Elkheshen, A.; Maher, J.; Elmoghrabi, A.; Zaghloul, A.; Panakos, A.; Panaich, S.; Saad, M.; Elbadawi, A. The Use of Midodrine as an Adjunctive Therapy to Liberate Patients from Intravenous Vasopressors: A Systematic Review and Meta-analysis of Randomized Controlled Studies. Cardiol. Ther. 2023, 12, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Werndle, M.C.; Saadoun, S.; Phang, I.; Czosnyka, M.; Varsos, G.V.; Czosnyka, Z.H.; Smielewski, P.; Jamous, A.; Bell, B.A.; Zoumprouli, A.; et al. Monitoring of Spinal Cord Perfusion Pressure in Acute Spinal Cord Injury. Crit Care Med. 2014, 42, 646–655. [Google Scholar] [CrossRef] [PubMed]
- Varsos, G.V.; Werndle, M.C.; Czosnyka, Z.H.; Smielewski, P.; Kolias, A.G.; Phang, I.; Saadoun, S.; Bell, B.A.; Zoumprouli, A.; Papadopoulos, M.C.; et al. Intraspinal pressure and spinal cord perfusion pressure after spinal cord injury: An observational study. J. Neurosurg. Spine 2015, 23, 763–771. [Google Scholar] [CrossRef]
- Saadoun, S.; Papadopoulos, M.C. Targeted Perfusion Therapy in Spinal Cord Trauma. Neurotherapeutics 2020, 17, 511–521. [Google Scholar] [CrossRef]
- Gee, C.M.; Kwon, B.K. Significance of spinal cord perfusion pressure following spinal cord injury: A systematic scoping review. J. Clin. Orthop. Trauma 2022, 34, 102024. [Google Scholar] [CrossRef]
- Phang, I.; Zoumprouli, A.; Saadoun, S.; Papadopoulos, M.C. Safety profile and probe placement accuracy of intraspinal pressure monitoring for traumatic spinal cord injury: Injured Spinal Cord Pressure Evaluation study. J. Neurosurg. Spine 2016, 25, 398–405. [Google Scholar] [CrossRef]
- Ruiz-Cardozo, M.A.; Barot, K.; Yahanda, A.T.; Singh, S.P.; Trevino, G.; Yakdan, S.; Brehm, S.; Bui, T.; Joseph, K.; Vippa, T.; et al. Invasive devices to monitor the intraspinal perfusion pressure in the hemodynamic management of acute spinal cord injury: A systematic scoping review. Acta Neurochir. 2024, 166, 400. [Google Scholar] [CrossRef]
- Theodore, N.; Martirosyan, N.; Hersh, A.M.; Ehresman, J.; Ahmed, A.K.; Danielson, J.; Sullivan, C.; Shank, C.D.; Almefty, K.; Lemole, G.M.; et al. Cerebrospinal Fluid Drainage in Patients with Acute Spinal Cord Injury: A Multi-Center Randomized Controlled Trial. World Neurosurg. 2023, 177, e472–e479. [Google Scholar]
- Squair, J.W.; Bélanger, L.M.; Tsang, A.; Ritchie, L.; Mac-Thiong, J.-M.; Parent, S.; Christie, S.; Bailey, C.; Dhall, S.; Street, J.; et al. Spinal cord perfusion pressure predicts neurologic recovery in acute spinal cord injury. Neurology 2017, 89, 1660–1667. [Google Scholar]
- Squair, J.W.; Bélanger, L.M.; Tsang, A.; Ritchie, L.; Mac-Thiong, J.M.; Parent, S.; Christie, S.; Bailey, C.; Dhall, S.; Charest-Morin, R.; et al. Empirical targets for acute hemodynamic management of individuals with spinal cord injury. Neurology 2019, 93, 12. [Google Scholar] [CrossRef] [PubMed]
- Martirosyan, N.L.; Kalani, M.Y.S.; Bichard, W.D.; Baaj, A.A.; Gonzalez, L.F.; Preul, M.C.; Theodore, N. Cerebrospinal Fluid Drainage and Induced Hypertension Improve Spinal Cord Perfusion After Acute Spinal Cord Injury in Pigs. Neurosurgery 2015, 76, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Lavadi, R.S.; Johnson, B.R.; Chalif, J.I.; Shanahan, R.; Das, A.; Hamilton, D.K.; Agarwal, N.; Fields, D.P. Comparing reactive versus empiric cerebrospinal fluid drainage strategies for spinal perfusion pressure optimization in patients with acute traumatic spinal cord injuries. J. Clin. Neurosci. 2024, 127, 110757. [Google Scholar] [CrossRef] [PubMed]
- Kwon, B.K.; Curt, A.N.; Belanger, L.M.; Bernardo, A.; Chan, D.; Markez, J.A.; Gorelik, S.; Slobogean, G.P.; Umedaly, H.; Giffin, M.; et al. Intrathecal pressure monitoring and cerebrospinal fluid drainage in acute spinal cord injury: A prospective randomized trial—Clinical article. J. Neurosurg. Spine. 2009, 10, 181–193. [Google Scholar] [CrossRef]
- Hogg, F.R.; Gallagher, M.J.; Kearney, S.; Zoumprouli, A.; Papadopoulos, M.C.; Saadoun, S. Acute Spinal Cord Injury: Monitoring Lumbar Cerebrospinal Fluid Provides Limited Information about the Injury Site. J. Neurotrauma 2020, 37, 1156–1164. [Google Scholar] [CrossRef]
- Yue, J.K.; Hemmerle, D.D.; Winkler, E.A.; Thomas, L.H.; Fernandez, X.D.; Kyritsis, N.; Pan, J.Z.; Pascual, L.U.; Singh, V.; Weinstein, P.R.; et al. Clinical Implementation of Novel Spinal Cord Perfusion Pressure Protocol in Acute Traumatic Spinal Cord Injury at U.S. Level I Trauma Center: TRACK-SCI Study. World Neurosurg. 2020, 133, e391–e396. [Google Scholar] [CrossRef]
- Leary, O.P.; Shaaya, E.A.; Chernysh, A.A.; Seidler, M.; Sastry, R.A.; Persad-Paisley, E.; Zhu, M.; Gokaslan, Z.L.; Oyelese, A.A.; Beland, M.D.; et al. Microbubble Contrast-Enhanced Transcutaneous Ultrasound Enables Real-Time Spinal Cord Perfusion Monitoring Following Posterior Cervical Decompression. World Neurosurg. 2024, 189, e404–e410. [Google Scholar] [CrossRef]
- Rashnavadi, T.; Macnab, A.; Cheung, A.; Shadgan, A.; Kwon, B.K.; Shadgan, B. Monitoring spinal cord hemodynamics and tissue oxygenation: A review of the literature with special focus on the near-infrared spectroscopy technique. Spinal Cord 2019, 57, 617–625. [Google Scholar] [CrossRef]
- Dietz, N.; Jaganathan, V.; Alkin, V.; Mettille, J.; Boakye, M.; Drazin, D. Machine learning in clinical diagnosis, prognostication, and management of acute traumatic spinal cord injury (SCI): A systematic review. J. Clin. Orthop. Trauma 2022, 35, 102046. [Google Scholar] [CrossRef]
- Markatos, K.; Androutsos, G.; Karamanou, M.; Kaseta, M.; Korres, D.; Mavrogenis, A. Spine deformities and trauma in Avicenna’s Canon of Medicine. Int. Orthop. 2018, 43, 1271–1274. [Google Scholar]
- Guha, A.; Tator, C.H.; Endrenyi, L.; Piper, I. Decompression of the spinal cord improves recovery after acute experimental spinal cord compression injury. Spinal Cord 1987, 25, 324–339. [Google Scholar] [CrossRef] [PubMed]
- Dimar, J.R.; Glassman, S.D.; Raque, G.H.; Zhang, Y.P.; Shields, C.B. The Influence of Spinal Canal Narrowing and Timing of Decompression on Neurologic Recovery After Spinal Cord Contusion in a Rat Model. Spine (Phila Pa 1976) 1999, 24, 1623. [Google Scholar] [PubMed]
- Aarabi, B.; Olexa, J.; Chryssikos, T.; Galvagno, S.M.; Hersh, D.S.; Wessell, A.; Sansur, C.; Schwartzbauer, G.; Crandall, K.; Shanmuganathan, K.; et al. Extent of Spinal Cord Decompression in Motor Complete (American Spinal Injury Association Impairment Scale Grades A and B) Traumatic Spinal Cord Injury Patients: Post-Operative Magnetic Resonance Imaging Analysis of Standard Operative Approaches. J. Neurotrauma 2019, 36, 862–876. [Google Scholar]
- Burke, J.F.; Fehlings, M.G.; Dhall, S.S. Efficacy of Ultra-Early (<12 h), Early (12–24 h), and Late (>24–138.5 h) Surgery with Magnetic Resonance Imaging-Confirmed Decompression in American Spinal Injury Association Impairment Scale Grades A, B, and C Cervical Spinal Cord Injury. J. Neurotrauma 2020, 37, 1759–1760. [Google Scholar] [CrossRef] [PubMed]
- Saadoun, S.; Werndle, M.C.; de Heredia, L.L.; Papadopoulos, M.C. The dura causes spinal cord compression after spinal cord injury. Br. J. Neurosurg. 2016, 30, 582–584. [Google Scholar] [CrossRef]
- Phang, I.; Werndle, M.C.; Saadoun, S.; Varsos, G.; Czosnyka, M.; Zoumprouli, A.; Papadopoulos, M.C. Expansion duroplasty improves intraspinal pressure, spinal cord perfusion pressure, and vascular pressure reactivity index in patients with traumatic spinal cord injury: Injured spinal cord pressure evaluation study. J. Neurotrauma 2015, 32, 865–874. [Google Scholar] [CrossRef]
- Zhu, F.; Yao, S.; Ren, Z.; Telemacque, D.; Qu, Y.; Chen, K.; Yang, F.; Zeng, L.; Guo, X. Early durotomy with duroplasty for severe adult spinal cord injury without radiographic abnormality: A novel concept and method of surgical decompression. Eur. Spine J. 2019, 28, 2275–2282. [Google Scholar] [CrossRef]
- Saadoun, S.; Grassner, L.; Belci, M.; Cook, J.; Knight, R.; Davies, L.; Asif, H.; Visagan, R.; Gallagher, M.J.; Thomé, C.; et al. Duroplasty for injured cervical spinal cord with uncontrolled swelling: Protocol of the DISCUS randomized controlled trial. Trials 2023, 24, 1–11. [Google Scholar] [CrossRef]
- Wilson, J.R.; Witiw, C.D.; Badhiwala, J.; Kwon, B.K.; Fehlings, M.G.; Harrop, J.S. Early Surgery for Traumatic Spinal Cord Injury: Where Are We Now? Global Spine J. 2020, 10, 84S–91S. [Google Scholar]
- Aarabi, B.; Akhtar-Danesh, N.; Chryssikos, T.; Shanmuganathan, K.; Schwartzbauer, G.T.; Simard, J.M.; Olexa, J.; Sansur, C.A.; Crandall, K.M.; Mushlin, H.; et al. Efficacy of Ultra-Early (<12 h), Early (12–24 h), and Late (>24–138.5 h) Surgery with Magnetic Resonance Imaging-Confirmed Decompression in American Spinal Injury Association Impairment Scale Grades A, B, and C Cervical Spinal Cord Injury. J Neurotrauma. 2020, 37, 448–457. [Google Scholar] [CrossRef]
- Tetreault, L.A.; Kwon, B.K.; Evaniew, N.; Alvi, M.A.; Skelly, A.C.; Fehlings, M.G. A Clinical Practice Guideline on the Timing of Surgical Decompression and Hemodynamic Management of Acute Spinal Cord Injury and the Prevention, Diagnosis, and Management of Intraoperative Spinal Cord Injury: Introduction, Rationale, and Scope. Glob. Spine J. 2024, 14, 10S–24S. [Google Scholar]
- Fehlings, M.G.; Tetreault, L.A.; Wilson, J.R.; Aarabi, B.; Anderson, P.; Arnold, P.M.; Brodke, D.S.; Burns, A.S.; Chiba, K.; Dettori, J.R.; et al. A Clinical Practice Guideline for the Management of Patients With Acute Spinal Cord Injury and Central Cord Syndrome: Recommendations on the Timing (≤24 Hours Versus >24 Hours) of Decompressive Surgery. Glob. Spine J. 2017, 7, 195S–202S. [Google Scholar]
- Roquilly, A.; Vigué, B.; Boutonnet, M.; Bouzat, P.; Buffenoir, K.; Cesareo, E.; Chauvin, A.; Court, C.; Cook, F.; de Crouy, A.; et al. French recommendations for the management of patients with spinal cord injury or at risk of spinal cord injury. Anaesth. Crit. Care Pain Med. 2020, 39, 279–289. [Google Scholar] [PubMed]
- Zileli, M.; Konovalov, N.; Sharif, S. Cervical Spine Trauma and Spinal Cord Injury Recommendations of WFNS Spine Committee. Neurospine 2020, 17, 704–707. [Google Scholar]
- Hosman, A.J.F.; Barbagallo, G.; The SCI-POEM Study Group; Popescu, E.C.; van de Meent, H.; Öner, F.C.; De lure, F.; Bonavita, J.; Kreinest, M.; LIndtner, R.A.; et al. Neurological recovery after early versus delayed surgical decompression for acute traumatic spinal cord injury. Bone Jt. J. 2023, 105–B, 400–411. [Google Scholar]
- Batchelor, P.E.; Wills, T.E.; Skeers, P.; Battistuzzo, C.R.; Macleod, M.R.; Howells, D.W.; Sena, E.S. Meta-Analysis of Pre-Clinical Studies of Early Decompression in Acute Spinal Cord Injury: A Battle of Time and Pressure. PLoS ONE 2013, 8, e72659. [Google Scholar] [CrossRef]
- Fehlings, M.G.; Tetreault, L.A.; Hachem, L.; Evaniew, N.; Ganau, M.; McKenna, S.L.; Neal, C.J.; Nagoshi, N.; Rahimi-Movaghar, V.; Aarabi, B.; et al. An Update of a Clinical Practice Guideline for the Management of Patients With Acute Spinal Cord Injury: Recommendations on the Role and Timing of Decompressive Surgery. Glob. Spine J. 2024, 14, 174S–186S. [Google Scholar]
- Fehlings, M.G.; Vaccaro, A.; Wilson, J.R.; Singh, A.; Cadotte, D.W.; Harrop, J.S.; Aarabi, B.; Shaffrey, C.; Dvorak, M.; Fisher, C.; et al. Early versus delayed decompression for traumatic cervical spinal cord injury: Results of the surgical timing in acute spinal cord injury study (STASCIS). PLoS ONE 2012, 7, e32037. [Google Scholar] [CrossRef]
- Qiu, Y.; Chen, Y.; Xie, Y.; Xie, H.; Dong, J. Comparative analysis of the efficacy of early and late surgical intervention for acute spinal cord injury: A systematic review and meta-analysis based on 16 studies. Int. J. Surg. 2021, 94, 106098. [Google Scholar]
- Hsieh, Y.-L.; Tay, J.; Hsu, S.-H.; Chen, W.-T.; Fang, Y.-D.; Liew, C.-Q.; Chou, E.H.; Wolfshohl, J.; D’Etienne, J.; Wang, C.-H.; et al. Early versus late surgical decompression for traumatic spinal cord injury on neurological recovery: A systematic review and meta-analysis. J. Neurotrauma 2021, 38, 2927–2936. [Google Scholar]
- Badhiwala, J.H.; Wilson, J.R.; Witiw, C.D.; Harrop, J.S.; Vaccaro, A.R.; Aarabi, B.; Grossman, R.G.; Geisler, F.H.; Fehlings, M.G. The influence of timing of surgical decompression for acute spinal cord injury: A pooled analysis of individual patient data. Lancet Neurol. 2021, 20, 117–126. [Google Scholar] [CrossRef]
- Burns, A.S.; Lee, B.S.; Ditunno, J.F.; Tessler, A. Patient Selection for Clinical Trials: The Reliability of the Early Spinal Cord Injury Examination. J. Neurotrauma 2003, 20, 477–482. [Google Scholar] [CrossRef]
- Evaniew, N.; Sharifi, B.; Waheed, Z.; Fallah, N.; Ailon, T.; Dea, N.; Paquette, S.; Charest-Morin, R.; Street, J.; Fisher, C.G.; et al. The influence of neurological examination timing within hours after acute traumatic spinal cord injuries: An observational study. Spinal Cord. 2020, 58, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Kim, J.-H.; Lee, C.-H.; Kim, S.; Kim, Y.-R.; Kim, K.-T.; Kim, J.-H.; Rhee, J.M.; Jo, W.-Y.; Oh, H.; et al. The utility of intraoperative ultrasonography for spinal cord surgery. PLoS ONE 2024, 19, e0305694. [Google Scholar] [CrossRef] [PubMed]
- Ali, D.M.; Harrop, J.; Sharan, A.; Vaccaro, A.R.; Sivaganesan, A. Technical Aspects of Intra-Operative Ultrasound for Spinal Cord Injury and Myelopathy: A Practical Review. World Neurosurg. 2022, 170, 206–218. [Google Scholar] [CrossRef] [PubMed]
- Aarabi, B.; Chixiang, C.; Simard, J.M.; Chryssikos, T.; Stokum, J.A.; Sansur, C.A.; Crandall, K.M.; Olexa, J.; Oliver, J.; Meister, M.R.; et al. Proposal of a Management Algorithm to Predict the Need for Expansion Duraplasty in American Spinal Injury Association Impairment Scale Grades A–C Traumatic Cervical Spinal Cord Injury Patients. J. Neurotrauma 2022, 39, 1716–1726. [Google Scholar] [CrossRef]
- Punjani, N.; Deska-Gauthier, D.; Hachem, L.D.; Abramian, M.; Fehlings, M.G. Neuroplasticity and regeneration after spinal cord injury. N. Am. Spine Soc. J. (NASSJ) 2023, 15, 100235. [Google Scholar] [CrossRef]
- Ramos, R.C.D.V.; Alegrete, N. The role of pharmacotherapy in modifying the neurological status of patients with spinal and spinal cord injuries. Rev. Bras. Ortop. (Engl. Ed.) 2015, 50, 617–624. [Google Scholar] [CrossRef]
- Serag, I.; Abouzid, M.; Elmoghazy, A.; Sarhan, K.; Alsaad, S.A.; Mohamed, R.G. An updated systematic review of neuroprotective agents in the treatment of spinal cord injury. Neurosurg. Rev. 2024, 47, 132. [Google Scholar] [CrossRef]
- Alvi, M.A.; Pedro, K.M.; Quddusi, A.I.; Fehlings, M.G. Advances and Challenges in Spinal Cord Injury Treatments. J. Clin. Med. 2024, 13, 4101. [Google Scholar] [CrossRef]
- Fehlings, M.G.; Wilson, J.R.; Harrop, J.S.; Kwon, B.K.; Tetreault, L.A.; Arnold, P.M.; Singh, J.M.; Hawryluk, G.; Dettori, J.R. Efficacy and Safety of Methylprednisolone Sodium Succinate in Acute Spinal Cord Injury: A Systematic Review. Glob. Spine J. 2017, 7, 116S–137S. [Google Scholar]
- Canseco, J.A.; Karamian, B.A.; Bowles, D.R.; Markowitz, M.P.; DiMaria, S.L.; Semenza, N.C.; Leibensperger, M.R.; Smith, M.L.; Vaccaro, A.R. Updated Review: The Steroid Controversy for Management of Spinal Cord Injury. World Neurosurg. 2021, 150, 1–8. [Google Scholar]
- Junkui, X.; Jun, D.; Dong, W.; Xijing, H. The Status of Research on Mechanism of Action of Methylprednisolone (MP) in the Treatment of Spinal Cord Injury. Am. J. Neuroprot. Neuroregener. 2012, 4, 20–30. [Google Scholar]
- Braughler, J.M.; Hall, E.D. Effects of multi-dose methylprednisolone sodium succinate administration on injured cat spinal cord neurofilament degradation and energy metabolism. J. Neurosurg. 1984, 61, 290–295. [Google Scholar] [PubMed]
- Bracken, M.B.; Collins, W.F.; Freeman, D.F.; Shepard, M.J.; Wagner, F.W.; Silten, R.M.; Hellenbrand, K.G.; Ransohoff, J.; Hunt, W.E.; Perot, P.L.; et al. Efficacy of methylprednisolone in acute spinal cord injury. JAMA 1984, 251, 45–52. [Google Scholar] [PubMed]
- Bracken, M.B.; Shepard, M.J.; Collins, W.F.; Holford, T.R.; Young, W.; Baskin, D.S.; Eisenberg, H.M.; Flamm, E.; Leo-Summers, L.; Maroon, J.; et al. A Randomized, Controlled Trial of Methylprednisolone or Naloxone in the Treatment of Acute Spinal-Cord Injury. N. Engl. J. Med. 1990, 322, 1405–1411. [Google Scholar]
- Bracken, M.B.; Shepard, M.J.; Holford, T.R.; Leo-Summers, L.; Aldrich, E.F.; Fazl, M.; Fehlings, M.; Herr, D.L.; Hitchon, P.W.; Marshall, L.F.; et al. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA 1997, 277, 1597–1604. [Google Scholar]
- Pointillart, V.; Petitjean, M.; Wiart, L.; Vital, J.; Lassié, P.; Thicoipé, M.; Dabadie, P. Pharmacological therapy of spinal cord injury during the acute phase. Spinal Cord 2000, 38, 71–76. [Google Scholar] [CrossRef]
- Hurlbert, R.J. Methylprednisolone for acute spinal cord injury: An inappropriate standard of care. J. Neurosurg. Spine 2000, 93, 1–7. [Google Scholar]
- Ito, Y.; Sugimoto, Y.; Tomioka, M.; Kai, N.; Tanaka, M. Does High Dose Methylprednisolone Sodium Succinate Really Improve Neurological Status in Patient With Acute Cervical Cord Injury? Spine (Phila Pa 1976) 2009, 34, 2121–2124. [Google Scholar] [CrossRef]
- Matsumoto, T.; Tamaki, T.; Kawakami, M.; Yoshida, M.; Ando, M.; Yamada, H. Early Complications of High-Dose Methylprednisolone Sodium Succinate Treatment in the Follow-Up of Acute Cervical Spinal Cord Injury. Spine (Phila Pa 1976) 2001, 26, 426–430. [Google Scholar] [PubMed]
- Suberviola, B.; González-Castro, A.; Llorca, J.; Ortiz-Melón, F.; Miñambres, E. Early complications of high-dose methylprednisolone in acute spinal cord injury patients. Injury 2008, 39, 748–752. [Google Scholar] [PubMed]
- Hurlbert, R.J.; Hadley, M.N.; Walters, B.C.; Aarabi, B.; Dhall, S.S.; Gelb, D.E.; Rozzelle, C.J.; Ryken, T.C.; Theodore, N. Pharmacological Therapy for Acute Spinal Cord Injury. Neurosurgery 2013, 72, 93–105. [Google Scholar] [PubMed]
- NICE Guideline NG41. Spinal Injury: Assessment and Initial Management; National Clinical Guideline Centre: London, UK, 2016. [Google Scholar]
- Bracken, M.B. Steroids for acute spinal cord injury. Cochrane Database Syst. Rev. 2012, 2018, 9. [Google Scholar]
- Wilson, J.R.; Arnold, P.M.; Singh, A.; Kalsi-Ryan, S.; Fehlings, M.G. Clinical prediction model for acute inpatient complications after traumatic cervical spinal cord injury: A subanalysis from the Surgical Timing in Acute Spinal Cord Injury Study. J. Neurosurg. Spine 2012, 17 (Suppl. S1), 46–51. [Google Scholar]
- Fehlings, M.G.; Wilson, J.R.; Tetreault, L.A.; Aarabi, B.; Anderson, P.; Arnold, P.M.; Brodke, D.S.; Burns, A.S.; Chiba, K.; Dettori, J.R.; et al. A Clinical Practice Guideline for the Management of Patients With Acute Spinal Cord Injury: Recommendations on the Use of Methylprednisolone Sodium Succinate. Global Spine J. 2017, 7, 203S–211S. [Google Scholar]
- Farahabadi, A.; Akbari, M.; Pishva, A.A.; Zendedel, A.; Arabkheradmand, A.; Beyer, C.; Dashti, N.; Hassanzadeh, G. Effect of Progesterone Therapy on TNF-α and iNOS Gene Expression in Spinal Cord Injury Model. Acta Med. Iran. 2016, 54, 345–351. [Google Scholar]
- Aminmansour, B.; Asnaashari, A.; Rezvani, M.; Ghaffarpasand, F.; Noorian, S.M.A.; Saboori, M.; Abdollahzadeh, P. Effects of progesterone and vitamin D on outcome of patients with acute traumatic spinal cord injury; a randomized, double-blind, placebo controlled study. J. Spinal Cord Med. 2015, 39, 272–280. [Google Scholar]
- Fehlings, M.G.; Moghaddamjou, A.; Harrop, J.S.; Stanford, R.; Ball, J.R.; Aarabi, B.; Freeman, B.J.C.; Arnold, P.M.; Guest, J.D.; Kurpad, S.N.; et al. Safety and Efficacy of Riluzole in Acute Spinal Cord Injury Study (RISCIS): A Multi-Center, Randomized, Placebo-Controlled, Double-Blinded Trial. J. Neurotrauma 2023, 40, 1878–1888. [Google Scholar]
- Lambrechts, M.J.; Issa, T.Z.; Hilibrand, A.S. Updates in the Early Management of Acute Spinal Cord Injury. J. Am. Acad. Orthop. Surg. 2023, 31, e619–e632. [Google Scholar]
- Grossman, R.G.; Fehlings, M.G.; Frankowski, R.F.; Burau, K.D.; Chow, D.S.; Tator, C.; Teng, A.; Toups, E.G.; Harrop, J.S.; Aarabi, B.; et al. A Prospective, Multicenter, Phase I Matched-Comparison Group Trial of Safety, Pharmacokinetics, and Preliminary Efficacy of Riluzole in Patients with Traumatic Spinal Cord Injury. J. Neurotrauma 2014, 31, 239–255. [Google Scholar]
- Fehlings, M.G.; Nakashima, H.; Nagoshi, N.; Chow, D.S.L.; Grossman, R.G.; Kopjar, B. Rationale, design and critical end points for the Riluzole in Acute Spinal Cord Injury Study (RISCIS): A randomized, double-blinded, placebo-controlled parallel multi-center trial. Spinal Cord 2015, 54, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Weisbrod, L.J.; Nilles-Melchert, T.T.; Bergjord, J.R.; Surdell, D.L. Safety and Efficacy of Riluzole in Traumatic Spinal Cord Injury: A Systematic Review With Meta-Analyses. Neurotrauma Rep. 2024, 5, 117–127. [Google Scholar] [PubMed]
- Takahashi, H.; Yamazaki, M.; Okawa, A.; Sakuma, T.; Kato, K.; Hashimoto, M.; Hayashi, K.; Furuya, T.; Fujiyoshi, T.; Kawabe, J.; et al. Neuroprotective therapy using granulocyte colony-stimulating factor for acute spinal cord injury: A phase I/IIa clinical trial. Eur. Spine J. 2012, 21, 2580–2587. [Google Scholar] [PubMed]
- Derakhshanrad, N.; Saberi, H.; Yekaninejad, M.S.; Joghataei, M.T. Subcutaneous granulocyte colony-stimulating factor administration for subacute traumatic spinal cord injuries, report of neurological and functional outcomes: A double-blind randomized controlled clinical trial. J. Neurosurg. Spine 2019, 30, 19–30. [Google Scholar]
- Fehlings, M.G.; Theodore, N.; Harrop, J.; Maurais, G.; Kuntz, C.; Shaffrey, C.I.; Kwon, B.K.; Chapman, J.; Yee, A.; Tighe, A.; et al. A Phase I/IIa Clinical Trial of a Recombinant Rho Protein Antagonist in Acute Spinal Cord Injury. J. Neurotrauma 2011, 28, 787–796. [Google Scholar] [CrossRef]
- Hirt, J.; Khanteymoori, A.; Hohenhaus, M.; Kopp, M.A.; Howells, D.W.; Schwab, J.M.; Watzlawick, R. Inhibition of the Nogo-pathway in experimental spinal cord injury: A meta-analysis of 76 experimental treatments. Sci. Rep. 2023, 13, 22898. [Google Scholar]
- Maynard, G.; Kannan, R.; Liu, J.; Wang, W.; Lam, T.K.T.; Wang, X.; Adamson, C.; Hackett, C.; Schwab, J.M.; Liu, C.; et al. Soluble Nogo-Receptor-Fc decoy (AXER-204) in patients with chronic cervical spinal cord injury in the USA: A first-in-human and randomised clinical trial. Lancet Neurol. 2023, 22, 672–684. [Google Scholar]
- Jacobson, P.B.; Goody, R.; Lawrence, M.; Mueller, B.K.; Zhang, X.; Hooker, B.A.; Pfleeger, K.; Ziemann, A.; Locke, C.; Barraud, Q.; et al. Elezanumab, a human anti-RGMa monoclonal antibody, promotes neuroprotection, neuroplasticity, and neurorecovery following a thoracic hemicompression spinal cord injury in non-human primates. Neurobiol. Dis. 2021, 155, 105385. [Google Scholar]
- Hata, K.; Fujitani, M.; Yasuda, Y.; Doya, H.; Saito, T.; Yamagishi, S.; Mueller, B.K.; Yamashita, T. RGMa inhibition promotes axonal growth and recovery after spinal cord injury. J. Cell Biol. 2006, 173, 47–58. [Google Scholar]
- Mothe, A.J.; Jacobson, P.B.; Caprelli, M.; Ulndreaj, A.; Rahemipour, R.; Huang, L.; Monnier, P.P.; Fehlings, M.G.; Tator, C.H. Delayed administration of elezanumab, a human anti-RGMa neutralizing monoclonal antibody, promotes recovery following cervical spinal cord injury. Neurobiol. Dis. 2022, 172, 105812. [Google Scholar]
- Fan, B.; Wei, Z.; Yao, X.; Shi, G.; Cheng, X.; Zhou, X.; Zhou, H.; Ning, G.; Kong, X.; Feng, S. Microenvironment Imbalance of Spinal Cord Injury. Cell Transplant. 2018, 27, 853–866. [Google Scholar] [PubMed]
- Zipser, C.M.; Cragg, J.J.; Guest, J.D.; Fehlings, M.G.; Jutzeler, C.R.; Anderson, A.J.; Curt, A. Cell-based and stem-cell-based treatments for spinal cord injury: Evidence from clinical trials. Lancet Neurol. 2022, 21, 659–670. [Google Scholar] [CrossRef]
- Veneruso, V.; Rossi, F.; Villella, A.; Bena, A.; Forloni, G.; Veglianese, P. Stem cell paracrine effect and delivery strategies for spinal cord injury regeneration. J. Control Release 2019, 300, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Ma, Z.; Li, J.; Kang, X. Mesenchymal stem cell-derived exosomes: Therapeutic opportunities and challenges for spinal cord injury. Stem Cell Res. Ther. 2021, 12, 102. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.-K. Modulation of Inflammatory Responses to Enhance Nerve Recovery after Spinal Cord Injury. Tissue Eng. Regen. Med. 2024, 21, 367–368. [Google Scholar]
- Pang, Q.-M.; Chen, S.-Y.; Xu, Q.-J.; Fu, S.-P.; Yang, Y.-C.; Zou, W.-H.; Zhang, M.; Liu, J.; Wan, W.-H.; Peng, J.-C.; et al. Neuroinflammation and Scarring After Spinal Cord Injury: Therapeutic Roles of MSCs on Inflammation and Glial Scar. Front. Immunol. 2021, 12, 751021. [Google Scholar] [CrossRef]
- Clifford, T.; Finkel, Z.; Rodriguez, B.; Joseph, A.; Cai, L. Current Advancements in Spinal Cord Injury Research—Glial Scar Formation and Neural Regeneration. Cells 2023, 12, 853. [Google Scholar] [CrossRef]
- Holmes, D. Spinal-cord injury- spurring regrowth. Nature 2017, 552, S49. [Google Scholar] [CrossRef]
- Liu, R.; Peng, B.; Yuan, J.; Hu, J.; Yang, J.; Shan, N.; Li, Q.; Zhao, B.; Xu, C.; Wang, Y. Research on stem cell therapy for spinal cord injury: A bibliometric and visual analysis from 2018–2023. Front. Genet. 2024, 15, 1327216. [Google Scholar] [CrossRef]
- Mai, Q.; Yu, Y.; Li, T.; Wang, L.; Chen, M.-J.; Huang, S.-Z.; Zhou, C.; Zhou, Q. Derivation of human embryonic stem cell lines from parthenogenetic blastocysts. Cell Res. 2007, 17, 1008–1019. [Google Scholar] [PubMed]
- Damdimopoulou, P.; Rodin, S.; Stenfelt, S.; Antonsson, L.; Tryggvason, K.; Hovatta, O. Human embryonic stem cells. Best Pract Res. Clin. Obstet Gynaecol. 2016, 31, 2–12. [Google Scholar] [CrossRef]
- Bruno, A.; Milillo, C.; Anaclerio, F.; Buccolini, C.; Dell’Elice, A.; Angilletta, I.; Gatta, M.; Ballerini, P.; Antonucci, I. Perinatal Tissue-Derived Stem Cells: An Emerging Therapeutic Strategy for Challenging Neurodegenerative Diseases. Int. J. Mol. Sci. 2024, 25, 976. [Google Scholar] [CrossRef]
- Jovic, D.; Yu, Y.; Wang, D.; Wang, K.; Li, H.; Xu, F.; Liu, C.; Liu, J.; Luo, Y. A Brief Overview of Global Trends in MSC-Based Cell Therapy. Stem Cell Rev. Rep. 2022, 18, 1525–1545. [Google Scholar] [PubMed]
- Beghini, D.G.; Kasai-Brunswick, T.H.; Henriques-Pons, A. Induced Pluripotent Stem Cells in Drug Discovery and Neurodegenerative Disease Modelling. Int. J. Mol. Sci. 2024, 25, 2392. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Gwon, Y.; Khan, S.A.; Jang, K.-J.; Kim, J. Engineering considerations of iPSC-based personalized medicine. Biomater. Res. 2023, 27, 1–27. [Google Scholar]
- De Gioia, R.; Biella, F.; Citterio, G.; Rizzo, F.; Abati, E.; Nizzardo, M.; Bresolin, N.; Comi, G.P.; Corti, S. Neural Stem Cell Transplantation for Neurodegenerative Diseases. Int. J. Mol. Sci. 2020, 21, 3103. [Google Scholar] [CrossRef]
- de Freria, C.M.; Van Niekerk, E.; Blesch, A.; Lu, P. Neural Stem Cells: Promoting Axonal Regeneration and Spinal Cord Connectivity. Cells 2021, 10, 3296. [Google Scholar] [CrossRef]
- Xia, Y.; Zhu, J.; Yang, R.; Wang, H.; Li, Y.; Fu, C. Mesenchymal stem cells in the treatment of spinal cord injury: Mechanisms, current advances and future challenges. Front. Immunol. 2023, 14, 1141601. [Google Scholar] [CrossRef]
- Luzzi, S.; Crovace, A.; Crovace, A.M. Commentary: Mesenchymal stem cells in the treatment of spinal cord injury: Mechanisms, current advances and future challenges. Front. Immunol. 2024, 11, 15. [Google Scholar]
- Mili, B.; Choudhary, O.P. Advancements and mechanisms of stem cell-based therapies for spinal cord injury in animals. Int. J. Surg. 2024, 110, 6182–6197. [Google Scholar] [CrossRef] [PubMed]
- Hassan, O.I.; Takamiya, S.; Asgarihafshejani, A.; Fehlings, M.G. Bridging the gap: A translational perspective in spinal cord injury. Exp. Biol. Med. 2024, 249, 10266. [Google Scholar] [CrossRef] [PubMed]
- Katari, V.; Pasupuleti, S.K.; Mullick, M.; Lekkala, V.K.R.; Sen, D. Editorial: Advanced neural stem cell therapies for spinal cord injury. Front. Pharmacol. 2024, 15, 1469535. [Google Scholar] [CrossRef]
- Wang, S.; Du, C.; Li, G. Mesenchymal stem cell-derived extracellular vesicles: Emerging concepts in the treatment of spinal cord injury [Internet]. Am. J. Transl. Res. 2023, 15, 4425–4438. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC10408507/ (accessed on 2 February 2025). [PubMed]
- Bydon, M.; Qu, W.; Moinuddin, F.M.; Hunt, C.L.; Garlanger, K.L.; Reeves, R.K.; Windebank, A.J.; Zhao, K.D.; Jarrah, R.; Trammell, B.C.; et al. Intrathecal delivery of adipose-derived mesenchymal stem cells in traumatic spinal cord injury: Phase I trial. Nat. Commun. 2024, 15, 2201. [Google Scholar] [CrossRef]
- Awidi, A.; Al Shudifat, A.; El Adwan, N.; Alqudah, M.; Jamali, F.; Nazer, F.; Sroji, H.; Ahmad, H.; Al-Quzaa, N.; Jafar, H. Safety and potential efficacy of expanded mesenchymal stromal cells of bone marrow and umbilical cord origins in patients with chronic spinal cord injuries: A phase I/II study. Cytotherapy. 2024, 26, 825–831. [Google Scholar] [CrossRef]
- Jamali, F.; Alqudah, M.; Rahmeh, R.; Bawaneh, H.; Al-Shudifat, A.; Samara, O.; Awidi, A. Safe Reversal of Motor and Sensory Deficits by Repeated High Doses of Mesenchymal Stem Cells in a Patient with Chronic Complete Spinal Cord Injury. Am. J. Case Rep. 2023, 24, e938576. [Google Scholar] [CrossRef]
- Albu, S.; Kumru, H.; Coll, R.; Vives, J.; Vallés, M.; Benito-Penalva, J.; Rodríguez, L.; Codinach, M.; Hernández, J.; Navarro, X.; et al. Clinical effects of intrathecal administration of expanded Wharton jelly mesenchymal stromal cells in patients with chronic complete spinal cord injury: A randomized controlled study. Cytotherapy 2021, 23, 146–156. [Google Scholar] [CrossRef]
- Vaquero, J.; Zurita, M.; Rico, M.A.; Aguayo, C.; Bonilla, C.; Marin, E.; Tapiador, N.; Sevilla, M.; Vazquez, D.; Carballido, J.; et al. Intrathecal administration of autologous mesenchymal stromal cells for spinal cord injury: Safety and efficacy of the 100/3 guideline. Cytotherapy 2018, 20, 806–819. [Google Scholar] [CrossRef]
- Vaquero, J.; Zurita, M.; Rico, M.A.; Bonilla, C.; Aguayo, C.; Fernández, C.; Tapiador, N.; Sevilla, M.; Morejón, C.; Montilla, J.; et al. Repeated subarachnoid administrations of autologous mesenchymal stromal cells supported in autologous plasma improve quality of life in patients suffering incomplete spinal cord injury. Cytotherapy 2017, 19, 349–359. [Google Scholar] [CrossRef]
- Zhao, Y.; Tang, F.; Xiao, Z.; Han, G.; Wang, N.; Yin, N.; Chen, B.; Jiang, X.; Yun, C.; Han, W.; et al. Clinical Study of NeuroRegen Scaffold Combined With Human Mesenchymal Stem Cells for the Repair of Chronic Complete Spinal Cord Injury. Cell Transpl. 2017, 26, 891–900. [Google Scholar] [CrossRef]
- Satti, H.S.; Waheed, A.; Ahmed, P.; Ahmed, K.; Akram, Z.; Aziz, T.; Satti, T.M.; Shahbaz, N.; Khan, M.A.; Malik, S.A. Autologous mesenchymal stromal cell transplantation for spinal cord injury: A Phase I pilot study. Cytotherapy 2016, 18, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.K.; Choi, K.H.; Yoo, J.Y.; Kim, D.Y.; Kim, S.J.; Jeon, S.R. A Phase III Clinical Trial Showing Limited Efficacy of Autologous Mesenchymal Stem Cell Therapy for Spinal Cord Injury. Neurosurgery 2016, 78, 436–447; discussion 447. [Google Scholar] [CrossRef] [PubMed]
- Hur, J.W.; Cho, T.H.; Park, D.H.; Lee, J.B.; Park, J.Y.; Chung, Y.G. Intrathecal transplantation of autologous adipose-derived mesenchymal stem cells for treating spinal cord injury: A human trial. J. Spinal Cord Med. 2016, 39, 655–664. [Google Scholar] [CrossRef]
- Oraee-Yazdani, S.; Hafizi, M.; Atashi, A.; Ashrafi, F.; Seddighi, A.S.; Hashemi, S.M.; Seddighi, A.; Soleimani, M.; Zali, A. Co-transplantation of autologous bone marrow mesenchymal stem cells and Schwann cells through cerebral spinal fluid for the treatment of patients with chronic spinal cord injury: Safety and possible outcome. Spinal Cord 2016, 54, 102–109. [Google Scholar] [CrossRef]
- Mendonça, M.V.; Larocca, T.F.; de Freitas Souza, B.S.; Villarreal, C.F.; Silva, L.F.; Matos, A.C.; Novaes, M.A.; Bahia, C.M.; de Oliveira Melo Martinez, A.C.; Kaneto, C.M.; et al. Safety and neurological assessments after autologous transplantation of bone marrow mesenchymal stem cells in subjects with chronic spinal cord injury. Stem Cell Res. Ther. 2014, 5, 126. [Google Scholar] [CrossRef] [PubMed]
- El-Kheir, W.A.; Gabr, H.; Awad, M.R.; Ghannam, O.; Barakat, Y.; Farghali, H.A.; El Maadawi, Z.M.; Ewes, I.; Sabaawy, H.E. Autologous bone marrow-derived cell therapy combined with physical therapy induces functional improvement in chronic spinal cord injury patients. Cell Transpl. 2014, 23, 729–745. [Google Scholar] [CrossRef]
- Szymoniuk, M.; Litak, J.; Sakwa, L.; Dryla, A.; Zezuliński, W.; Czyżewski, W.; Kamieniak, P.; Blicharski, T. Molecular Mechanisms and Clinical Application of Multipotent Stem Cells for Spinal Cord Injury. Cells 2022, 12, 120. [Google Scholar] [CrossRef]
- Fischer, G.; Bättig, L.; Stienen, M.N.; Curt, A.; Fehlings, M.G.; Hejrati, N. Advancements in neuroregenerative and neuroprotective therapies for traumatic spinal cord injury. Front. Neurosci. 2024, 18, 1372920. [Google Scholar]
- Li, C.; Luo, Y.; Li, S. The roles of neural stem cells in myelin regeneration and repair therapy after spinal cord injury. Stem Cell Res. Ther. 2024, 15, 1–13. [Google Scholar]
- Zeng, C.-W. Advancing Spinal Cord Injury Treatment through Stem Cell Therapy: A Comprehensive Review of Cell Types, Challenges, and Emerging Technologies in Regenerative Medicine. Int. J. Mol. Sci. 2023, 24, 14349. [Google Scholar] [CrossRef] [PubMed]
- Manley, N.C.; Priest, C.A.; Denham, J.; Wirth, E.D., III; Lebkowski, J.S. Human Embryonic Stem Cell-Derived Oligodendrocyte Progenitor Cells: Preclinical Efficacy and Safety in Cervical Spinal Cord Injury. Stem Cells Transl. Med. 2017, 6, 1917–1929. [Google Scholar] [PubMed]
- Nagoshi, N.; Sugai, K.; Okano, H.; Nakamura, M. Regenerative Medicine for Spinal Cord Injury Using Induced Pluripotent Stem Cells. Spine Surg. Relat. Res. 2024, 8, 22–28. [Google Scholar]
- Neuhuber, C.; Barshinger, A.L.; Paul, C.; Shumsky, J.S.; Mitsui, T.; Fischer, I. Stem cell delivery by lumbar puncture as a therapeutic alternative to direct injection into injured spinal cord. J. Neurosurg Spine 2008, 9, 300–399. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Q.; Guo, Z.; Li, Z. Constructing a cell microenvironment with biomaterial scaffolds for stem cell therapy. Stem Cell Res. Ther. 2021, 12, 583. [Google Scholar]
- Ge, Z.; Qiu, C.; Zhou, J.; Yang, Z.; Jiang, T.; Yuan, W.; Yu, L.; Li, J. Proteomic analysis of human Wharton’s jelly mesenchymal stem/stromal cells and human amniotic epithelial stem cells: A comparison of therapeutic potential. Sci. Rep. 2024, 14, 1–13. [Google Scholar]
- Horng, S.H.; Miller, F.G. Placebo-controlled procedural trials for neurological conditions. Neurotherapeutics 2007, 4, 531–536. [Google Scholar] [CrossRef]
- Rybachuk, O.; Nesterenko, Y.; Zhovannyk, V. Modern advances in spinal cord regeneration: Hydrogel combined with neural stem cells. Front. Pharmacol. 2024, 15, 1419797. [Google Scholar]
- Bickenbach, J.; Officer, A.; Shakespeare, T.; Per, V.G. International Perspectives on Spinal Cord Injury; Bickenbach, J., Officer, A., Shakespeare, T., Per, V.G., Eds.; World Health Organization: Geneva, Switzerland, 2013. Available online: https://iris.who.int/handle/10665/94190 (accessed on 26 December 2024).
- Cook, A.W.; Weinstein, S.P. Chronic dorsal column stimulation in multiple sclerosis. Preliminary report. N. Y. State J. Med. 1973, 73, 2868–2872. [Google Scholar]
- Harkema, S.; Gerasimenko, Y.; Hodes, J.; Burdick, J.; Angeli, C.; Chen, Y.; Ferreira, C.; Willhite, A.; Rejc, E.; Grossman, R.G.; et al. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: A case study. Lancet. 2011, 377, 1938–1947. [Google Scholar]
- Angeli, C.A.; Edgerton, V.R.; Gerasimenko, Y.P.; Harkema, S.J. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain 2014, 137, 1394–1409. [Google Scholar] [PubMed]
- Angeli, C.A.; Boakye, M.; Morton, R.A.; Vogt, J.; Benton, K.; Chen, Y.; Ferreira, C.K.; Harkema, S.J. Recovery of Over-Ground Walking after Chronic Motor Complete Spinal Cord Injury. N. Engl. J. Med. 2018, 379, 1244–1250. [Google Scholar]
- Gill, M.L.; Grahn, P.J.; Calvert, J.S.; Linde, M.B.; Lavrov, I.A.; Strommen, J.A.; Beck, L.A.; Sayenko, D.G.; Van Straaten, M.G.; Drubach, D.I.; et al. Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat. Med. 2018, 24, 1677–1682. [Google Scholar] [PubMed]
- Wagner, F.B.; Mignardot, J.-B.; Le Goff-Mignardot, C.G.; Demesmaeker, R.; Komi, S.; Capogrosso, M.; Rowald, A.; Seáñez, I.; Caban, M.; Pirondini, E.; et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature 2018, 563, 65–71. [Google Scholar]
- Rowald, A.; Komi, S.; Demesmaeker, R.; Baaklini, E.; Hernandez-Charpak, S.D.; Paoles, E.; Montanaro, H.; Cassara, A.; Becce, F.; Lloyd, B.; et al. Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis. Nat. Med. 2022, 28, 260–271. [Google Scholar] [PubMed]
- Gerasimenko, Y.; Gorodnichev, R.; Moshonkina, T.; Sayenko, D.; Gad, P.; Edgerton, V.R. Transcutaneous electrical spinal-cord stimulation in humans. Ann. Phys. Rehabil. Med. 2015, 58, 225–231. [Google Scholar]
- Gerasimenko, Y.P.; Lu, D.C.; Modaber, M.; Zdunowski, S.; Gad, P.; Sayenko, D.G.; Morikawa, E.; Haakana, P.; Ferguson, A.R.; Roy, R.R.; et al. Noninvasive Reactivation of Motor Descending Control after Paralysis. J. Neurotrauma 2015, 32, 1968–1980. [Google Scholar]
- Gad, P.; Lee, S.; Terrafranca, N.; Zhong, H.; Turner, A.; Gerasimenko, Y.; Edgerton, V.R. Non-Invasive Activation of Cervical Spinal Networks after Severe Paralysis. J. Neurotrauma 2018, 35, 2145–2158. [Google Scholar]
- Kumru, H.; Flores, Á.; Rodríguez-Cañón, M.; Edgerton, V.R.; García, L.; Benito-Penalva, J.; Navarro, X.; Gerasimenko, Y.; García-Alías, G.; Vidal, J. Cervical Electrical Neuromodulation Effectively Enhances Hand Motor Output in Healthy Subjects by Engaging a Use-Dependent Intervention. J. Clin. Med. 2021, 10, 195. [Google Scholar] [CrossRef]
- Kumru, H.; Rodríguez-Cañón, M.; Edgerton, V.R.; García, L.; Flores, Á.; Soriano, I.; Opisso, E.; Gerasimenko, Y.; Navarro, X.; García-Alías, G.; et al. Transcutaneous Electrical Neuromodulation of the Cervical Spinal Cord Depends Both on the Stimulation Intensity and the Degree of Voluntary Activity for Training. A Pilot Study. J. Clin. Med. 2021, 10, 3278. [Google Scholar] [CrossRef]
- García-Alén, L.; Kumru, H.; Castillo-Escario, Y.; Benito-Penalva, J.; Medina-Casanovas, J.; Gerasimenko, Y.P.; Edgerton, V.R.; García-Alías, G.; Vidal, J. Transcutaneous Cervical Spinal Cord Stimulation Combined with Robotic Exoskeleton Rehabilitation for the Upper Limbs in Subjects with Cervical SCI: Clinical Trial. Biomedicines 2023, 11, 589. [Google Scholar] [CrossRef] [PubMed]
- Kumru, H.; García-Alén, L.; Ros-Alsina, A.; Albu, S.; Valles, M.; Vidal, J. Transcutaneous Spinal Cord Stimulation Improves Respiratory Muscle Strength and Function in Subjects with Cervical Spinal Cord Injury: Original Research. Biomedicines 2023, 11, 2121. [Google Scholar] [CrossRef]
- Inanici, F.; Brighton, L.N.; Samejima, S.; Hofstetter, C.P.; Moritz, C.T. Transcutaneous spinal cord stimulation restores hand and arm function after spinal cord injury. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Sayenko, D.G.; Rath, M.; Ferguson, A.R.; Burdick, J.W.; Havton, L.A.; Edgerton, V.R.; Gerasimenko, Y.P. Self-assisted standing enabled by non-invasive spinal stimulation after spinal cord injury. J. Neurotrauma 2019, 36, 1435–1450. [Google Scholar] [CrossRef] [PubMed]
- Milosevic, M.; Masugi, Y.; Sasaki, A.; Sayenko, D.G.; Nakazawa, K. On the reflex mechanisms of cervical transcutaneous spinal cord stimulation in human subjects. J. Neurophysiol. 2019, 121, 1672–1679. Available online: https://journals.physiology.org/doi/full/10.1152/jn.00802.2018?rfr_dat=cr_pub++0pubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org (accessed on 2 February 2025). [CrossRef] [PubMed]
- Beekhuizen, K.S.; Field-Fote, E.C. Massed practice versus massed practice with stimulation: Effects on upper extremity function and cortical plasticity in individuals with incomplete cervical spinal cord injury. Neurorehabilit. Neural Repair 2005, 19, 33–45. [Google Scholar] [CrossRef]
- Guiho, T.; Baker, S.N.; Jackson, A. Epidural and transcutaneous spinal cord stimulation facilitates descending inputs to upper-limb motoneurons in monkeys. J. Neural Eng. 2021, 18, 046011. [Google Scholar] [CrossRef]
- DiMarco, A.F.; Kowalski, K.E.; Geertman, R.T.; Hromyak, D.R.; Frost, F.S.; Creasey, G.H.; Neumunaitis, G.A. Lower Thoracic Spinal Cord Stimulation to Restore Cough in Patients With Spinal Cord Injury: Results of a National Institutes of Health–Sponsored Clinical Trial. Part II: Clinical Outcomes. Arch. Phys. Med. Rehabil. 2009, 90, 726–732. [Google Scholar] [CrossRef]
- Khorasanizadeh, M.; Yousefifard, M.; Eskian, M.; Lu, Y.; Chalangari, M.; Harrop, J.S.; Jazayeri, S.B.; Seyedpour, S.; Khodaei, B.; Hosseini, M.; et al. Neurological recovery following traumatic spinal cord injury: A systematic review and meta-analysis. J. Neurosurg. Spine 2019, 30, 683–699. [Google Scholar] [CrossRef]
- Waltz, J.M.; Andreesen, W.H.; Hunt, D.P. Spinal Cord Stimulation and Motor Disorders. Pacing Clin. Electrophysiol. 1987, 10, 180–204. [Google Scholar] [CrossRef]
- Lu, D.C.; Edgerton, V.R.; Modaber, M.; AuYong, N.; Morikawa, E.; Zdunowski, S.; Sarino, M.E.; Sarrafzadeh, M.; Nuwer, M.R.; Roy, R.R.; et al. Engaging Cervical Spinal Cord Networks to Reenable Volitional Control of Hand Function in Tetraplegic Patients. Neurorehabil Neural Repair 2016, 30, 951–962. [Google Scholar] [PubMed]
- Murray, L.M.; Knikou, M. Remodeling Brain Activity by Repetitive Cervicothoracic Transspinal Stimulation after Human Spinal Cord Injury. Front. Neurol. 2017, 8, 50. [Google Scholar]
- Freyvert, Y.; Yong, N.A.; Morikawa, E.; Zdunowski, S.; Sarino, M.E.; Gerasimenko, Y.; Edgerton, V.R.; Lu, D.C. Engaging cervical spinal circuitry with non-invasive spinal stimulation and buspirone to restore hand function in chronic motor complete patients. Sci. Rep. 2018, 8, 15546. [Google Scholar] [CrossRef]
- Moritz, C.; Field-Fote, E.C.; Tefertiller, C.; van Nes, I.; Trumbower, R.; Kalsi-Ryan, S.; Purcell, M.; Janssen, T.W.; Krassioukov, A.; Morse, L.R.; et al. Non-invasive spinal cord electrical stimulation for arm and hand function in chronic tetraplegia: A safety and efficacy trial. Nat Med. 2024, 30, 1276–1283. [Google Scholar]
- Berlowitz, D.J.; Tamplin, J. Respiratory muscle training for cervical spinal cord injury. Cochrane Database Syst. Rev. 2013, 2014, CD008507. [Google Scholar] [CrossRef] [PubMed]
- Gad, P.N.; Kreydin, E.; Zhong, H.; Edgerton, V.R. Enabling respiratory control after severe chronic tetraplegia: An exploratory case study. J. Neurophysiol. 2020, 124, 774–780. [Google Scholar] [CrossRef]
- Kumru, H.; Ros-Alsina, A.; Alén, L.G.; Vidal, J.; Gerasimenko, Y.; Hernandez, A.; Wrigth, M. Improvement in Motor and Walking Capacity during Multisegmental Transcutaneous Spinal Stimulation in Individuals with Incomplete Spinal Cord Injury. Int. J. Mol. Sci. 2024, 25, 4480. [Google Scholar] [CrossRef]
- Rath, M.; Vette, A.H.; Ramasubramaniam, S.; Li, K.; Burdick, J.; Edgerton, V.R.; Gerasimenko, Y.P.; Sayenko, D.G. Trunk Stability Enabled by Noninvasive Spinal Electrical Stimulation after Spinal Cord Injury. J. Neurotrauma 2018, 35, 2540–2553. [Google Scholar]
- Tharu, N.S.; Alam, M.; Ling, Y.T.; Wong, A.Y.; Zheng, Y.-P. Combined Transcutaneous Electrical Spinal Cord Stimulation and Task-Specific Rehabilitation Improves Trunk and Sitting Functions in People with Chronic Tetraplegia. Biomedicines 2022, 11, 34. [Google Scholar] [CrossRef]
- Kumru, H.; Castillo-Escario, Y.; Jane, R.; Vidal, J.; Alén, L.G. Effect of Transcutaneous Cervical Spinal Cord Stimulation on Trunk Function in Subjects with Cervical Spinal Cord Injury. J. Spine Res. Surg. 2023, 5, 117–126. [Google Scholar] [CrossRef]
- Keller, A.; Singh, G.; Sommerfeld, J.H.; King, M.; Parikh, P.; Ugiliweneza, B.; D’amico, J.; Gerasimenko, Y.; Behrman, A.L. Noninvasive spinal stimulation safely enables upright posture in children with spinal cord injury. Nat. Commun. 2021, 12, 5850. [Google Scholar] [PubMed]
- Minassian, K.; Hofstoetter, U.S.; Danner, S.M.; Mayr, W.; Bruce, J.A.; McKay, W.B.; Tansey, K.E. Spinal rhythm generation by step-induced feedback and transcutaneous posterior root stimulation in complete spinal cord–injured individuals. Neurorehabilit. Neural Repair 2015, 30, 233–243. [Google Scholar]
- Kumru, H.; Flores, Á.; Rodríguez Cañón, M.; Soriano, I.; García, L.; Vidal Samsó, J. Estimulación no invasiva cerebral y medular para la recuperación motora y funcional tras una lesión medular. Rev. Neurol. 2020, 70, 461. [Google Scholar]
- Barss, T.S.; Parhizi, B.; Mushahwar, V.K. Transcutaneous spinal cord stimulation of the cervical cord modulates lumbar networks. J. Neurophysiol. 2020, 123, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Angeli, C.A.; Gerasimenko, Y. Combined cervical transcutaneous with lumbosacral epidural stimulation improves voluntary control of stepping movements in spinal cord injured individuals. Front. Bioeng. Biotechnol. 2023, 11, 1073716. [Google Scholar]
- McCrea, D.A.; Rybak, I.A. Organization of mammalian locomotor rhythm and pattern generation. Brain Res. Rev. 2007, 57, 134–146. [Google Scholar]
- Whelan, P.J.; Bonnot, A.; O’Donovan, M.J.; Ziskind-Conhaim, L.; Hochman, S.; Acton, D.; Miles, G.B.; Mahrous, A.A.; Elbasiouny, S.M.; Frigon, A.; et al. Properties of Rhythmic Activity Generated by the Isolated Spinal Cord of the Neonatal Mouse. J. Neurophysiol. 2000, 84, 2821–2833. Available online: https://journals.physiology.org/doi/full/10.1152/jn.2000.84.6.2821?rfr_dat=cr_pub++0pubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org (accessed on 31 January 2025).
- Hofstoetter, U.S.; Hofer, C.; Kern, H.; Danner, S.M.; Mayr, W.; Dimitrijevic, M.R.; Minassian, K. Effects of transcutaneous spinal cord stimulation on voluntary locomotor activity in an incomplete spinal cord injured individual. Biomed. Eng. Biomed. Tech. 2013, 58, 000010151520134014. [Google Scholar] [CrossRef]
- McHugh, L.V.; Miller, A.A.; Leech, K.A.; Salorio, C.; Martin, R.H. Feasibility and utility of transcutaneous spinal cord stimulation combined with walking-based therapy for people with motor incomplete spinal cord injury. Spinal Cord Ser. Cases 2020, 6, 1–9. [Google Scholar]
- Shapkova, E.Y.; Pismennaya, E.V.; Emelyannikov, D.V.; Ivanenko, Y. Exoskeleton Walk Training in Paralyzed Individuals Benefits From Transcutaneous Lumbar Cord Tonic Electrical Stimulation. Front. Neurosci. 2020, 14, 416. [Google Scholar] [CrossRef]
- Estes, S.; Zarkou, A.; Hope, J.M.; Suri, C.; Field-Fote, E.C. Combined transcutaneous spinal stimulation and locomotor training to improve walking function and reduce spasticity in subacute spinal cord injury: A randomized study of clinical feasibility and efficacy. J. Clin. Med. 2021, 10, 1167. [Google Scholar] [CrossRef] [PubMed]
- Meyer, C.; Hofstoetter, U.S.; Hubli, M.; Hassani, R.H.; Rinaldo, C.; Curt, A.; Bolliger, M. Immediate effects of transcutaneous spinal cord stimulation on motor function in chronic, sensorimotor incomplete spinal cord injury. J. Clin. Med. 2020, 9, 3541. [Google Scholar] [CrossRef]
- Stampacchia, G.; Gazzotti, V.; Olivieri, M.; Andrenelli, E.; Bonaiuti, D.; Calabro, R.S.; Carmignano, S.M.; Cassio, A.; Fundaro, C.; Companini, I.; et al. Gait robot-assisted rehabilitation in persons with spinal cord injury: A scoping review. NeuroRehabilitation 2022, 51, 609–647. [Google Scholar] [CrossRef] [PubMed]
- Midik, M.; Paker, N.; Buǧdayci, D.; Midik, A.C. Effects of robot-assisted gait training on lower extremity strength, functional independence, and walking function in men with incomplete traumatic spinal cord injury. Turk. J. Phys. Med. Rehabil. 2020, 66, 54–59. [Google Scholar]
- Nam, K.Y.; Kim, H.J.; Kwon, B.S.; Park, J.-W.; Lee, H.J.; Yoo, A. Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: A systematic review. J. Neuroeng. Rehabil. 2017, 14, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Mikolajczyk, T.; Ciobanu, I.; Badea, D.I.; Iliescu, A.; Pizzamiglio, S.; Schauer, T.; Seel, T.; Seiciu, P.L.; Turner, D.L.; Berteanu, M. Advanced technology for gait rehabilitation: An overview. Adv. Mech. Eng. 2018, 10, 1687814018783627. [Google Scholar] [CrossRef]
- Patathong, T.; Klaewkasikum, K.; Woratanarat, P.; Rattanasiri, S.; Anothaisintawee, T.; Woratanarat, T.; Thakkinstian, A. The efficacy of gait rehabilitations for the treatment of incomplete spinal cord injury: A systematic review and network meta-analysis. J. Orthop. Surg. Res. 2023, 18, 1–13. [Google Scholar]
- Cheung, E.Y.Y.; Yu, K.K.K.; Kwan, R.L.C.; Ng, C.K.M.; Chau, R.M.W.; Cheing, G.L.Y. Effect of EMG-biofeedback robotic-assisted body weight supported treadmill training on walking ability and cardiopulmonary function on people with subacute spinal cord injuries—A randomized controlled trial. BMC Neurol. 2019, 19, 140. [Google Scholar] [CrossRef]
- Park, J.M.; Kim, Y.W.; Lee, S.J.; Shin, J.C. Robot-Assisted Gait Training in Individuals With Spinal Cord Injury: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Ann. Rehabil. Med. 2024, 48, 171–191. [Google Scholar]
- Holanda, L.J.; Silva, P.M.M.; Amorim, T.C.; Lacerda, M.O.; Simão, C.R.; Morya, E. Robotic assisted gait as a tool for rehabilitation of individuals with spinal cord injury: A systematic review. J. Neuroeng. Rehabil. 2017, 14, 126. [Google Scholar] [CrossRef]
- Contreras-Vidal, J.L.; Bhagat, N.A.; Brantley, J.; Cruz-Garza, J.G.; He, Y.; Manley, Q.; Nakagome, S.; Nathan, K.; Tan, S.H.; Zhu, F.; et al. Powered exoskeletons for bipedal locomotion after spinal cord injury. J. Neural Eng. 2016, 13, 031001. [Google Scholar] [CrossRef]
- Kerdraon, J.; Previnaire, J.G.; Tucker, M.; Coignard, P.; Allegre, W.; Knappen, E.; Ames, A. Evaluation of safety and performance of the self balancing walking system Atalante in patients with complete motor spinal cord injury. Spinal Cord Ser. Cases 2021, 7, 71. [Google Scholar] [CrossRef]
- He, Y.; Xu, Y.; Hai, M.; Feng, Y.; Liu, P.; Chen, Z.; Duan, W. Exoskeleton-Assisted Rehabilitation and Neuroplasticity in Spinal Cord Injury. World Neurosurg. 2024, 185, 45–54. [Google Scholar] [CrossRef]
- Tefertiller, C.; Hays, K.; Jones, J.; Jayaraman, A.; Hartigan, C.; Bushnik, T.; Forrest, G.F. Initial Outcomes from a Multicenter Study Utilizing the Indego Powered Exoskeleton in Spinal Cord Injury. Top. Spinal Cord Inj. Rehabil. 2018, 24, 78–85. [Google Scholar] [CrossRef]
- Wiśniowska-Szurlej, A.; Wołoszyn, N.; Brożonowicz, J.; Ciąpała, G.; Pietryka, K.; Grzegorczyk, J.; Leszczak, J.; Ćwirlej-Sozańska, A.; Sozański, B.; Korczowski, B. Enhanced Rehabilitation Outcomes of Robotic-Assisted Gait Training with EksoNR Lower Extremity Exoskeleton in 19 Stroke Patients. Med. Sci. Monit. 2023, 29, e940511-1–e940511-10. [Google Scholar] [CrossRef] [PubMed]
- Forte, G.; Leemhuis, E.; Favieri, F.; Casagrande, M.; Giannini, A.M.; De Gennaro, L.; Pazzaglia, M. Exoskeletons for Mobility after Spinal Cord Injury: A Personalized Embodied Approach. J. Pers. Med. 2022, 12, 380. [Google Scholar] [CrossRef] [PubMed]
- Koda, M.; Kubota, S.; Kadone, H.; Miura, K.; Funayama, T.; Takahashi, H.; Yamazaki, M. Robotic rehabilitation therapy using Hybrid Assistive Limb (HAL) for patients with spinal cord lesions: A narrative review. N. Am. Spine Soc. J. (NASSJ) 2023, 14, 100209. [Google Scholar] [CrossRef] [PubMed]
- Brinkemper, A.; Grasmücke, D.; Yilmaz, E.; Schildhauer, T.A.; Aach, M. HAL Training in Spinal Cord Injured Patients: A Narrative Review of 10 Years Experience. Appl. Sci. 2023, 13, 1369. [Google Scholar] [CrossRef]
- Jansen, O.; Grasmuecke, D.; Meindl, R.C.; Tegenthoff, M.; Schwenkreis, P.; Sczesny-Kaiser, M.; Wessling, M.; Schildhauer, T.A.; Fisahn, C.; Aach, M. Hybrid Assistive Limb Exoskeleton HAL in the Rehabilitation of Chronic Spinal Cord Injury: Proof of Concept; the Results in 21 Patients. World Neurosurg. 2018, 110, E73–E78. [Google Scholar] [CrossRef]
- Shimizu, Y.; Kadone, H.; Kubota, S.; Suzuki, K.; Abe, T.; Ueno, T.; Soma, Y.; Sankai, Y.; Hada, Y.; Yamazaki, M. Voluntary Ambulation by Upper Limb-Triggered HAL® in Patients with Complete Quadri/Paraplegia Due to Chronic Spinal Cord Injury. Front. Neurosci. 2017, 11, 649. [Google Scholar] [CrossRef]
- Birch, N.; Graham, J.; Priestley, T.; Heywood, C.; Sakel, M.; Gall, A.; Nunn, A.; Signal, N. Results of the first interim analysis of the RAPPER II trial in patients with spinal cord injury: Ambulation and functional exercise programs in the REX powered walking aid. J. Neuroeng. Rehabil. 2017, 14, 60. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, H.; Ai, H.; Liu, Y. Effects of virtual reality rehabilitation after spinal cord injury: A systematic review and meta-analysis. J. Neuroeng. Rehabil. 2024, 21, 191. [Google Scholar] [CrossRef] [PubMed]
- Orsatti Sánchez, B.A.; Diaz Hernandez, O. Efficacy of Virtual Reality in Neurorehabilitation of Spinal Cord Injury Patients: A Systematic Review. Rev. Mex. Ing. Bioméd. 2021, 42. [Google Scholar] [CrossRef]
- Scalise, M.; Bora, T.S.; Zancanella, C.; Safa, A.; Stefini, R.; Cannizzaro, D. Virtual Reality as a Therapeutic Tool in Spinal Cord Injury Rehabilitation: A Comprehensive Evaluation and Systematic Review. J. Clin. Med. 2024, 13, 5429. [Google Scholar] [CrossRef] [PubMed]
- Kalimuthukumar, S.; Arunprasath, T.; Raja Lakshmi, S.; Pandiarajan, M.; Gowtham Pandi, S.; Mahendran, C. Rehabilitation System Using Virtual Gaming for Spinal Cord Injury (SCI) Patients to Activate Sensorimotor Areas. In Proceedings of the IESIA 2024—Intelligent Electrical Systems and Industrial Automation, Kolkata, India, 5–7 April 2024; pp. 93–99. [Google Scholar] [CrossRef]
- Brogioli, M.; Popp, W.L.; Albisser, U.; Brust, A.K.; Frotzler, A.; Gassert, R.; Curt, A.; Starkey, M.L. Novel Sensor Technology To Assess Independence and Limb-Use Laterality in Cervical Spinal Cord Injury. J. Neurotrauma 2016, 33, 1950–1957. [Google Scholar] [PubMed]
- Baig, M.M.; GholamHosseini, H.; Moqeem, A.A.; Mirza, F.; Lindén, M. A Systematic Review of Wearable Patient Monitoring Systems–Current Challenges and Opportunities for Clinical Adoption. J. Med. Syst. 2017, 41, 115. [Google Scholar]
- Rast, F.M.; Labruyère, R. Systematic review on the application of wearable inertial sensors to quantify everyday life motor activity in people with mobility impairments. J. Neuroeng. Rehabil. 2020, 17, 1–19. [Google Scholar]
- Wang, X.; Yu, H.; Kold, S.; Rahbek, O.; Bai, S. Wearable sensors for activity monitoring and motion control: A review. Biomim. Intell. Robot. 2023, 3, 100089. [Google Scholar] [CrossRef]
- Kapoor, V.; Singh, R.; Reddy, R.; Churi, P. International Conference on Innovative Computing and CommunicationPrivacy Issues in Wearable Technology: An Intrinsic Review. SSRN Electron. J. 2020, 7, 1–7. [Google Scholar]
- Schneider, S.; Popp, W.L.; Brogioli, M.; Albisser, U.; Demkó, L.; Debecker, I.; Velstra, I.-M.; Gassert, R.; Curt, A. Reliability of Wearable-Sensor-Derived Measures of Physical Activity in Wheelchair-Dependent Spinal Cord Injured Patients. Front. Neurol. 2018, 9, 1039. [Google Scholar]
Reduction in Secondary Damage (Neuroprotection) | Replacement of Lost Cells to Primary and Secondary Damage (Neuroregeneration) | Rehabilitation Strategies (Neuromodulation/Neuroplasticity) |
---|---|---|
| Stem cells in tSCI
| Spinal Cord Stimulation
|
Stem Cell Type | Potency | Ethical/Availability | Immunogenicity | Primary Therapeutic Mechanism | Paracrine Activity | Tumourgenicity | Clinical Trial Evidence | Safety Profile |
---|---|---|---|---|---|---|---|---|
MSCs | Multipotent | Minimal concerns; easy to source and scalable | Low (immune-privileged) | Microenvironment modulation | High | Low | Extensive | Low risk |
HSCs | Multipotent | Minimal concerns; moderate sourcing; limited scalability | Variable (source-dependent) | Microenvironment modulation | Moderate | Low | Limited | Low risk (autologous use) |
NSCs | Multipotent | Minimal concerns; difficult to source, low scalability | Variable (source-dependent) | Cell replacement, microenvironment modulation | Moderate | Low | Moderate | Moderate risk (survival issues) |
ESCs | Pluripotent | High concerns; ethically limited, low scalability | High | Cell replacement | Low | High | Minimal | High risk (teratomas, rejection) |
iPSCs | Pluripotent | Minimal concerns; technically scalable, requires reprogramming | Low (autologous use) | Cell replacement, microenvironment modulation | Moderate | Moderate to high | Emerging | Moderate risk (genetic issues) |
Study (Year) | SCI Duration | Sample Size for Cell Treatment Group | Severity (AIS) | Phase | Type of Cells | Administration and Dosage | Placebo-Controlled | Control Group | Follow-Up | Notable Outcomes |
---|---|---|---|---|---|---|---|---|---|---|
Bydon et al. (2024) [146] | Subacute and chronic | 10 | A, B, C | I | Autologous AD-MSCs | Intrathecal; single dose (100 million cells). | No placebo | No control group | 96 w (ca. 22 mo.) | No serious AEs; AIS improved in 7/10 participants. |
Awidi et al. (2024) [147] | Chronic | 20 | A, B, C | I/II | Autologous BM-MSCs; allogenic UC-MSCs | Group A: Perilesional BM-MSCs + 3 monthly intrathecal BM-MSCs (100 million cells/dose); Group B: 3 monthly intrathecal UC-MSCs (100 million cells/dose). | No placebo | No control group | 22.65 mo. (mean) | No serious AEs; AIS improved in both groups (greater motor recovery in Group A). |
Jamali et al. (2023) [148] | Chronic | 1 | A | Case study | Allogeneic WJ-MSCs | Intrathecal; 6 doses (118 million cells/dose, 1-month intervals). | No placebo | No control group | 25 mo. | No serious AEs; AIS improved from grade A to grade C; motor and sensory improvements sustained. |
Albu et al. (2021) [149] | Chronic | 10 | A | I/IIa | Allogenic WJ-MSCs | Intrathecal; single dose (10 million cells). | Yes | Placebo-controlled | 12 months (cross-over study with 6 mo. per arm) | No serious AEs; improvement in pinprick sensation. |
Vaquero et al. (2018) [150] | Chronic | 9 (efficacy), 11 (safety) | A, B, C, D | II | Autologous BM-MSCs | Intrathecal; 3 doses (100 million cells/dose, 3-month intervals). | No placebo | No control group | 10 mo. | No serious AEs; AIS improved in 3/10 participants; improvements in sensitivity, motor scores, neuropathic pain, and bladder/bowel function. |
Vaquero et al. (2017) [151] | Chronic | 10 | B, C, D | II | Autologous BM-MSCs | Intrathecal; 4 doses (30 million cells/dose, 3-month intervals). | No placebo | No control group | 12 mo. | No serious AEs; improvements in sensory and motor function, better bladder/bowel control, enhanced QoL. |
Zhao et al. (2017) [152] | Chronic | 8 | A | I | Allogenic UC-MSCs + NeuroRegen scaffold | Perilesional; single dose (40 million cells preloaded on scaffold). | No placebo | No control group | 12 mo. | No serious AEs; expansion of sensation levels in 5/8 participants; partial motor recovery. |
Satti et al. (2016) [153] | Subacute and chronicc | 9 | A | I | Autologous BM-MSCs | Intrathecal; 2–3 doses (median: 1.2 million cells/kg). | No placebo | No control group | Chronic: median 720 days (range 630–826). Subacute: median 366 days (range 269–367) | No serious AEs. |
Oh et al. (2016) [154] | Chronic | 16 | B | III | Autologous BM-MSCs | Intramedullary (16 million cells) + intrathecal (32 million cells), single dose. | No placebo | No control group | 6 mo. | Minor motor improvement in 2/16 participants; DTI revealed new fiber continuity. |
Hur et al. (2016) [155] | Chronic | 14 | A, B, D | I | Autologous AD-MSCs | Intrathecal; 3 doses (30 million cells/dose) | No placebo | No control group | 8 mo. | No serious AEs; motor improvement in 5/14 and sensory improvement in 10/14 participants. |
Oraee-Yazdani et al. (2016) [156] | Chronic | 6 | A | I | Autologous BM-MSCs and SC | Intrathecal; single dose (2 million cells/mL, 2 mL total). | No placebo | No control group | Mean 30.6 mo. (range 25–36) | No serious AEs. |
Mendonça et al. (2014) [157] | Chronic | 14 (12 completed follow-up) | A | I | Autologous BM-MSCs | Intralesional; single dose (5 million cells/cm3 lesion volume) | No placebo | No control group | 6 mo. | No serious AEs; AIS classification improved in 7/12 participants. |
El-Kheir et al. (2014) [158] | Chronic | 50 | A, B | I/II | Autologous BM-MSCs | Intrathecal; cumulative target dose of 2 million cells/kg, administered monthly (median 4 injections, range: 1–8). | No placebo | Control group received physiotherapy only | 18 mo. | No serious AEs; AIS classification improved in 17/50 patients. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montoto-Marqués, A.; Benito-Penalva, J.; Ferreiro-Velasco, M.E.; Andrew Wright, M.; Salvador-De la Barrera, S.; Kumru, H.; Gaitán-Pérez, N.; Hernández-Navarro, A.; Rodríguez-Sotillo, A.; Martins Braga, F.; et al. Advances and New Therapies in Traumatic Spinal Cord Injury. J. Clin. Med. 2025, 14, 2203. https://doi.org/10.3390/jcm14072203
Montoto-Marqués A, Benito-Penalva J, Ferreiro-Velasco ME, Andrew Wright M, Salvador-De la Barrera S, Kumru H, Gaitán-Pérez N, Hernández-Navarro A, Rodríguez-Sotillo A, Martins Braga F, et al. Advances and New Therapies in Traumatic Spinal Cord Injury. Journal of Clinical Medicine. 2025; 14(7):2203. https://doi.org/10.3390/jcm14072203
Chicago/Turabian StyleMontoto-Marqués, Antonio, Jesús Benito-Penalva, María Elena Ferreiro-Velasco, Mark Andrew Wright, Sebastian Salvador-De la Barrera, Hatice Kumru, Nelson Gaitán-Pérez, Agustin Hernández-Navarro, Antonio Rodríguez-Sotillo, Fernando Martins Braga, and et al. 2025. "Advances and New Therapies in Traumatic Spinal Cord Injury" Journal of Clinical Medicine 14, no. 7: 2203. https://doi.org/10.3390/jcm14072203
APA StyleMontoto-Marqués, A., Benito-Penalva, J., Ferreiro-Velasco, M. E., Andrew Wright, M., Salvador-De la Barrera, S., Kumru, H., Gaitán-Pérez, N., Hernández-Navarro, A., Rodríguez-Sotillo, A., Martins Braga, F., Palencia-Vidal, A., & Vidal-Samsó, J. (2025). Advances and New Therapies in Traumatic Spinal Cord Injury. Journal of Clinical Medicine, 14(7), 2203. https://doi.org/10.3390/jcm14072203