Article Versions Notes
| Action | Date | Notes | Link |
|---|---|---|---|
| article pdf uploaded. | 17 December 2025 17:04 CET | Version of Record | https://www.mdpi.com/2077-0383/14/24/8934/pdf |
You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.
All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess.
Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.
Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.
Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.
Original Submission Date Received: .
| Action | Date | Notes | Link |
|---|---|---|---|
| article pdf uploaded. | 17 December 2025 17:04 CET | Version of Record | https://www.mdpi.com/2077-0383/14/24/8934/pdf |
Hassine, N.B.E.H.; Barbaria, S.; Najah, O.; Ceylan, H.İ.; Bilal, M.; Rebai, L.; Muntean, R.I.; Dergaa, I.; Boussi Rahmouni, H. Early Prediction of Acute Respiratory Distress Syndrome in Critically Ill Polytrauma Patients Using Balanced Random Forest ML: A Retrospective Cohort Study. J. Clin. Med. 2025, 14, 8934. https://doi.org/10.3390/jcm14248934
Hassine NBEH, Barbaria S, Najah O, Ceylan Hİ, Bilal M, Rebai L, Muntean RI, Dergaa I, Boussi Rahmouni H. Early Prediction of Acute Respiratory Distress Syndrome in Critically Ill Polytrauma Patients Using Balanced Random Forest ML: A Retrospective Cohort Study. Journal of Clinical Medicine. 2025; 14(24):8934. https://doi.org/10.3390/jcm14248934
Chicago/Turabian StyleHassine, Nesrine Ben El Hadj, Sabri Barbaria, Omayma Najah, Halil İbrahim Ceylan, Muhammad Bilal, Lotfi Rebai, Raul Ioan Muntean, Ismail Dergaa, and Hanene Boussi Rahmouni. 2025. "Early Prediction of Acute Respiratory Distress Syndrome in Critically Ill Polytrauma Patients Using Balanced Random Forest ML: A Retrospective Cohort Study" Journal of Clinical Medicine 14, no. 24: 8934. https://doi.org/10.3390/jcm14248934
APA StyleHassine, N. B. E. H., Barbaria, S., Najah, O., Ceylan, H. İ., Bilal, M., Rebai, L., Muntean, R. I., Dergaa, I., & Boussi Rahmouni, H. (2025). Early Prediction of Acute Respiratory Distress Syndrome in Critically Ill Polytrauma Patients Using Balanced Random Forest ML: A Retrospective Cohort Study. Journal of Clinical Medicine, 14(24), 8934. https://doi.org/10.3390/jcm14248934