Diagnostic Accuracy of Artificial Intelligence vs. Oncologist Interpretation in Digital Cervicography for Abnormal Cervical Cytology
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Interpretation Agreement
3.2. Sensitivity, Specificity, PPV, and NPV
3.3. Diagnostic Accuracy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LMIC | low- and middle-income countries |
WHO | World Health Organization |
HPV | human papillomavirus |
VIA | visual inspection with acetic acid |
CIN | cervical intraepithelial neoplasia |
AI | artificial intelligence |
PPV | positive predictive value |
NPV | negative predictive value |
LSIL | low-grade squamous intraepithelial lesion |
HSIL | high-grade squamous intraepithelial lesion |
References
- Singh, D.; Vignat, J.; Lorenzoni, V.; Eslahi, M.; Ginsburg, O.; Lauby-Secretan, B.; Arbyn, M.; Basu, P.; Bray, F.; Vaccarella, S.; et al. Global estimates of incidence and mortality of cervical cancer in 2020: A baseline analysis of the WHO Global Cervical Cancer Elimination Initiative. Lancet Glob. Health 2023, 11, e197–e206. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Cervical Cancer. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/cervical-cancer (accessed on 1 February 2025).
- Viñals, R.; Jonnalagedda, M.; Petignat, P.; Thiran, J.P.; Vassilakos, P. Artificial Intelligence-Based Cervical Cancer Screening on Images Taken during Visual Inspection with Acetic Acid: A Systematic Review. Diagnostics 2023, 13, 836. [Google Scholar] [CrossRef]
- Nakisige, C.; de Fouw, M.; Kabukye, J.; Sultanov, M.; Nazrui, N.; Rahman, A.; de Zeeuw, J.; Koot, J.; Rao, A.P.; Prasad, K.; et al. Artificial intelligence and visual inspection in cervical cancer screening. Int. J. Gynecol. Cancer 2023, 33, 1515–1521. [Google Scholar] [CrossRef] [PubMed]
- Denny, L.; Kuhn, L.; Pollack, A.; Wainwright, H.; Wright, T.C., Jr. Evaluation of alternative methods of cervical cancer screening for resource-poor settings. Cancer 2000, 89, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Gravitt, P.E.; Paul, P.; Katki, H.A.; Vendantham, H.; Ramakrishna, G.; Sudula, M.; Kalpana, B.; Ronnett, B.M.; Vijayaraghavan, K.; Shah, K.V.; et al. Effectiveness of VIA, Pap, and HPV DNA testing in a cervical cancer screening program in a peri-urban community in Andhra Pradesh, India. PLoS ONE 2010, 5, e13711. [Google Scholar] [CrossRef]
- Bigoni, J.; Gundar, M.; Tebeu, P.M.; Bongoe, A.; Schäfer, S.; Fokom-Domgue, J.; Catarino, R.; Tincho, E.F.; Bougel, S.; Vassilakos, P.; et al. Cervical cancer screening in sub-Saharan Africa: A randomized trial of VIA versus cytology for triage of HPV-positive women. Int. J. Cancer 2015, 137, 127–134. [Google Scholar] [CrossRef]
- De Vuyst, H.; Claeys, P.; Njiru, S.; Muchiri, L.; Steyaert, S.; De Sutter, P.; Van Marck, E.; Bwayo, J.; Temmerman, M. Comparison of pap smear, visual inspection with acetic acid, human papillomavirus DNA-PCR testing and cervicography. Int. J. Gynaecol. Obstet. 2005, 89, 120–126. [Google Scholar] [CrossRef]
- Sami, J.; Lemoupa Makajio, S.; Jeannot, E.; Kenfack, B.; Viñals, R.; Vassilakos, P.; Petignat, P. Smartphone-Based Visual Inspection with Acetic Acid: An Innovative Tool to Improve Cervical Cancer Screening in Low-Resource Setting. Healthcare 2022, 10, 391. [Google Scholar] [CrossRef]
- Chongsuwat, T.; Wang, C.; Sohn, Y.; Klump, K. Digital cervicography for cervical cancer screening in low-resource settings: A scoping review. Gynecol. Oncol. Rep. 2023, 45, 101130. [Google Scholar] [CrossRef]
- Ouh, Y.T.; Kim, T.J.; Ju, W.; Kim, S.W.; Jeon, S.; Kim, S.N.; Kim, K.G.; Lee, J.K. Development and validation of artificial intelligence-based analysis software to support screening system of cervical intraepithelial neoplasia. Sci. Rep. 2024, 14, 1957. [Google Scholar] [CrossRef]
- Hou, X.; Shen, G.; Zhou, L.; Li, Y.; Wang, T.; Ma, X. Artificial Intelligence in Cervical Cancer Screening and Diagnosis. Front. Oncol. 2022, 12, 851367. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.-N.; Kim, J.-H.; Lee, C.-W.; Song, M.-J.; Park, E.-K.; Lee, Y.-S.; Lee, K.-H.; Hur, S.-Y.; Yoon, J.-H.; Lee, S.-J. Correlation between the Digital Cervicography and Pathological Diagnosis Performed at Private Clinics in Korea. Int. J. Med. Sci. 2012, 9, 698–703. [Google Scholar] [CrossRef]
- Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J.; Ding, G. YOLOv10: Real-Time End-to-End Object Detection. arXiv 2024, arXiv:2405.14458v2. [Google Scholar]
- Bogani, G.; Sopracordevole, F.; Ciavattini, A.; Ghelardi, A.; Vizza, E.; Vercellini, P.; Casarin, J.; Pinelli, C.; Ghezzi, F.; De Vincenzo, R.; et al. HPV-related lesions after hysterectomy for high-grade cervical intraepithelial neoplasia and early-stage cervical cancer: A focus on the potential role of vaccination. Tumori 2024, 110, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.B.; Liu, G.; Mugo, N.; Garcia, P.J.; Rao, D.W.; Broshkevitch, C.J.; Eckert, L.O.; Pinder, L.F.; Wasserheit, N.J.; Barnabas, R.V. A Framework for Cervical Cancer Elimination in Low-and-Middle-Income Countries: A Scoping Review and Roadmap for Interventions and Research Priorities. Front. Public Health 2021, 9, 670032. [Google Scholar] [CrossRef]
- de Castro Hillmann, E.; Bacha, M.O.; Roy, M.; Paris, G.; Berbiche, D.; Nizard, V.; Ramos, J.G. Cervical Digital Photography: An Alternative Method to Colposcopy. J. Obstet. Gynaecol. Can. 2019, 41, 1099–1107. [Google Scholar] [CrossRef] [PubMed]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef]
- Maron, R.C.; Weichenthal, M.; Utikal, J.S.; Hekler, A.; Berking, C.; Hauschild, A.; Enk, A.H.; Haferkamp, S.; Klode, J.; Schadendorf, D.; et al. Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks. Eur. J. Cancer 2019, 119, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Erfurth, U.; Sadeghipour, A.; Gerendas, B.S.; Waldstein, S.M.; Bogunović, H. Artificial intelligence in retina. Prog. Retin. Eye. Res. 2018, 67, 1–29. [Google Scholar] [CrossRef]
- Xue, P.; Tang, C.; Li, Q.; Li, Y.; Shen, Y.; Zhao, Y.; Chen, J.; Wu, J.; Li, L.; Wang, W.; et al. Development and validation of an artificial intelligence system for grading colposcopic impressions and guiding biopsies. BMC Med. 2020, 18, 406. [Google Scholar] [CrossRef]
- Vitale, S.G.; De Angelis, M.C.; Della Corte, L.; Saponara, S.; Carugno, J.; Laganà, A.S.; Török, P.; Tinelli, R.; Pérez-Medina, T.; Ertas, S.; et al. Uterine cervical stenosis: From classification to advances in management. Overcoming the obstacles to access the uterine cavity. Arch. Gynecol. Obstet. 2024, 309, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Chevreau, J.; Carcopino, X.; Foulon, A.; Preaubert, L.; Lanta-Delmas, S.; Sergent, F.; Gondry, J. Risk factors for unsatisfactory colposcopy after large loop excision of the transformation zone: The results of a four-year multicenter prospective study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019, 240, 156–160. [Google Scholar] [CrossRef]
- Xue, P.; Ng, M.T.A.; Qiao, Y. The challenges of colposcopy for cervical cancer screening in LMICs and solutions by artificial intelligence. BMC Med. 2020, 18, 169. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Li, K.; Zhang, J.; Wang, W.; Wu, B.; Wu, J.; Li, X.; Huang, X. Automatic model for cervical cancer screening based on convolutional neural network: A retrospective, multicohort, multicenter study. Cancer Cell Int. 2021, 21, 35. [Google Scholar] [CrossRef] [PubMed]
Category | Oncologist | Total | ||||
---|---|---|---|---|---|---|
Negative | Atypical | Low-Grade Lesion | High-Grade Lesion/ Cancer | |||
AI | Negative | 85 | 6 | 18 | 1 | 110 |
Atypical | 1 | 0 | 8 | 0 | 9 | |
Low-grade lesion | 12 | 9 | 106 | 65 | 192 | |
High-grade lesion/ Cancer | 2 | 1 | 25 | 110 | 138 | |
Total | 100 | 16 | 157 | 176 | 449 | |
Cohen’s kappa | 0.511 (p < 0.0001) |
Category | Oncologist | AI | |
---|---|---|---|
HSILs/Cancer (n = 226) | Sensitivity | 62.8% | 47.8% |
Specificity | 81.2% | 83.5% | |
PPV | 85.0% | 83.1% | |
NPV | 56.3% | 48.5% | |
LSILs/HSILs/Cancer (n = 283) | Sensitivity | 98.2% | 93.3% |
Specificity | 44.7% | 46.1% | |
PPV | 86.9% | 86.6% | |
NPV | 87.2% | 64.8% |
Category | AI Accuracy | Oncologist Accuracy |
---|---|---|
LSILs | 58.80% | 61.0% |
HSILs/Cancer | 61.0% | 69.6% |
LSILs/HSILs/Cancer | 82.3% | 86.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
So, K.-A.; Jang, E.-B.; Shim, S.-H.; Lee, S.-J.; Kim, T.-J. Diagnostic Accuracy of Artificial Intelligence vs. Oncologist Interpretation in Digital Cervicography for Abnormal Cervical Cytology. J. Clin. Med. 2025, 14, 1763. https://doi.org/10.3390/jcm14051763
So K-A, Jang E-B, Shim S-H, Lee S-J, Kim T-J. Diagnostic Accuracy of Artificial Intelligence vs. Oncologist Interpretation in Digital Cervicography for Abnormal Cervical Cytology. Journal of Clinical Medicine. 2025; 14(5):1763. https://doi.org/10.3390/jcm14051763
Chicago/Turabian StyleSo, Kyeong-A, Eun-Bi Jang, Seung-Hyuk Shim, Sun-Joo Lee, and Tae-Jin Kim. 2025. "Diagnostic Accuracy of Artificial Intelligence vs. Oncologist Interpretation in Digital Cervicography for Abnormal Cervical Cytology" Journal of Clinical Medicine 14, no. 5: 1763. https://doi.org/10.3390/jcm14051763
APA StyleSo, K.-A., Jang, E.-B., Shim, S.-H., Lee, S.-J., & Kim, T.-J. (2025). Diagnostic Accuracy of Artificial Intelligence vs. Oncologist Interpretation in Digital Cervicography for Abnormal Cervical Cytology. Journal of Clinical Medicine, 14(5), 1763. https://doi.org/10.3390/jcm14051763