The Prevalence, Pathophysiological Role and Determinants of Mitral Annular Disjunction Among Patients with Mitral Valve Prolapse: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Study Selection and Data Extraction
2.4. Risk of Bias Assessment
3. Results
3.1. Main Findings of Included Studies
3.2. Clinical Characteristics of MVP Patients
3.3. ECG and/or 24-Hour Holter Monitoring Findings
3.4. Conventional Indices of Cardiac Size and Function
3.5. Mitral Valve Parameters
3.6. Myocardial Strain Parameters
3.7. CMR Findings
3.8. Current Medical Treatment
3.9. Follow-Up Data
3.10. Risk of Bias
4. Discussion
4.1. MAD Prevalence Among MVP Individuals
4.2. Factors Associated with MAD Presence in MVP Individuals
4.3. Pathophysiology of MAD
4.4. Clinical Implications
4.5. Limitations of Included Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Freed, L.A.; Levy, D.; Levine, R.A.; Larson, M.G.; Evans, J.C.; Fuller, D.L.; Lehman, B.; Benjamin, E.J. Prevalence and clinical outcome of mitral-valve prolapse. N. Engl. J. Med. 1999, 341, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Freed, L.A.; Benjamin, E.J.; Levy, D.; Larson, M.G.; Evans, J.C.; Fuller, D.L.; Lehman, B.; Levine, R.A. Mitral valve prolapse in the general population: The benign nature of echocardiographic features in the Framingham Heart Study. J. Am. Coll. Cardiol. 2002, 40, 1298–1304. [Google Scholar] [CrossRef] [PubMed]
- Delling, F.N.; Vasan, R.S. Epidemiology and pathophysiology of mitral valve prolapse: New insights into disease progression; genetics; and molecular basis. Circulation 2014, 129, 2158–2170. [Google Scholar] [CrossRef] [PubMed]
- Parwani, P.; Avierinos, J.F.; Levine, R.A.; Delling, F.N. Mitral Valve Prolapse: Multimodality Imaging and Genetic Insights. Prog. Cardiovasc. Dis. 2017, 60, 361–369. [Google Scholar] [CrossRef]
- Pistelli, L.; Vetta, G.; Parlavecchio, A.; Crea, P.; Parisi, F.; Magnocavallo, M.; Caminiti, R.; Frea, S.; Vairo, A.; Desalvo, P.; et al. Arrhythmic risk profile in mitral valve prolapse: A systematic review and metanalysis of 1715 patients. J. Cardiovasc. Electrophysiol. 2024, 35, 290–300. [Google Scholar] [CrossRef]
- Basso, C.; Iliceto, S.; Thiene, G.; Perazzolo Marra, M. Mitral Valve Prolapse, Ventricular Arrhythmias, and Sudden Death. Circulation 2019, 140, 952–964. [Google Scholar] [CrossRef]
- Figliozzi, S.; Georgiopoulos, G.; Lopes, P.M.; Bauer, K.B.; Moura-Ferreira, S.; Tondi, L.; Mushtaq, S.; Censi, S.; Pavon, A.G.; Bassi, I.; et al. Myocardial Fibrosis at Cardiac MRI Helps Predict Adverse Clinical Outcome in Patients with Mitral Valve Prolapse. Radiology 2023, 306, 112–121. [Google Scholar] [CrossRef]
- Akyea, R.K.; Figliozzi, S.; Lopes, P.M.; Bauer, K.B.; Moura-Ferreira, S.; Tondi, L.; Mushtaq, S.; Censi, S.; Pavon, A.G.; Bassi, I.; et al. Arrhythmic Mitral Valve Prolapse Phenotype: An Unsupervised Machine Learning Analysis Using a Multicenter Cardiac MRI Registry. Radiol. Cardiothorac. Imaging 2024, 6, e230247. [Google Scholar] [CrossRef]
- Dejgaard, L.A.; Skjølsvik, E.T.; Lie, Ø.H.; Ribe, M.; Stokke, M.K.; Hegbom, F.; Scheirlynck, E.S.; Gjertsen, E.; Andresen, K.; Helle-Valle, T.M.; et al. The Mitral Annulus Disjunction Arrhythmic Syndrome. J. Am. Coll. Cardiol. 2018, 72, 1600–1609. [Google Scholar] [CrossRef]
- Hutchins, G.M.; Moore, G.W.; Skoog, D.K. The association of floppy mitral valve with disjunction of the mitral annulus fibrosus. N. Engl. J. Med. 1986, 314, 535–540. [Google Scholar] [CrossRef]
- Toh, H.; Mori, S.; Izawa, Y.; Fujita, H.; Miwa, K.; Suzuki, M.; Takahashi, Y.; Toba, T.; Watanabe, Y.; Kono, A.K.; et al. Prevalence and extent of mitral annular disjunction in structurally normal hearts: Comprehensive 3D analysis using cardiac computed tomography. Eur. Heart J. Cardiovasc. Imaging 2021, 22, 614–622. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.P.; Jin, C.N.; Fan, Y.; Wong, R.H.L.; Underwood, M.J.; Wan, S. Functional Implication of Mitral Annular Disjunction in Mitral Valve Prolapse: A Quantitative Dynamic 3D Echocardiographic Study. JACC Cardiovasc. Imaging 2017, 10, 1424–1433. [Google Scholar] [CrossRef]
- Gulati, A.; Gulati, V.; Hu, R.; Rajiah, P.S.; Stojanovska, J.; Febbo, J.; Litt, H.I.; Pavri, B.; Sundaram, B. Mitral Annular Disjunction: Review of an Increasingly Recognized Mitral Valve Entity. Radiol. Cardiothorac. Imaging 2023, 5, e230131. [Google Scholar] [CrossRef]
- Basso, C.; Perazzolo Marra, M.; Rizzo, S.; De Lazzari, M.; Giorgi, B.; Cipriani, A.; Frigo, A.C.; Rigato, I.; Migliore, F.; Pilichou, K.; et al. Arrhythmic Mitral Valve Prolapse and Sudden Cardiac Death. Circulation 2015, 132, 556–566. [Google Scholar] [CrossRef]
- Carmo, P.; Andrade, M.J.; Aguiar, C.; Rodrigues, R.; Gouveia, R.; Silva, J.A. Mitral annular disjunction in myxomatous mitral valve disease: A relevant abnormality recognizable by transthoracic echocardiography. Cardiovasc. Ultrasound 2010, 8, 53. [Google Scholar] [CrossRef]
- Mantegazza, V.; Volpato, V.; Gripari, P.; Ghulam Ali, S.; Fusini, L.; Italiano, G.; Muratori, M.; Pontone, G.; Tamborini, G.; Pepi, M. Multimodality imaging assessment of mitral annular disjunction in mitral valve prolapse. Heart 2021, 107, 25–32. [Google Scholar] [CrossRef]
- Drescher, C.S.; Kelsey, M.D.; Yankey, G.S.; Sun, A.Y.; Wang, A.; Sadeghpour, A.; Glower, D.D., Jr.; Vemulapalli, S.; Kelsey, A.M. Imaging Considerations and Clinical Implications of Mitral Annular Disjunction. Circ. Cardiovasc. Imaging 2022, 9, e014243. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Sonaglioni, A.; Baravelli, M.; Vincenti, A.; Trevisan, R.; Zompatori, M.; Nicolosi, G.L.; Lombardo, M.; Anzà, C. A New modified anthropometric haller index obtained without radiological exposure. Int. J. Cardiovasc. Imaging 2018, 34, 1505–1509. [Google Scholar] [CrossRef]
- Katritsis, D.G.; Zareba, W.; Camm, A.J. Nonsustained ventricular tachycardia. J. Am. Coll. Cardiol. 2012, 60, 1993–2004. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–270. [Google Scholar] [CrossRef] [PubMed]
- Kawel-Boehm, N.; Hetzel, S.J.; Ambale-Venkatesh, B.; Captur, G.; Francois, C.J.; Jerosch-Herold, M.; Salerno, M.; Teague, S.D.; Valsangiacomo-Buechel, E.; van der Geest, R.J.; et al. Reference ranges (“normal values”) for cardiovascular magnetic resonance (CMR) in adults and children: 2020 update. J. Cardiovasc. Magn. Reson. 2020, 22, 87. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.L.; Wang, Y.Y.; Yang, Z.H.; Huang, D.; Weng, H.; Zeng, X.T. Methodological quality (risk of bias) assessment tools for primary and secondary medical studies: What are they and which is better? Mil. Med. Res. 2020, 7, 7. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, M.J.; Bitkover, C.Y.; Omran, A.S.; David, T.E.; Ivanov, J.; Ali, M.J.; Woo, A.; Siu, S.C.; Rakowski, H. Mitral annular disjunction in advanced myxomatous mitral valve disease: Echocardiographic detection and surgical correction. J. Am. Soc. Echocardiogr. 2005, 18, 1014–1022. [Google Scholar] [CrossRef] [PubMed]
- Mantegazza, V.; Tamborini, G.; Muratori, M.; Gripari, P.; Fusini, L.; Italiano, G.; Volpato, V.; Sassi, V.; Pepi, M. Mitral Annular Disjunction in a Large Cohort of Patients with Mitral Valve Prolapse and Significant Regurgitation. JACC Cardiovasc. Imaging 2019, 12, 2278–2280. [Google Scholar] [CrossRef]
- Essayagh, B.; Iacuzio, L.; Civaia, F.; Avierinos, J.F.; Tribouilloy, C.; Levy, F. Usefulness of 3-Tesla Cardiac Magnetic Resonance to Detect Mitral Annular Disjunction in Patients with Mitral Valve Prolapse. Am. J. Cardiol. 2019, 124, 1725–1730. [Google Scholar] [CrossRef]
- Putnam, A.J.; Kebed, K.; Mor-Avi, V.; Rashedi, N.; Sun, D.; Patel, B.; Balkhy, H.; Lang, R.M.; Patel, A.R. Prevalence of mitral annular disjunction in patients with mitral valve prolapse and severe regurgitation. Int. J. Cardiovasc. Imaging 2020, 36, 1363–1370. [Google Scholar] [CrossRef]
- Essayagh, B.; Sabbag, A.; Antoine, C.; Benfari, G.; Batista, R.; Yang, L.T.; Maalouf, J.; Thapa, P.; Asirvatham, S.; Michelena, H.I.; et al. The Mitral Annular Disjunction of Mitral Valve Prolapse: Presentation and Outcome. JACC Cardiovasc. Imaging 2021, 14, 2073–2087. [Google Scholar] [CrossRef]
- Bennett, S.; Tafuro, J.; Brumpton, M.; Bardolia, C.; Heatlie, G.; Duckett, S.; Ridley, P.; Nanjaiah, P.; Kwok, C.S. Echocardiographic description and outcomes in a heterogeneous cohort of patients undergoing mitral valve surgery with and without mitral annular disjunction: A health service evaluation. Echo Res. Pract. 2022, 9, 4. [Google Scholar] [CrossRef]
- Biondi, R.; Ribeyrolles, S.; Diakov, C.; Amabile, N.; Ricciardi, G.; Khelil, N.; Berrebi, A.; Zannis, K. Mapping of the myxomatous mitral valve: The three-dimensional extension of mitral annular disjunction in surgically repaired mitral prolapse. Front. Cardiovasc. Med. 2022, 9, 1036400. [Google Scholar] [CrossRef]
- Sonaglioni, A.; Nicolosi, G.L.; Rigamonti, E.; Lombardo, M. The influence of chest wall conformation on myocardial strain parameters in a cohort of mitral valve prolapse patients with and without mitral annular disjunction. Int. J. Cardiovasc. Imaging 2023, 39, 61–76. [Google Scholar] [CrossRef] [PubMed]
- Gray, R.; Indraratna, P.; Cranney, G.; Lam, H.; Yu, J.; Mathur, G. Mitral annular disjunction in surgical mitral valve prolapse: Prevalence; characteristics and outcomes. Echo Res. Pract. 2023, 10, 21. [Google Scholar] [CrossRef]
- Hussain, N.; Bhagia, G.; Doyle, M.; Rayarao, G.; Williams, R.B.; Biederman, R.W.W. Mitral annular disjunction; how accurate are we? A cardiovascular MRI study defining risk. Int. J. Cardiol. Heart Vasc. 2023, 49, 101298. [Google Scholar] [CrossRef] [PubMed]
- Vaksmann, G.; Bouzguenda, I.; Guillaume, M.P.; Gras, P.; Silvestri, V.; Richard, A. Mitral annular disjunction and Pickelhaube sign in children with mitral valve prolapse: A prospective cohort study. Arch. Cardiovasc. Dis. 2023, 116, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Shechter, A.; Vaturi, M.; Hong, G.J.; Kaewkes, D.; Patel, V.; Seok, M.; Nagasaka, T.; Koren, O.; Koseki, K.; Skaf, S.; et al. Implications of Mitral Annular Disjunction in Patients Undergoing Transcatheter Edge-to-Edge Repair for Degenerative Mitral Regurgitation. JACC Cardiovasc. Interv. 2023, 16, 2835–2849. [Google Scholar] [CrossRef]
- Perazzolo Marra, M.; Cecere, A.; Cipriani, A.; Migliore, F.; Zorzi, A.; De Lazzari, M.; Lorenzoni, G.; Cecchetto, A.; Brunetti, G.; Graziano, F.; et al. Determinants of Ventricular Arrhythmias in Mitral Valve Prolapse. JACC Clin. Electrophysiol. 2024, 10, 670–681. [Google Scholar] [CrossRef]
- Özyıldırım, S.; Guven, B.; Yumuk, M.T.; Barman, H.A.; Dogan, O.; Topel, C.; Atici, A.; Donmez, A.; Kucukoglu, M.S.; Dogan, S.M. Evaluation of left ventricular function in patients with mitral annular disjunction using speckle tracking echocardiography. Echocardiography 2024, 41, e15813. [Google Scholar] [CrossRef]
- Blondeel, M.; L’Hoyes, W.; Robyns, T.; Verbrugghe, P.; De Meester, P.; Dresselaers, T.; Masci, P.G.; Willems, R.; Bogaert, J.; Vandenberk, B. Serial Cardiac Magnetic Resonance Imaging in Patients with Mitral Valve Prolapse—A Single-Center Retrospective Registry. J. Clin. Med. 2024, 13, 2669. [Google Scholar] [CrossRef]
- Meucci, M.C.; Mantegazza, V.; Wu, H.W.; van Wijngaarden, A.L.; Garlaschè, A.; Tamborini, G.; Pepi, M.; Bax, J.J.; Ajmone Marsan, N. Structural and functional abnormalities of left-sided cardiac chambers in Barlow’s disease without significant mitral regurgitation. Eur. Heart J. Cardiovasc. Imaging 2024, 25, 1296–1305. [Google Scholar] [CrossRef]
- Cesmat, A.P.; Chaudry, A.M.; Gupta, S.; Sivaraj, K.; Weickert, T.T.; Simpson, R.J., Jr.; Syed, F.F. Prevalence and predictors of mitral annular disjunction and ventricular ectopy in mitral valve prolapse. Heart Rhythm 2024, 21, 1803–1810. [Google Scholar] [CrossRef]
- Figliozzi, S.; Stankowski, K.; Tondi, L.; Catapano, F.; Gitto, M.; Lisi, C.; Bombace, S.; Olivieri, M.; Cannata, F.; Fazzari, F.; et al. Mitral Annulus Disjunction in consecutive patients undergoing Cardiac Magnetic Resonance: Where is the boundary between normality and disease? J. Cardiovasc. Magn. Reson. 2024, 26, 101056. [Google Scholar] [CrossRef] [PubMed]
- Palmisano, A.; Bruno, E.; Aquaro, G.D.; De Gori, C.; Barbieri, S.; Adami, M.; Plataroti, D.; Rondi, P.; di Meo, N.; Ravanelli, M.; et al. Prevalence of Mitral Annular Disjunction at Cardiac MRI: Results from a Multicenter Registry. Radiol. Cardiothorac. Imaging 2024, 6, e230428. [Google Scholar] [CrossRef] [PubMed]
- Fiore, G.; Rizza, V.; Ingallina, G.; Ancona, F.; Stella, S.; Biondi, F.; Cunsolo, P.; Gaspardone, C.; Romagnolo, D.; Tavernese, A.; et al. Prevalence of Diastolic and Systolic Mitral Annular Disjunction in Patients with Mitral Valve Prolapse. J. Am. Soc. Echocardiogr. 2025, 38, 1–11. [Google Scholar] [CrossRef]
- Muthukumar, L.; Rahman, F.; Jan, M.F.; Shaikh, A.; Kalvin, L.; Dhala, A.; Jahangir, A.; Tajik, A.J. The Pickelhaube Sign: Novel Echocardiographic Risk Marker for Malignant Mitral Valve Prolapse Syndrome. JACC Cardiovasc. Imaging 2017, 10, 1078–1080. [Google Scholar] [CrossRef]
- Galderisi, M.; Cosyns, B.; Edvardsen, T.; Cardim, N.; Delgado, V.; Di Salvo, G.; Donal, E.; Sade, L.E.; Ernande, L.; Garbi, M.; et al. Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification; diastolic function; and heart valve disease recommendations: An expert consensus document of the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 1301–1310. [Google Scholar] [CrossRef]
- Faletra, F.F.; Leo, L.A.; Paiocchi, V.L.; Caretta, A.; Viani, G.M.; Schlossbauer, S.A.; Demertzis, S.; Ho, S.Y. Anatomy of mitral annulus insights from non-invasive imaging techniques. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 843–857. [Google Scholar] [CrossRef]
- Perazzolo Marra, M.; De Lazzari, M.; Zorzi, A.; Migliore, F.; Zilio, F.; Calore, C.; Vettor, G.; Tona, F.; Tarantini, G.; Cacciavillani, L.; et al. Impact of the presence and amount of myocardial fibrosis by cardiac magnetic resonance on arrhythmic outcome and sudden cardiac death in nonischemic dilated cardiomyopathy. Heart Rhythm 2014, 11, 856–863. [Google Scholar] [CrossRef]
- Enriquez-Sarano, M.; Freeman, W.K.; Tribouilloy, C.M.; Orszulak, T.A.; Khandheria, B.K.; Seward, J.B.; Bailey, K.R.; Tajik, A.J. Functional anatomy of mitral regurgitation: Accuracy and outcome implications of transesophageal echocardiography. J. Am. Coll. Cardiol. 1999, 34, 1129–1136. [Google Scholar] [CrossRef]
- Sannino, A.; Campbell, S.; Grapsa, J.; Modine, T.; Barbanti, M.; Chambers, J.B.; Zamorano, J.L.; Pibarot, P.; Garbi, M.; Vannan, M.; et al. European survey on valvular heart disease clinical experience from the European Society of Cardiology council on valvular heart disease. Eur. Heart J. Open 2022, 2, oeac054. [Google Scholar] [CrossRef]
- Zugwitz, D.; Fung, K.; Aung, N.; Rauseo, E.; McCracken, C.; Cooper, J.; El Messaoudi, S.; Anderson, R.H.; Piechnik, S.K.; Neubauer, S.; et al. Mitral Annular Disjunction Assessed Using CMR Imaging: Insights From the UK Biobank Population Study. JACC Cardiovasc. Imaging 2022, 15, 1856–1866. [Google Scholar] [CrossRef]
- Hiemstra, Y.L.; Tomsic, A.; Gripari, P.; van Wijngaarden, A.L.; van der Pas, S.L.; Palmen, M.; Klautz, R.J.M.; Pepi, M.; Bax, J.J.; Delgado, V.; et al. Evolution from mitral annular dysfunction to severe mitral regurgitation in Barlow’s disease. Interact. Cardiovasc. Thorac. Surg. 2021, 32, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Sabbag, A.; Essayagh, B.; Barrera, J.D.R.; Basso, C.; Berni, A.; Cosyns, B.; Deharo, J.C.; Deneke, T.; Di Biase, L.; Enriquez-Sarano, M.; et al. EHRA expert consensus statement on arrhythmic mitral valve prolapse and mitral annular disjunction complex in collaboration with the ESC Council on valvular heart disease and the European Association of Cardiovascular Imaging endorsed cby the Heart Rhythm Society; by the Asia Pacific Heart Rhythm Society; and by the Latin American Heart Rhythm Society. Europace 2022, 24, 1981–2003. [Google Scholar] [CrossRef] [PubMed]
- Guglielmo, M.; Arangalage, D.; Bonino, M.A.; Angelini, G.; Bonanni, M.; Pontone, G.; Pascale, P.; Leo, L.A.; Faletra, F.; Schwitter, J.; et al. Additional value of cardiac magnetic resonance feature tracking parameters for the evaluation of the arrhythmic risk in patients with mitral valve prolapse. J. Cardiovasc. Magn. Reson. 2023, 25, 32. [Google Scholar] [CrossRef] [PubMed]
- Nagata, Y.; Bertrand, P.B.; Baliyan, V.; Kochav, J.; Kagan, R.D.; Ujka, K.; Alfraidi, H.; van Kampen, A.; Morningstar, J.E.; Dal-Bianco, J.P.; et al. Abnormal Mechanics Relate to Myocardial Fibrosis and Ventricular Arrhythmias in Patients with Mitral Valve Prolapse. Circ. Cardiovasc. Imaging 2023, 16, e014963. [Google Scholar] [CrossRef]
- Sonaglioni, A.; Nicolosi, G.L.; Rigamonti, E.; Lombardo, M.; La Sala, L. Molecular Approaches and Echocardiographic Deformation Imaging in Detecting Myocardial Fibrosis. Int. J. Mol. Sci. 2022, 23, 10944. [Google Scholar] [CrossRef]
- Mewton, N.; Liu, C.Y.; Croisille, P.; Bluemke, D.; Lima, J.A. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J. Am. Coll. Cardiol. 2011, 57, 891–903. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, Y.; Zhao, S.; Lu, M. Detection of myocardial fibrosis: Where we stand. Front. Cardiovasc. Med. 2022, 9, 926378. [Google Scholar] [CrossRef]
- Gibson, D.G.; Brown, D.J. Abnormal left ventricular wall movement in patients with chest pain and normal coronary arteriograms. Relation to inferior T wave changes and mitral prolapse. Br. Heart J. 1979, 41, 385–391. [Google Scholar] [CrossRef]
- Anderson, R.H.; Garbi, M.; Zugwitz, D.; Petersen, S.E.; Nijveldt, R. Anatomy of the mitral valve relative to controversies concerning the so-called annular disjunction. Heart 2023, 109, 734–739. [Google Scholar] [CrossRef]
- Krawczyk-Ożóg, A.; Hołda, M.K.; Batko, J.; Jaśkiewicz, K.; Dziewierz, A.; Zdzierak, B.; Zasada, W.; Gil, K.; Hołda, J. Description and prevalence of ventricular mitral annular disjunction: Variation of normality or pathological variant? Rev. Esp. Cardiol. 2024, 77, 987–994, (In English and Spanish). [Google Scholar] [CrossRef]
- Bon Tempo, C.P.; Ronan, J.A., Jr.; de Leon, A.C., Jr.; Twigg, H.L. Radiographic appearance of the thorax in systolic click-late systolic murmur syndrome. Am. J. Cardiol. 1975, 36, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Udoshi, M.B.; Shah, A.; Fisher, V.J.; Dolgin, M. Incidence of mitral valve prolapse in subjects with thoracic skeletal abnormalities—A prospective study. Am. Heart J. 1979, 97, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Sonaglioni, A.; Nicolosi, G.L.; Lombardo, M. The relationship between mitral valve prolapse and thoracic skeletal abnormalities in clinical practice: A systematic review. J. Cardiovasc. Med. 2024, 25, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Brochhausen, C.; Turial, S.; Müller, F.K.; Schmitt, V.H.; Coerdt, W.; Wihlm, J.M.; Schier, F.; Kirkpatrick, C.J. Pectus excavatum: History, hypotheses and treatment options. Interact. Cardiovasc. Thorac. Surg. 2012, 14, 801–806. [Google Scholar] [CrossRef] [PubMed]
- Nomura, K.; Ajiro, Y.; Nakano, S.; Matsushima, M.; Yamaguchi, Y.; Hatakeyama, N.; Ohata, M.; Sakuma, M.; Nonaka, T.; Harii, M.; et al. Characteristics of mitral valve leaflet length in patients with pectus excavatum: A single center cross-sectional study. PLoS ONE 2019, 14, e0212165. [Google Scholar] [CrossRef]
- Hourdain, J.; Clavel, M.A.; Deharo, J.C.; Asirvatham, S.; Avierinos, J.F.; Habib, G.; Franceschi, F.; Probst, V.; Sadoul, N.; Martins, R.; et al. Common Phenotype in Patients with Mitral Valve Prolapse Who Experienced Sudden Cardiac Death. Circulation 2018, 138, 1067–1069. [Google Scholar] [CrossRef]
- Haugaa, K. Improving the imaging diagnosis of mitral annular disjunction. Heart 2021, 107, 4–5. [Google Scholar] [CrossRef]
- Sonaglioni, A.; Nicolosi, G.L.; Trevisan, R.; Lombardo, M.; Grasso, E.; Gensini, G.F.; Ambrosio, G. The influence of pectus excavatum on cardiac kinetics and function in otherwise healthy individuals: A systematic review. Int. J. Cardiol. 2023, 381, 135–144. [Google Scholar] [CrossRef]
- Sonaglioni, A.; Rigamonti, E.; Nicolosi, G.L.; Lombardo, M. Prognostic Value of Modified Haller Index in Patients with Suspected Coronary Artery Disease Referred for Exercise Stress Echocardiography. J. Cardiovasc. Echogr. 2021, 31, 85–95. [Google Scholar] [CrossRef]
- Sonaglioni, A.; Rigamonti, E.; Nicolosi, G.L.; Lombardo, M. Appropriate use criteria implementation with modified Haller index for predicting stress echocardiographic results and outcome in a population of patients with suspected coronary artery disease. Int. J. Cardiovasc. Imaging 2021, 37, 2917–2930. [Google Scholar] [CrossRef]
- Zhu, L.; Chua, Y.L. Mitral Annular Disjunction: Clinical Implications and Surgical Considerations. Cardiol. Res. 2023, 14, 421–428. [Google Scholar] [CrossRef]
Study Name and Country | Number of Patients | Mean Age (yrs) | Females (%) | Imaging Method | Study Design (FU) | MAD Prevalence (%) | Main Findings in MAD+ Patients vs. MAD− Patients |
---|---|---|---|---|---|---|---|
Eriksson, M.J. et al. (2005) [24], Canada | 99 | 52 | 34 | TEE | Retrospective (5.9 yrs) | 69.7 | linear correlation between magnitude of MAD and number of segments with prolapse/flail; good surgical outcome |
Carmo, P. et al. (2010) [15], Portugal | 38 | 57 | 47.4 | TTE | Retrospective | 55 | ↑ females, chest pain paradoxical systolic MVA expansion ↑ NSVT risk when MAD > 8.5 mm |
Mantegazza, V. et al. (2019) [25], Italy | 979 | 59 | NR | TTE | Retrospective | 16.2 | younger age, ↑ MVA size, bileaflet MVP and BD ↓ flail; ↔ LV volumes, LVEF, left atrial size ↔ MV repair feasibility |
Essayagh, B. et al. (2019) [26], Monaco | 89 | 64 | 71 | CMR | Retrospective | 35 | younger age; ↑ MVA diameters, myxomatous MVP, bileaflet MVP, non-severe MR ↑ VAs and PM fibrosis ↔ left cardiac chamber size |
Putnam, A.J. et al. (2020) [27], USA | 90 | 63 | 26 | CCT | Retrospective | 20 | ↑ females, posterior leaflet length P2 scallop involvement in 89% of cases ↓ end-diastolic MVA area |
Mantegazza, V. et al. (2021) [16], Italy | 131 | 57 | 26.7 | TTE, TEE, CMR | Retrospective | 17.3, 25.5, 42.0 | ↑ myxomatous MVP, MAD prevalence in 2C view; ↓ MAD detection and overestimation by TTE; strong agreement between TEE and CMR |
Essayagh, B. et al. (2021) [28], USA | 595 | 61 | 47 | TTE | Retrospective (10.3 yrs) | 31 | younger age; ↓ CAD, HF, hypertension, AF ↑ bileaflet MVP, LV size, palpitations and syncope; ↑ VAs; ↔ overall survival |
Bennett, S. et al. (2022) [29], UK | 185 | 66.7 | 18.3 | TTE | Retrospective (4.1 yrs) | 32.4 | ↑ myxomatous MVP, MR degree, inferolateral LV wall involvement; ↓ MAD post-MV surgery ↔ MACE over follow-up |
Biondi, R. et al. (2022) [30], France | 85 | 59 | 45 | 3D-TEE | Retrospective | 38.8 | ↑ P2 scallop involvement MAD phenotypes: bimodal (63.6%) or flat (36.4%); good surgical outcome |
Figliozzi, S. et al. (2023) [7], Europe | 474 | 47 | 51.5 | CMR | Retrospective (3.2 yrs) | 68 | younger age, ↑ chest pain; ≥10,000 VAs/day LGE prevalence and extent associated with adverse outcome |
Sonaglioni, A. et al. (2023) [31], Italy | 93 | 54.2 | 50.5 | TTE, STE | Prospective | 34.4 | ↓ A-P thoracic diameter; ↑ myxomatous MVP ↓ cardiac chambers cavity sizes ↔ LVEF; ↓ LV-GLS and LV-GCS |
Gray, R. et al. (2023) [32], Australia | 111 | 66.3 | 29.7 | TTE | Retrospective (3.9 yrs) | 28.8 | younger age, ↑ females, ↓ CAD ↑ myxomatous MVP, bileaflet MVP, MVA diameters; ↑ inferior T-wave inversion, severe MR; ↓ MAD and ↑ VAs post-MV surgery |
Hussain, N. et al. (2023) [33], USA | 100 | 58 | 55 | CMR | Retrospective (2.1 yrs) | 52 | ↑ bileaflet MVP, paradoxical systolic MVA expansion; ↑ abnormal LGE ↑ VT risk when MAD ≥ 4 mm + abnormal LGE |
Vaksmann, G. et al. (2023) [34], France | 49 | 12.8 | 67 | TTE | Prospective | 51 | ↑ T-wave inversion in inferolateral leads ↑ VAs in presence of Pickelhaube sign, myxomatous MVP and dilated left ventricle |
Shechter, A. et al. (2023) [35], USA | 271 | 82 | 39.1 | TTE, STE | Retrospective (1 year) | 22.9 | ↓ LV chamber cavity sizes; ↔ LVEF, LV-GLS ↑ bileaflet MVP, posterior leaflet, MVA ↑ procedural time and mortality risk |
Perazzolo Marra, M. et al. (2024) [36], Italy | 108 | 48 | 61 | CMR | Retrospective (3.7 yrs) | 57 | ↑ LGE in LV-basal inferolateral wall and PMs ↑ VAs in presence of greater MAD distance, curling and LGE |
Özyıldırım, S. et al. (2024) [37], Turkey | 103 | 36 | 50 | TTE, STE | Prospective | 33 | ↑ symptoms, T-negativity in inferior leads ↑ MR degree, MVA diameters, Pickelhaube sign and LGE; ↓ LV-GLS, LV-BLS, LV-MLS; ↔ LV-ALS; ↓ LASr |
Blondeel, M. et al. (2024) [38], Belgium | 12 | 51.3 | 75 | CMR | Retrospective (4.7 yrs) | 67 | ↑ VAs in presence of new LGE (fibrosis) in mid- to basal inferolateral wall and both PMs on repeat CMR after median of 4.7 yrs |
Meucci, M.C. et al. (2024) [39], the Netherlands | 231 | 48 | 55 | TTE, STE | Retrospective (3.1 yrs) | 39 | ↑ eLVH, LAVi, MVA, TAPSE; ↓ LASr ↔ LVEF, LV-GLS, E/A, E/e’, sPAP ↑ MR progression |
Cesmat, A.P. et al. (2024) [40], USA | 632 | 62 | 52.7 | TTE | Retrospective (3.3 yrs) | 14.9 | ↑ females, T-wave inversion in inferolateral leads; ↑ myxomatous bileaflet MVP; ↓ hypertension; ↑ complex VAs and all-cause mortality risk |
Figliozzi, S. et al. (2024) [41], Italy | 29 | 55 | 42 | CMR | Retrospective (1 year) | 90 | younger age, ↓ CAD; ↓ LV dimensions, ↑ LVEF; ≥10,000 VAs/day; MAD positively correlated with MVP extent and systolic MVA |
Palmisano, A. et al. (2024) [42], Italy | 2611 | 53 | 34 | CMR | Retrospective (5 yrs) | 5.4 | ↑ MAD length, ECV, systolic curling in MAD patients with bileaflet MVP; ↑ arrhythmias in case of MAD ≥ 5 mm and bileaflet MVP |
Fiore, G. et al. (2025) [43], Italy | 603 | 52 | 50 | TTE, STE, CMR | Retrospective | 7 | younger age, ↑ females ↑ LV end-diastolic volumes; ↑ degree of MR ↑ periannular fibrosis (True-MAD) ↑ inferolateral fibrosis (Pseudo-MAD) |
Average Value (IQR) | Number of Studies for Parameters Assessed (%) | |
---|---|---|
Demographics | ||
Age (yrs) | 55 (12.8–82) | 23 (100) |
Female sex (%) | 46.7 (18.3–75) | 22 (95.6) |
Anthropometrics | ||
BSA (m2) | 1,9 (1.8–1.97) | 5 (21.7) |
BMI (Kg/m2) | 25.1 (23.5–29) | 5 (21.7) |
MHI | 2.3 (2.0–2.6) | 1 (4.3) |
Cardiovascular risk factors and cardiovascular disease burden | ||
Hypertension (%) | 31.1 (12–78.2) | 11 (47.8) |
Smokers (%) | 18.8 (3.4–41.7) | 8 (34.8) |
Dyslipidemia (%) | 22.8 (8–43.2) | 10 (43.5) |
Type 2 diabetes (%) | 7 (0.5–18.6) | 11 (47.8) |
CAD history (%) | 10.4 (1–27.3) | 11 (47.8) |
CHF history (%) | 15.9 (3.3–35.1) | 6 (26.1) |
Symptoms (%) | ||
Dyspnea (%) | 22.4 (5.7–42) | 6 (26.1) |
Palpitations (%) | 35.9 (8–58.8) | 9 (39.1) |
Fatigue (%) | 16.4 (11.8–21) | 2 (8.7) |
Chest pain (%) | 16 (7–29) | 7 (30.4) |
Syncope (%) | 10.8 (1–23) | 9 (39.1) |
ECG/24 h Holter monitoring findings | ||
T-wave inversion in inferolateral leads (%) | 29.2 (20–46.2) | 6 (26.1) |
Atrial arrhythmias and/or AF (%) | 20 (1.1–55) | 15 (65.2) |
Ventricular arrhythmias (%) | 33.4 (6.3–61.4) | 11 (47.8) |
NSVT (%) | 11.8 (1.8–33) | 7 (30.4) |
Conventional echoDoppler variables | ||
IVS thickness (mm) | 9.7 (9–10) | 3 (13) |
PW thickness (mm) | 9.4 (9–9.8) | 2 (8.7) |
LV-EDD (mm) | 51.5 (41.3–60) | 9 (39.1) |
LV-ESD (mm) | 33.2 (31–39) | 6 (26.1) |
LVMi (g/m2) | 83.5 (54–119.1) | 7 (30.4) |
LV-EDV (mL/m2) | 79.3 (43.1–107) | 8 (34.8) |
LV-ESV (mL/m2) | 30 (15.8–39) | 8 (34.8) |
LVEF (%) | 60.9 (48.5–66) | 18 (78.3) |
LAVi (mL/m2) | 48.8 (31–82) | 11 (47.8) |
E/A ratio | 1.0 (0.83–1.2) | 2 (8.7) |
E/e’ ratio | 8.5 (7–10) | 2 (8.7) |
RVIT (mm) | 34 (29.1–39) | 2 (8.7) |
TAPSE (mm) | 22.2 (18–25) | 4 (17.4) |
sPAP (mmHg) | 31.9 (25–43) | 6 (26.1) |
Mitral valve parameters | ||
Bileaflet MVP (%) | 46 (2.4–79) | 16 (69.6) |
Posterior leaflet prolapse only (%) | 43.9 (21–85) | 8 (34.8) |
MVA end-systolic A-P diameter (mm) | 35.9 (29.6–44.5) | 9 (39.1) |
Myxomatous morphology (%) | 60.8 (36.9–75) | 4 (17.4) |
Mild-to-moderate MR (%) | 40.7 (12.5–100) | 15 (65.2) |
Severe MR (%) | 55 (34–100) | 8 (34.8) |
Accompanying flail (%) | 27.9 (6–48) | 6 (26.1) |
MAD overall prevalence (%) | 39.6 (5.4–90) | 23 (100) |
MAD prevalence in TTE studies (%) | 31.3 (14.9–55) | 12 (52.2) |
MAD prevalence in TEE studies (%) | 44.7 (25.5–69.7) | 3 (13) |
MAD prevalence in CMR studies (%) | 47 (5.4–90) | 9 (39.1) |
MAD prevalence in CCT studies (%) | 20 | 1 (4.3) |
MAD extent (mm) | 7.1 (4.2–10) | 21 (91.3) |
Females with MAD (%) | 60 (52–66) | 13 (56.5) |
Pickelhaube sign (%) | 24.7 (6.5–37) | 5 (21.7) |
Myocardial strain parameters (%) | ||
LV-GLS (%) | 19.3 (15.9–23.1) | 6 (26.1) |
LV-BLS (%) | 14.6 (11–19.6) | 3 (13) |
LV-MLS (%) | 19.3 (16.4–22.2) | 2 (8.7) |
LV-ALS (%) | 24.8 (22.1–27.5) | 2 (8.7) |
LASr (%) | 27.9 (24.5–31.2) | 2 (8.7) |
CMR findings | ||
LV-EDV (mL/m2) | 86.2 (77.1–95) | 3 (13) |
LV-ESV (mL/m2) | 34.8 (31.5–38) | 3 (13) |
LVEF (%) | 59.3 (59–60) | 3 (13) |
RV-EDV (mL/m2) | 79 (72.6–82) | 4 (17.4) |
RV-ESV (mL/m2) | 31.7 (29–33) | 4 (17.4) |
RVEF (%) | 60 (57–62) | 4 (17.4) |
Abnormal LGE (%) | 35.9 (6.1–68) | 10 (43.5) |
Current medical treatment | ||
Beta blockers (%) | 32.6 (14–58.7) | 8 (34.8) |
ACEi/ARBs (%) | 28.1 (14.9–62) | 13 (56.5) |
Antiarrhythmics (%) | 15.4 (13–17.8) | 2 (8.7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sonaglioni, A.; Nicolosi, G.L.; Muti-Schünemann, G.E.U.; Lombardo, M.; Muti, P. The Prevalence, Pathophysiological Role and Determinants of Mitral Annular Disjunction Among Patients with Mitral Valve Prolapse: A Systematic Review. J. Clin. Med. 2025, 14, 1423. https://doi.org/10.3390/jcm14051423
Sonaglioni A, Nicolosi GL, Muti-Schünemann GEU, Lombardo M, Muti P. The Prevalence, Pathophysiological Role and Determinants of Mitral Annular Disjunction Among Patients with Mitral Valve Prolapse: A Systematic Review. Journal of Clinical Medicine. 2025; 14(5):1423. https://doi.org/10.3390/jcm14051423
Chicago/Turabian StyleSonaglioni, Andrea, Gian Luigi Nicolosi, Giovanna Elsa Ute Muti-Schünemann, Michele Lombardo, and Paola Muti. 2025. "The Prevalence, Pathophysiological Role and Determinants of Mitral Annular Disjunction Among Patients with Mitral Valve Prolapse: A Systematic Review" Journal of Clinical Medicine 14, no. 5: 1423. https://doi.org/10.3390/jcm14051423
APA StyleSonaglioni, A., Nicolosi, G. L., Muti-Schünemann, G. E. U., Lombardo, M., & Muti, P. (2025). The Prevalence, Pathophysiological Role and Determinants of Mitral Annular Disjunction Among Patients with Mitral Valve Prolapse: A Systematic Review. Journal of Clinical Medicine, 14(5), 1423. https://doi.org/10.3390/jcm14051423