Circulating Thrombospondin-1 and Endothelin-1 Levels Tend to Decline with Increasing Obesity Severity in Women: Evidence from a Pilot, Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Laboratory Assessments
2.3. Statistical Analysis
3. Results
3.1. Clinical Characteristics of the Study Population
3.2. Metabolic and Inflammatory Indices, Hepatic and Lipid Parameters
3.3. Thrombospondin-1 (TSP1) and Endothelin-1 (ET1)
3.4. Comparison by Obesity Severity
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baenziger, N.L.; Brodie, G.N.; Majerus, P.W. A thrombin-sensitive protein of human platelet membranes. Proc. Natl. Acad. Sci. USA 1971, 68, 240–243. [Google Scholar] [CrossRef] [PubMed]
- Kale, A.; Rogers, N.M.; Ghimire, K. Thrombospondin-1 CD47 Signalling: From Mechanisms to Medicine. Int. J. Mol. Sci. 2021, 22, 4062. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Isenberg, J.S.; Popel, A.S. Human expression patterns: Qualitative and quantitative analysis of thrombospondin-1 under physiological and pathological conditions. J. Cell. Mol. Med. 2018, 22, 2086–2097. [Google Scholar] [CrossRef] [PubMed]
- Aburima, A.; Berger, M.; Spurgeon, B.E.J.; Webb, B.A.; Wraith, K.S.; Febbraio, M.; Poole, A.W.; Naseem, K.M. Thrombospondin-1 promotes hemostasis through modulation of cAMP signaling in blood platelets. Blood 2021, 137, 678–689. [Google Scholar] [CrossRef]
- Gutierrez, L.S.; Gutierrez, J. Thrombospondin 1 in Metabolic Diseases. Front. Endocrinol. 2021, 12, 638536. [Google Scholar] [CrossRef]
- Memetimin, H.; Li, D.; Tan, K.; Zhou, C.; Liang, Y.; Wu, Y.; Wang, S. Myeloid-specific deletion of thrombospondin 1 protects against inflammation and insulin resistance in long-term diet-induced obese male mice. Am. J. Physiol. Endocrinol. Metab. 2018, 315, E1194–E1203. [Google Scholar] [CrossRef]
- Voros, G.; Lijnen, H.R. Deficiency of thrombospondin-1 in mice does not affect adipose tissue development. J. Thromb. Haemost. 2006, 4, 277–278. [Google Scholar] [CrossRef]
- Laria, A.E.; Messineo, S.; Arcidiacono, B.; Varano, M.; Chiefari, E.; Semple, R.K.; Rocha, N.; Russo, D.; Cuda, G.; Gaspari, M.; et al. Secretome Analysis of Hypoxia-Induced 3T3-L1 Adipocytes Uncovers Novel Proteins Potentially Involved in Obesity. Proteomics 2018, 18, e1700260. [Google Scholar] [CrossRef]
- Tang, X.; Miao, Y.; Luo, Y.; Sriram, K.; Qi, Z.; Lin, F.M.; Gu, Y.; Lai, C.H.; Hsu, C.Y.; Peterson, K.L.; et al. Suppression of Endothelial AGO1 Promotes Adipose Tissue Browning and Improves Metabolic Dysfunction. Circulation 2020, 142, 365–379. [Google Scholar] [CrossRef]
- Khairy, E.Y.; Saad, A. Relationship between the thrombospondin-1/Toll-like receptor 4 (TSP1/TLR4) pathway and vitamin D levels in obese and normal weight subjects with different metabolic phenotypes. J. Physiol. Sci. 2023, 73, 29. [Google Scholar] [CrossRef]
- Abu-Farha, M.; Tiss, A.; Abubaker, J.; Khadir, A.; Al-Ghimlas, F.; Al-Khairi, I.; Baturcam, E.; Cherian, P.; Elkum, N.; Hammad, M.; et al. Proteomics analysis of human obesity reveals the epigenetic factor HDAC4 as a potential target for obesity. PLoS ONE 2013, 8, e75342. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Quesada, C.; Cavalera, M.; Biernacka, A.; Kong, P.; Lee, D.W.; Saxena, A.; Frunza, O.; Dobaczewski, M.; Shinde, A.; Frangogiannis, N.G. Thrombospondin-1 induction in the diabetic myocardium stabilizes the cardiac matrix in addition to promoting vascular rarefaction through angiopoietin-2 upregulation. Circ. Res. 2013, 113, 1331–1344. [Google Scholar] [CrossRef]
- Raman, P.; Krukovets, I.; Marinic, T.E.; Bornstein, P.; Stenina, O.I. Glycosylation mediates up-regulation of a potent antiangiogenic and proatherogenic protein, thrombospondin-1, by glucose in vascular smooth muscle cells. J. Biol. Chem. 2007, 282, 5704–5714. [Google Scholar] [CrossRef] [PubMed]
- Frangogiannis, N.G.; Ren, G.; Dewald, O.; Zymek, P.; Haudek, S.; Koerting, A.; Winkelmann, K.; Michael, L.H.; Lawler, J.; Entman, M.L. Critical role of endogenous thrombospondin-1 in preventing expansion of healing myocardial infarcts. Circulation 2005, 111, 2935–2942. [Google Scholar] [CrossRef]
- Rogers, N.M.; Sharifi-Sanjani, M.; Yao, M.; Ghimire, K.; Bienes-Martinez, R.; Mutchler, S.M.; Knupp, H.E.; Baust, J.; Novelli, E.M.; Ross, M.; et al. TSP1-CD47 signaling is upregulated in clinical pulmonary hypertension and contributes to pulmonary arterial vasculopathy and dysfunction. Cardiovasc. Res. 2017, 113, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Rogers, N.M.; Ghimire, K.; Calzada, M.J.; Isenberg, J.S. Matricellular protein thrombospondin-1 in pulmonary hypertension: Multiple pathways to disease. Cardiovasc. Res. 2017, 113, 858–868. [Google Scholar] [CrossRef]
- Isenberg, J.S.; Wink, D.A.; Roberts, D.D. Thrombospondin-1 antagonizes nitric oxide-stimulated vascular smooth muscle cell responses. Cardiovasc. Res. 2006, 71, 785–793. [Google Scholar] [CrossRef]
- Ferri, C.; Bellini, C.; Desideri, G.; Di Francesco, L.; Baldoncini, R.; Santucci, A.; De Mattia, G. Plasma endothelin-1 levels in obese hypertensive and normotensive men. Diabetes 1995, 44, 431–436. [Google Scholar] [CrossRef]
- Nacci, C.; Leo, V.; De Benedictis, L.; Carratù, M.R.; Bartolomeo, N.; Altomare, M.; Giordano, P.; Faienza, M.F.; Montagnani, M. Elevated endothelin-1 (ET-1) levels may contribute to hypoadiponectinemia in childhood obesity. J. Clin. Endocrinol. Metab. 2013, 98, E683–E693. [Google Scholar] [CrossRef]
- Jenkins, H.N.; Rivera-Gonzalez, O.; Gibert, Y.; Speed, J.S. Endothelin-1 in the pathophysiology of obesity and insulin resistance. Obes. Rev. 2020, 21, e13086. [Google Scholar] [CrossRef]
- van Harmelen, V.; Eriksson, A.; Aström, G.; Wåhlén, K.; Näslund, E.; Karpe, F.; Frayn, K.; Olsson, T.; Andersson, J.; Rydén, M.; et al. Vascular peptide endothelin-1 links fat accumulation with alterations of visceral adipocyte lipolysis. Diabetes 2008, 57, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Stow, L.R.; Jacobs, M.E.; Wingo, C.S.; Cain, B.D. Endothelin-1 gene regulation. FASEB J. 2011, 25, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Lovejoy, J.C.; Champagne, C.M.; de Jonge, L.; Xie, H.; Smith, S.R. Increased visceral fat and decreased energy expenditure during the menopausal transition. Int. J. Obes. 2008, 32, 949–958. [Google Scholar] [CrossRef]
- Freeman, E.W.; Sammel, M.D.; Lin, H.; Gracia, C.R. Obesity and reproductive hormone levels in the transition to menopause. Menopause 2010, 17, 718–726. [Google Scholar] [CrossRef]
- Garcia, M.; Mulvagh, S.L.; Merz, C.N.; Buring, J.E.; Manson, J.E. Cardiovascular Disease in Women: Clinical Perspectives. Circ. Res. 2016, 118, 1273–1293. [Google Scholar] [CrossRef]
- Li, D.; Li, H.; Bauer, C.; Hu, Y.; Lewis, J.R.; Xu, A.; Levinger, I.; Wang, Y. Lipocalin-2 Variants and Their Relationship With Cardio-Renal Risk Factors. Front. Endocrinol. 2021, 12, 781763. [Google Scholar] [CrossRef]
- Lee, C.M.; Yoon, E.L.; Nakajima, A.; Yoneda, M.; Toyoda, H.; Yasuda, S.; Lee, J.; Kim, M.; Kang, B.K.; Nguyen, M.H.; et al. A Reappraisal of the Diagnostic Performance of B-Mode Ultrasonography for Mild Liver Steatosis. Am. J. Gastroenterol. 2023, 118, 840–847. [Google Scholar] [CrossRef]
- Mirabelli, M.; Chiefari, E.; Tocci, V.; Caroleo, P.; Giuliano, S.; Greco, E.; Luque, R.M.; Puccio, L.; Foti, D.P.; Aversa, A.; et al. Clinical Effectiveness and Safety of Once-Weekly GLP-1 Receptor Agonist Dulaglutide as Add-On to Metformin or Metformin Plus Insulin Secretagogues in Obesity and Type 2 Diabetes. J. Clin. Med. 2021, 10, 985. [Google Scholar] [CrossRef]
- Zierle-Ghosh, A.; Jan, A. Physiology, Body Mass Index. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 5 November 2023. [Google Scholar] [PubMed]
- Qiu, X.; Nair, M.G.; Jaroszewski, L.; Godzik, A. Deciphering Abnormal Platelet Subpopulations in COVID-19, Sepsis and Systemic Lupus Erythematosus through Machine Learning and Single-Cell Transcriptomics. Int. J. Mol. Sci. 2024, 25, 5941. [Google Scholar] [CrossRef]
- Qian, H.; Chen, R.; Wang, B.; Yuan, X.; Chen, S.; Liu, Y.; Shi, G. Associations of Platelet Count with Inflammation and Response to Anti-TNF-α Therapy in Patients with Ankylosing Spondylitis. Front. Pharmacol. 2020, 11, 559593. [Google Scholar] [CrossRef]
- Huang, J.; Lu, J.; Jiang, F.; Song, T. Platelet/Albumin ratio and plateletcrit levels are potential new biomarkers for assessing endoscopic inflammatory bowel disease severity. BMC Gastroenterol. 2023, 23, 393. [Google Scholar] [CrossRef]
- Arcidiacono, B.; Chiefari, E.; Foryst-Ludwig, A.; Currò, G.; Navarra, G.; Brunetti, F.S.; Mirabelli, M.; Corigliano, D.M.; Kintscher, U.; Britti, D.; et al. Obesity-related hypoxia via miR-128 decreases insulin-receptor expression in human and mouse adipose tissue promoting systemic insulin resistance. EBioMedicine 2020, 59, 102912. [Google Scholar] [CrossRef]
- Greco, M.; Mirabelli, M.; Tocci, V.; Mamula, Y.; Salatino, A.; Brunetti, F.S.; Dragone, F.; Sicilia, L.; Tripolino, O.; Chiefari, E.; et al. Prothymosin-Alpha, a Novel and Sensitive Biomarker of the Inflammatory and Insulin-Resistant Statuses of Obese Individuals: A Pilot Study Involving Humans. Endocrines 2023, 4, 427–436. [Google Scholar] [CrossRef]
Total Study Population Characteristics | Median | IQR | n (%) |
---|---|---|---|
Age, years | 39.0 | 25.0–47.5 | |
Family history of diabetes, n | 30 (58.8) | ||
Smoking status | |||
Current smoker, n | 9 (17.6) | ||
Ex-smoker, n | 1 (2.0) | ||
Weight, Kg | 89.0 | 81.5–103.7 | |
Height, m | 1.63 | 1.58–1.68 | |
BMI, Kg/m2 | 33.7 | 30.8–38.6 | |
Waist circumference, cm | 99.5 | 94.5–107.3 | |
Hypertension, n | 6 (12.0) | ||
SBP, mmHg | 110 | 110–120 | |
DBP, mmHg | 75 | 70–80 | |
Hepatic steatosis, n | 18 (40.9) | ||
Fasting glucose, mg/dL | 88.0 | 84.0–93.0 | |
2 h post-load glucose, mg/dL | 113.5 | 96.8–127.3 | |
Fasting insulin, mU/L | 14.0 | 10.0–20.0 | |
2 h post-load insulin, mU/L | 90.0 | 56.0–133.0 | |
IFG and/or IGT, n | 9 (16.4) | ||
HOMA-IR | 3.22 | 2.05–4.44 | |
HOMA-IR > 2.5, n | 37 (69.8) | ||
HbA1c, % | 5.50 | 5.24–5.60 | |
AST, U/L | 20.0 | 16.0–25.0 | |
ALT, U/L | 20.0 | 14.0–29.0 | |
GammaGT, U/L | 17.0 | 13.0–22.0 | |
Total-cholesterol, mg/dL | 176.0 | 160.0–192.0 | |
LDL-cholesterol, mg/dL | 113.0 | 96.0–130.0 | |
HDL-cholesterol, mg/dL | 53.0 | 43.0–59.0 | |
Triglycerides, mg/dL | 83.0 | 63.0–123.0 | |
ESR, mm | 16 | 9–25 | |
HT, % | 39.8 | 37.8–42.4 | |
Hb, g/dL | 13.3 | 12.5–14.1 | |
RBC, n × 103 | 4.7 | 4.5–5.1 | |
WBC, n × 103 | 6.9 | 5.9–7.5 | |
PLT, n × 103 | 267.5 | 223.5–316.8 | |
PT, s | 104.0 | 99.0–112.0 | |
aPTT, s | 29.0 | 27.0–30.0 | |
Fibrinogen, mg/dL | 361.5 | 328.3–389.8 | |
ATIII, % | 98.0 | 93.0–105.8 | |
D-dimer, mg/L | 0.30 | 0.24–0.37 | |
ET1, pg/mL | 2.050 | 1.695–2.565 | |
TSP1, pg/mL | 2.967 × 107 | 2.159 × 107–4.045 × 107 |
Group Characteristics | WHO Class I Obesity | WHO Class II/III Obesity | p Value | ||||
---|---|---|---|---|---|---|---|
Median | IQR | N (%) | Median | IQR | N (%) | ||
Age, years | 29.5 | 24.3–47.5 | 40.0 | 28.0–45.0 | 0.716 | ||
Family history of diabetes, n | 15 (57.7) | 15 (51.7) | 0.657 | ||||
Smoking status | |||||||
Current smoker, n | 5 (19.3) | 4 (13.7) | 0.848 | ||||
Ex-smoker, n | 0 (0.0) | 1 (4.8) | |||||
Weight, Kg | 82.5 | 77.9–84.9 | 107.0 | 96.0–111.0 | <0.001 | ||
Height, m | 1.63 | 1.59–1.65 | 1.60 | 1.58–1.69 | 0.923 | ||
BMI, Kg/m2 | 31.0 | 30.0–32.5 | 39.1 | 37.0–42.1 | <0.001 | ||
Waist circumference, cm | 96.5 | 92.0–98.0 | 107.0 | 100.8–113.8 | <0.001 | ||
Hypertension, n | 3 (11.5) | 3 (10.3) | 1.000 | ||||
SBP, mmHg | 110 | 110–120 | 120 | 110–126 | 0.010 | ||
DBP, mmHg | 70 | 65–75 | 80 | 76–83 | <0.001 | ||
TSH, mU/L | 2.14 | 1.18–3.04 | 2.69 | 1.40–3.35 | 0.578 | ||
Hepatic steatosis, n | 8 (30.8) | 10 (34.4) | 0.769 | ||||
Fasting glucose, mg/dL | 86.5 | 84.0–93.0 | 88.0 | 86.0–93.0 | 0.548 | ||
2 h post-load glucose, mg/dl | 101.5 | 95.3–122.3 | 118.5 | 101.5–130.8 | 0.195 | ||
Fasting insulin, mU/L | 12.5 | 9.0–18.8 | 15.0 | 12.0–21.0 | 0.113 | ||
2 h post-load insulin, mU/L | 79.0 | 37.0–97.0 | 74.0 | 57.0–133.0 | 0.275 | ||
IFG and/or IGT, n | 3 (11.5) | 6 (20.7) | 0.839 | ||||
HOMA-IR | 2.73 | 1.84–3.91 | 3.28 | 2.67–4.67 | 0.097 | ||
HOMA-IR > 2.5, n | 15 (57.7) | 22 (75.8) | 0.151 | ||||
HbA1c, % | 5.40 | 5.20–5.60 | 5.60 | 5.20–5.70 | 0.365 | ||
AST, U/L | 20.0 | 16.0–25.0 | 19.0 | 15.0–24.0 | 0.691 | ||
ALT, U/L | 18.5 | 14.0–30.8 | 19.0 | 16.0–28.0 | 0.872 | ||
GammaGT, U/L | 15.0 | 13.3–22.0 | 18.0 | 13.0–20.0 | 0.864 | ||
Total-cholesterol, mg/dL | 167.5 | 157.0–197.8 | 178.0 | 159.0–185.0 | 0.991 | ||
LDL-cholesterol, mg/dL | 108.0 | 94.3–124.8 | 118.0 | 96.0–124.0 | 0.692 | ||
HDL-cholesterol, mg/dL | 55.0 | 44.0–65.5 | 49.0 | 46.0–55.0 | 0.118 | ||
Triglycerides, mg/dL | 74.5 | 59.3–111.0 | 90.0 | 67.0–120.0 | 0.304 | ||
ESR, mm | 11 | 8–19 | 18 | 13–25 | 0.032 | ||
HT, % | 41.0 | 38.2–42.4 | 39.1 | 37.7–42.0 | 0.487 | ||
Hb, g/dL | 13.6 | 12.6–14.1 | 13.3 | 12.6–13.4 | 0.507 | ||
RBC, n × 103 | 4.8 | 4.6–5.1 | 4.7 | 4.4–4.9 | 0.593 | ||
WBC, n × 103 | 6.7 | 5.1–7.5 | 7.0 | 6.3–7.7 | 0.246 | ||
PLT, n × 103 | 241.5 | 196.8–298.5 | 258.0 | 230.0–298.0 | 0.275 | ||
PT, s | 103.5 | 94.3–113.0 | 106.0 | 102.0–112.0 | 0.284 | ||
aPTT, s | 29.0 | 27.3–31.0 | 28.0 | 26.0–29.0 | 0.078 | ||
Fibrinogen, mg/dL | 337.5 | 314.8–382.8 | 363.0 | 330.0–378.0 | 0.121 | ||
ATIII, % | 100.0 | 93.3–105.8 | 95.0 | 90.0–99.0 | 0.170 | ||
D-dimer, mg/L | 0.28 | 0.23–0.33 | 0.33 | 0.29–0.44 | 0.092 | ||
ET1, pg/mL | 2.060 | 1.722–2.587 | 1.800 | 1.540–2.280 | 0.386 | ||
TSP1, pg/mL | 3.057 × 107 | 2.172 × 107–4.104 × 107 | 2.454 × 107 | 1.837 × 107–3.567 × 107 | 0.197 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greco, M.; Mirabelli, M.; Sicilia, L.; Dragone, F.; Giuliano, S.; Brunetti, F.S.; Scalise, R.; Chiefari, E.; Andreadi, A.; Lauro, D.; et al. Circulating Thrombospondin-1 and Endothelin-1 Levels Tend to Decline with Increasing Obesity Severity in Women: Evidence from a Pilot, Cross-Sectional Study. J. Clin. Med. 2025, 14, 2143. https://doi.org/10.3390/jcm14072143
Greco M, Mirabelli M, Sicilia L, Dragone F, Giuliano S, Brunetti FS, Scalise R, Chiefari E, Andreadi A, Lauro D, et al. Circulating Thrombospondin-1 and Endothelin-1 Levels Tend to Decline with Increasing Obesity Severity in Women: Evidence from a Pilot, Cross-Sectional Study. Journal of Clinical Medicine. 2025; 14(7):2143. https://doi.org/10.3390/jcm14072143
Chicago/Turabian StyleGreco, Marta, Maria Mirabelli, Luciana Sicilia, Francesco Dragone, Stefania Giuliano, Francesco S. Brunetti, Rosa Scalise, Eusebio Chiefari, Aikaterini Andreadi, Davide Lauro, and et al. 2025. "Circulating Thrombospondin-1 and Endothelin-1 Levels Tend to Decline with Increasing Obesity Severity in Women: Evidence from a Pilot, Cross-Sectional Study" Journal of Clinical Medicine 14, no. 7: 2143. https://doi.org/10.3390/jcm14072143
APA StyleGreco, M., Mirabelli, M., Sicilia, L., Dragone, F., Giuliano, S., Brunetti, F. S., Scalise, R., Chiefari, E., Andreadi, A., Lauro, D., Foti, D. P., & Brunetti, A. (2025). Circulating Thrombospondin-1 and Endothelin-1 Levels Tend to Decline with Increasing Obesity Severity in Women: Evidence from a Pilot, Cross-Sectional Study. Journal of Clinical Medicine, 14(7), 2143. https://doi.org/10.3390/jcm14072143