Rethinking Potassium Management in Chronic Kidney Disease—A Modern Approach
Abstract
1. Potassium Homeostasis in Patients with Chronic Kidney Disease
1.1. Normal Potassium Homeostasis
1.2. Impaired Renal Excretion
- (i)
- Decreased distal Na+ delivery, as seen in decompensated heart failure or acute glomerulonephritis,
- (ii)
- Reduced mineralocorticoid activity, common in diabetes with hyporeninemic hypoaldosteronism or due to RAASi therapy,
- (iii)
- Abnormal collecting duct function, often associated with tubulointerstitial kidney disease) [1].
2. Management of Hyperkalemia in Chronic Kidney Disease
2.1. Potential Implications of Hyperkalemia on Patients with Chronic Kidney Disease
2.1.1. Hyperkalemia and Its Significance in Patients with CKD
2.1.2. Discontinuation/Dose Reduction of Renin-Angiotensin-Aldosterone System Inhibitors
2.1.3. Hyperkalemia-Related Healthcare Utilization, Costs
2.2. Traditional Strategies for Management of Hyperkalemia
2.2.1. Correction of Metabolic Acidosis
2.2.2. Prescription of Diuretics
2.2.3. Dietary Potassium Restriction
2.3. Modern Strategies for Management of Hyperkalemia
2.3.1. Role of Sodium Glucose Transporter 2 Inhibitors (SGLT2i)
2.3.2. Prescription of K-Binding Resins
3. Liberation of Potassium Restriction and Consideration of Potassium Supplementation/Salt-Substitutes
3.1. Evidence Demonstrating Potential Benefits of High Dietary Potassium Intake
| Study | Population | Outcomes |
|---|---|---|
| Mirmiran et al. 2018 [84] | 1780 participants in the Tehran Lipid and Glucose study and followed up for 6.3 yr | No difference in risk of incident CKD |
| Kieneker et al. 2016 [85] | 5315 Dutch participants aged 28 to 75 yr in the PREVEND study and followed up for a median of 10.3 yr | Reduced risk of incident CKD |
| Kelly et al. 2021 [80] | Meta-analysis of 104 studies involving 2,755,619 patients without baseline CKD | Reduced risk of incident CKD |
| He et al. 2016 [86] | 3939 participants aged 21–74 yr with CKD (GFR 20–70 mL/min per 1.73 m2) in the CRIC study | Increased risk of CKD progression No difference in risk of death |
| >Araki et al. 2015 [87] | >623 Japanese patients with diabetes and eGFR ≥ 60 mL/min per 1.73/m2 enrolled between 1996–2003 and followed up until 2013 | >Reduced risk of CKD progression Slower rate of annual eGFR decline |
| >Smyth et al. 2014 [88] | >Post hoc analysis of ONTARGET and TRANSCEND studies; >30,000 patients from 18 countries with vascular disease or diabetes with end-organ damage | >Reduced risk of CKD progression |
| Kim et al. 2019 [89] | 1821 participants aged 20–75 yr with CKD G1–G5 (non-dialysis) in the KNOW-CKD study | Reduced risk of CKD progression |
| Smyth et al. 2016 [90] | 544,635 participants in the NIH-AARP Diet and Health Study, aged 51–70 yr | Reduced risk of ESKD and renal mortality |
| Noori et al. 2010 [91] | 224 chronic HD patients from the NIED Study | Increased risk of death when comparing extremes of dietary potassium intake |
| Bernier-Jean et al. 2021 [83] | 8043 participants in the DIET-HD study with ESKD on maintenance HD | No difference in risk of death |
| Neal et al. 2021 [78] | Open-label, cluster-randomized trial involving 600 villages and 20,995 individuals in rural China with a history of stroke or aged ≥ 60 years old with poorly controlled blood pressure | Reduced risk of stroke, major adverse cardiovascular events and all-cause mortality |
| Yin et al. 2022 [79] | Meta-analysis of 21 studies involving 31,949 patients evaluating the effect of salt substitutes on clinical outcomes | Reduced blood pressure Reduced cardiovascular events, cardiovascular mortality and all-cause mortality |
| Leonberg-Yoo et al. 2017 [92] | Post hoc analysis of MDRD study 812 patients aged 15–70 yr with CKD G2–G4 | Reduced risk of death |
| Eisenga et al. 2016 [93] | Prospective cohort of 705 stable kidney transplant recipients | Reduced risk of graft failure and death |
3.2. Dietary Patterns vs. Nutrient Focus
3.2.1. Dietary Approaches to Stop Hypertension
3.2.2. Mediterranean Diet
3.3. Food Sources, Bioavailability of Potassium and Food Preparation Methods
3.4. Clinical Trials and Guidelines
3.4.1. Upcoming Clinical Trials
3.4.2. Current Clinical Practice Guidelines
4. Our Recommendations
5. Future Directions
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AKI | Acute Kidney Injury |
| ACEi | Angiotensin-converting enzyme inhibitors (ACEi) |
| ARB | Angiotensin-receptor blockers |
| ASDN | Aldosterone-sensitive distal nephron |
| CKD | Chronic Kidney Disease |
| CONFIDENCE | Finerenone with Empagliflozin in Chronic Kidney Disease and Type 2 Diabetes |
| DASH | Dietary Approaches to Stop Hypertension |
| DM | Diabetes Mellitus |
| eGFR | Estimated glomerular filtration rate |
| ENaC | Epithelial Na+ channels |
| ESKD | End Stage Kidney Disease |
| FIDELIO-DKD | Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes |
| GFR | Glomerular filtration rate |
| HD | Hemodialysis |
| KDIGO | Kidney Disease: Improving Global Outcomes |
| MACE | Major adverse cardiovascular events |
| MRA | Mineralocorticoid receptor antagonists |
| NCC | Na+/Cl− cotransporter |
| NHE | Sodium-hydrogen exchanger |
| NKCC | Na+/K+/2Cl− cotransporter |
| nsMRA | Non-steroid mineralocorticoid antagonists |
| PREVEND | Prevention of Renal and Vascular End-Stage Disease Study and the Trials of Hypertension Follow-up Studies |
| RAASi | Renin-angiotensin-aldosterone system inhibitor |
| ROMK | Renal outer medullary potassium channels |
| SGLT2i | Sodium glucose transporter 2 inhibitors |
| uACR | Urine albumin creatinine ratio |
References
- Palmer, B.F.; Clegg, D.J. Physiology and Pathophysiology of Potassium Homeostasis: Core Curriculum 2019. Am. J. Kidney Dis. 2019, 74, 682–695. [Google Scholar] [CrossRef] [PubMed]
- Sansom, S.C.; Welling, P.A. Two channels for one job. Kidney Int. 2007, 72, 529–530. [Google Scholar] [CrossRef] [PubMed]
- Rossier, B.C.; Baker, M.E.; Studer, R.A. Epithelial sodium transport and its control by aldosterone: The story of our internal environment revisited. Physiol. Rev. 2015, 95, 297–340. [Google Scholar] [CrossRef]
- Giebisch, G.H.; Wang, W.H. Potassium transport—An update. J. Nephrol. 2010, 23, S97–S104. [Google Scholar] [PubMed]
- Klein, J.; Gonzalez, J.; Miravete, M.; Caubet, C.; Chaaya, R.; Decramer, S.; Bandin, F.; Bascands, J.L.; Buffin-Meyer, B.; Schanstra, J.P. Congenital ureteropelvic junction obstruction: Human disease and animal models. Int. J. Exp. Pathol. 2011, 92, 168–192. [Google Scholar] [CrossRef]
- Perez-Aizpurua, X.; Cabello Benavente, R.; Bueno Serrano, G.; Alcazar Peral, J.M.; Gomez-Jordana Manas, B.; Tufet, I.J.J.; Ruiz de Castroviejo Blanco, J.; Osorio Ospina, F.; Gonzalez-Enguita, C. Obstructive uropathy: Overview of the pathogenesis, etiology and management of a prevalent cause of acute kidney injury. World J. Nephrol. 2024, 13, 93322. [Google Scholar] [CrossRef]
- Batlle, D.C.; Arruda, J.A.; Kurtzman, N.A. Hyperkalemic distal renal tubular acidosis associated with obstructive uropathy. N. Engl. J. Med. 1981, 304, 373–380. [Google Scholar] [CrossRef]
- Clase, C.M.; Carrero, J.J.; Ellison, D.H.; Grams, M.E.; Hemmelgarn, B.R.; Jardine, M.J.; Kovesdy, C.P.; Kline, G.A.; Lindner, G.; Obrador, G.T.; et al. Potassium homeostasis and management of dyskalemia in kidney diseases: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2020, 97, 42–61. [Google Scholar] [CrossRef]
- Einhorn, L.M.; Zhan, M.; Hsu, V.D.; Walker, L.D.; Moen, M.F.; Seliger, S.L.; Weir, M.R.; Fink, J.C. The frequency of hyperkalemia and its significance in chronic kidney disease. Arch. Intern. Med. 2009, 169, 1156–1162. [Google Scholar] [CrossRef]
- Wang, Y.; Phelps, K.R.; Gemoets, D.E.; Gosmanova, E.O. Determinants of the serum potassium concentration in chronic kidney disease. Clin. Nephrol. 2025, 103, 26–35. [Google Scholar] [CrossRef]
- Floege, J.; Frankel, A.H.; Erickson, K.F.; Rtveladze, K.; Punekar, Y.; Mir, J.N.; Walters, J.; Ehm, A.; Fotheringham, J. The burden of hyperkalaemia in chronic kidney disease: A systematic literature review. Clin. Kidney J. 2025, 18, sfaf127. [Google Scholar] [CrossRef] [PubMed]
- Weir, M.R.; Rolfe, M. Potassium homeostasis and renin-angiotensin-aldosterone system inhibitors. Clin. J. Am. Soc. Nephrol. 2010, 5, 531–548. [Google Scholar] [CrossRef] [PubMed]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. [Google Scholar] [CrossRef] [PubMed]
- Yap, D.Y.H.; Ma, R.C.W.; Wong, E.C.K.; Tsui, M.S.H.; Yu, E.Y.T.; Yu, V.; Szeto, C.C.; Pang, W.F.; Tse, H.F.; Siu, D.C.W.; et al. Consensus statement on the management of hyperkalaemia-An Asia-Pacific perspective. Nephrology 2024, 29, 311–324. [Google Scholar] [CrossRef]
- Lott, C.; Truhlar, A.; Alfonzo, A.; Barelli, A.; Gonzalez-Salvado, V.; Hinkelbein, J.; Nolan, J.P.; Paal, P.; Perkins, G.D.; Thies, K.C.; et al. European Resuscitation Council Guidelines 2021: Cardiac arrest in special circumstances. Resuscitation 2021, 161, 152–219. [Google Scholar] [CrossRef]
- Phillips, B.M.; Milner, S.; Zouwail, S.; Roberts, G.; Cowan, M.; Riley, S.G.; Phillips, A.O. Severe hyperkalaemia: Demographics and outcome. Clin. Kidney J. 2014, 7, 127–133. [Google Scholar] [CrossRef][Green Version]
- Tanaka, K.; Saito, H.; Iwasaki, T.; Oda, A.; Watanabe, S.; Kanno, M.; Kimura, H.; Shimabukuro, M.; Asahi, K.; Watanabe, T.; et al. Association between serum potassium levels and adverse outcomes in chronic kidney disease: The Fukushima CKD cohort study. Clin. Exp. Nephrol. 2021, 25, 410–417. [Google Scholar] [CrossRef]
- Collins, A.J.; Pitt, B.; Reaven, N.; Funk, S.; McGaughey, K.; Wilson, D.; Bushinsky, D.A. Association of Serum Potassium with All-Cause Mortality in Patients with and without Heart Failure, Chronic Kidney Disease, and/or Diabetes. Am. J. Nephrol. 2017, 46, 213–221. [Google Scholar] [CrossRef]
- Leon, S.J.; Whitlock, R.; Rigatto, C.; Komenda, P.; Bohm, C.; Sucha, E.; Bota, S.E.; Tuna, M.; Collister, D.; Sood, M.; et al. Hyperkalemia-Related Discontinuation of Renin-Angiotensin-Aldosterone System Inhibitors and Clinical Outcomes in CKD: A Population-Based Cohort Study. Am. J. Kidney Dis. 2022, 80, 164–173.e1. [Google Scholar] [CrossRef]
- Kovesdy, C.P.; Matsushita, K.; Sang, Y.; Brunskill, N.J.; Carrero, J.J.; Chodick, G.; Hasegawa, T.; Heerspink, H.L.; Hirayama, A.; Landman, G.W.D.; et al. Serum potassium and adverse outcomes across the range of kidney function: A CKD Prognosis Consortium meta-analysis. Eur. Heart J. 2018, 39, 1535–1542. [Google Scholar] [CrossRef]
- Fu, E.L.; Evans, M.; Clase, C.M.; Tomlinson, L.A.; van Diepen, M.; Dekker, F.W.; Carrero, J.J. Stopping Renin-Angiotensin System Inhibitors in Patients with Advanced CKD and Risk of Adverse Outcomes: A Nationwide Study. J. Am. Soc. Nephrol. 2021, 32, 424–435. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, S.; Mehta, S.; Khwaja, A.; Cleland, J.G.F.; Ives, N.; Brettell, E.; Chadburn, M.; Cockwell, P.; Investigators, S.A.T. Renin-Angiotensin System Inhibition in Advanced Chronic Kidney Disease. N. Engl. J. Med. 2022, 387, 2021–2032. [Google Scholar] [CrossRef] [PubMed]
- Kanda, E.; Rastogi, A.; Murohara, T.; Lesen, E.; Agiro, A.; Arnold, M.; Chen, G.; Yajima, T.; Jarbrink, K.; Pollack, C.V., Jr. Clinical impact of suboptimal RAASi therapy following an episode of hyperkalemia. BMC Nephrol. 2023, 24, 18. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.; Shi, M.; Lau, E.S.H.; Wu, H.; Zhang, X.; Fan, B.; Kong, A.P.S.; Luk, A.O.Y.; Ma, R.C.W.; Chan, J.C.N.; et al. Clinical outcomes following discontinuation of renin-angiotensin-system inhibitors in patients with type 2 diabetes and advanced chronic kidney disease: A prospective cohort study. eClinicalMedicine 2023, 55, 101751. [Google Scholar] [CrossRef]
- Svensson, M.K.; Fischereder, M.; Kalra, P.R.; Sanchez Lazaro, I.J.; Lesen, E.; Franzen, S.; Allum, A.; Cars, T.; Kossack, N.; Breitbart, P.; et al. Estimated Number Needed to Treat to Avoid a First Hospitalization by Maintaining Instead of Reducing Renin-Angiotensin-Aldosterone System Inhibitor (RAASi) Therapy after Hyperkalemia. Kidney360 2024, 5, 1813–1823. [Google Scholar] [CrossRef]
- Svensson, M.K.; Murohara, T.; Lesen, E.; Arnold, M.; Cars, T.; Jarbrink, K.; Chen, G.; Morita, N.; Venkatesan, S.; Kanda, E. Hyperkalaemia-related reduction of RAASi treatment associates with more subsequent inpatient care. Nephrol. Dial. Transplant. 2024, 39, 1258–1267. [Google Scholar] [CrossRef]
- Cook, E.E.; Davis, J.; Israni, R.; Mu, F.; Betts, K.A.; Anzalone, D.; Yin, L.; Szerlip, H.; Uwaifo, G.I.; Fonseca, V.; et al. Prevalence of Metabolic Acidosis Among Patients with Chronic Kidney Disease and Hyperkalemia. Adv. Ther. 2021, 38, 5238–5252. [Google Scholar] [CrossRef]
- Levin, A.; Stevens, P.E. Summary of KDIGO 2012 CKD Guideline: Behind the scenes, need for guidance, and a framework for moving forward. Kidney Int. 2014, 85, 49–61. [Google Scholar] [CrossRef]
- Chen, W.; Abramowitz, M.K. Treatment of metabolic acidosis in patients with CKD. Am. J. Kidney Dis. 2014, 63, 311–317. [Google Scholar] [CrossRef]
- Vallet, M.; Metzger, M.; Haymann, J.P.; Flamant, M.; Gauci, C.; Thervet, E.; Boffa, J.J.; Vrtovsnik, F.; Froissart, M.; Stengel, B.; et al. Urinary ammonia and long-term outcomes in chronic kidney disease. Kidney Int. 2015, 88, 137–145. [Google Scholar] [CrossRef]
- Goraya, N.; Simoni, J.; Jo, C.H.; Wesson, D.E. A comparison of treating metabolic acidosis in CKD stage 4 hypertensive kidney disease with fruits and vegetables or sodium bicarbonate. Clin. J. Am. Soc. Nephrol. 2013, 8, 371–381. [Google Scholar] [CrossRef]
- Goraya, N.; Simoni, J.; Jo, C.H.; Wesson, D.E. Treatment of metabolic acidosis in patients with stage 3 chronic kidney disease with fruits and vegetables or oral bicarbonate reduces urine angiotensinogen and preserves glomerular filtration rate. Kidney Int. 2014, 86, 1031–1038. [Google Scholar] [CrossRef] [PubMed]
- Goraya, N.; Munoz-Maldonado, Y.; Simoni, J.; Wesson, D.E. Fruit and Vegetable Treatment of Chronic Kidney Disease-Related Metabolic Acidosis Reduces Cardiovascular Risk Better than Sodium Bicarbonate. Am. J. Nephrol. 2019, 49, 438–448. [Google Scholar] [CrossRef] [PubMed]
- Noce, A.; Marrone, G.; Wilson Jones, G.; Di Lauro, M.; Pietroboni Zaitseva, A.; Ramadori, L.; Celotto, R.; Mitterhofer, A.P.; Di Daniele, N. Nutritional Approaches for the Management of Metabolic Acidosis in Chronic Kidney Disease. Nutrients 2021, 13, 2534. [Google Scholar] [CrossRef] [PubMed]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L., Jr.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T., Jr.; et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: The JNC 7 report. JAMA 2003, 289, 2560–2572. [Google Scholar] [CrossRef]
- Sinha, A.D.; Agarwal, R. Clinical Pharmacology of Antihypertensive Therapy for the Treatment of Hypertension in CKD. Clin. J. Am. Soc. Nephrol. 2019, 14, 757–764. [Google Scholar] [CrossRef]
- Sinha, A.D.; Agarwal, R. Thiazides in advanced chronic kidney disease: Time for a randomized controlled trial. Curr. Opin. Cardiol. 2015, 30, 366–372. [Google Scholar] [CrossRef]
- Agarwal, R.; Sinha, A.D.; Cramer, A.E.; Balmes-Fenwick, M.; Dickinson, J.H.; Ouyang, F.; Tu, W. Chlorthalidone for Hypertension in Advanced Chronic Kidney Disease. N. Engl. J. Med. 2021, 385, 2507–2519. [Google Scholar] [CrossRef]
- Ali, S.; Navaneethan, S.D.; Virani, S.S.; Gregg, L.P. Revisiting diuretic choice in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2022, 31, 406–413. [Google Scholar] [CrossRef]
- Cupisti, A.; Kovesdy, C.P.; D’Alessandro, C.; Kalantar-Zadeh, K. Dietary Approach to Recurrent or Chronic Hyperkalaemia in Patients with Decreased Kidney Function. Nutrients 2018, 10, 261. [Google Scholar] [CrossRef]
- AlSahow, A. Moderate stepwise restriction of potassium intake to reduce risk of hyperkalemia in chronic kidney disease: A literature review. World J. Nephrol. 2023, 12, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Bakris, G.L.; Agarwal, R.; Anker, S.D.; Pitt, B.; Ruilope, L.M.; Rossing, P.; Kolkhof, P.; Nowack, C.; Schloemer, P.; Joseph, A.; et al. Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2020, 383, 2219–2229. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Joseph, A.; Anker, S.D.; Filippatos, G.; Rossing, P.; Ruilope, L.M.; Pitt, B.; Kolkhof, P.; Scott, C.; Lawatscheck, R.; et al. Hyperkalemia Risk with Finerenone: Results from the FIDELIO-DKD Trial. J. Am. Soc. Nephrol. 2022, 33, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Xu, Y.; Liu, C.; Liu, Y.; Fan, Y.; Li, Z.; Zhang, D.; Mao, H.; Chen, W. Novel Potassium Binders in Reduction of Hyperkalemia and Optimization of RAAS Inhibitors Treatment in Patients with Chronic Kidney Disease or Heart Failure: A Systematic Review and Meta-analysis. Drugs 2025, 85, 1013–1031. [Google Scholar] [CrossRef]
- Rastogi, A.; Chertow, G.M.; Collins, A.; Kelepouris, E.; Kotzker, W.; Middleton, J.P.; Rajpal, M.; Roy-Chaudhury, P. Utilization of Potassium Binders for the Management of Hyperkalemia in Chronic Kidney Disease: A Position Statement by US Nephrologists. Adv. Kidney Dis. Health 2024, 31, 514–522. [Google Scholar] [CrossRef]
- Ortiz, A.; Alcazar Arroyo, R.; Casado Escribano, P.P.; Fernandez-Fernandez, B.; Martinez Deben, F.; Mediavilla, J.D.; Michan-Dona, A.; Soler, M.J.; Gorriz, J.L. Optimization of potassium management in patients with chronic kidney disease and type 2 diabetes on finerenone. Expert. Rev. Clin. Pharmacol. 2023, 16, 519–531. [Google Scholar] [CrossRef]
- Suenaga, T.; Tanaka, S.; Kitamura, H.; Tsuruya, K.; Nakano, T.; Kitazono, T. Estimated potassium intake and the progression of chronic kidney disease. Nephrol. Dial. Transplant. 2025, 40, 1362–1373. [Google Scholar] [CrossRef]
- Ma, Y.; He, F.J.; Sun, Q.; Yuan, C.; Kieneker, L.M.; Curhan, G.C.; MacGregor, G.A.; Bakker, S.J.L.; Campbell, N.R.C.; Wang, M.; et al. 24-Hour Urinary Sodium and Potassium Excretion and Cardiovascular Risk. N. Engl. J. Med. 2022, 386, 252–263. [Google Scholar] [CrossRef]
- Narasaki, Y.; Okuda, Y.; Kalantar, S.S.; You, A.S.; Novoa, A.; Nguyen, T.; Streja, E.; Nakata, T.; Colman, S.; Kalantar-Zadeh, K.; et al. Dietary Potassium Intake and Mortality in a Prospective Hemodialysis Cohort. J. Ren. Nutr. 2021, 31, 411–420. [Google Scholar] [CrossRef]
- Narasaki, Y.; You, A.S.; Malik, S.; Moore, L.W.; Bross, R.; Cervantes, M.K.; Daza, A.; Kovesdy, C.P.; Nguyen, D.V.; Kalantar-Zadeh, K.; et al. Dietary potassium intake, kidney function, and survival in a nationally representative cohort. Am. J. Clin. Nutr. 2022, 116, 1123–1134. [Google Scholar] [CrossRef]
- Gritter, M.; Wei, K.Y.; Wouda, R.D.; Musterd-Bhaggoe, U.M.; Dijkstra, K.L.; Kers, J.; Ramakers, C.; Vogt, L.; de Borst, M.H.; Danser, A.H.J.; et al. Chronic kidney disease increases the susceptibility to negative effects of low and high potassium intake. Nephrol. Dial. Transplant. 2024, 39, 795–807. [Google Scholar] [CrossRef]
- Clegg, D.J.; Headley, S.A.; Germain, M.J. Impact of Dietary Potassium Restrictions in CKD on Clinical Outcomes: Benefits of a Plant-Based Diet. Kidney Med. 2020, 2, 476–487. [Google Scholar] [CrossRef] [PubMed]
- Picard, K.; Barreto Silva, M.I.; Mager, D.; Richard, C. Dietary Potassium Intake and Risk of Chronic Kidney Disease Progression in Predialysis Patients with Chronic Kidney Disease: A Systematic Review. Adv. Nutr. 2020, 11, 1002–1015. [Google Scholar] [CrossRef] [PubMed]
- Naaman, S.C.; Bakris, G.L. Diabetic Nephropathy: Update on Pillars of Therapy Slowing Progression. Diabetes Care 2023, 46, 1574–1586. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Kim, S. A New Era in Diabetic Kidney Disease Treatment: The Four Pillars and Strategies to Build Beyond. Electrolyte Blood Press. 2024, 22, 21–28. [Google Scholar] [CrossRef]
- Neuen, B.L.; Oshima, M.; Agarwal, R.; Arnott, C.; Cherney, D.Z.; Edwards, R.; Langkilde, A.M.; Mahaffey, K.W.; McGuire, D.K.; Neal, B.; et al. Sodium-Glucose Cotransporter 2 Inhibitors and Risk of Hyperkalemia in People with Type 2 Diabetes: A Meta-Analysis of Individual Participant Data From Randomized, Controlled Trials. Circulation 2022, 145, 1460–1470. [Google Scholar] [CrossRef]
- Agarwal, R.; Green, J.B.; Heerspink, H.J.L.; Mann, J.F.E.; McGill, J.B.; Mottl, A.K.; Rosenstock, J.; Rossing, P.; Vaduganathan, M.; Brinker, M.; et al. Finerenone with Empagliflozin in Chronic Kidney Disease and Type 2 Diabetes. N. Engl. J. Med. 2025, 393, 533–543. [Google Scholar] [CrossRef]
- Batterink, J.; Lin, J.; Au-Yeung, S.H.; Cessford, T. Effectiveness of Sodium Polystyrene Sulfonate for Short-Term Treatment of Hyperkalemia. Can. J. Hosp. Pharm. 2015, 68, 296–303. [Google Scholar] [CrossRef]
- Harel, Z.; Harel, S.; Shah, P.S.; Wald, R.; Perl, J.; Bell, C.M. Gastrointestinal adverse events with sodium polystyrene sulfonate (Kayexalate) use: A systematic review. Am. J. Med. 2013, 126, 264.e9–264.e24. [Google Scholar] [CrossRef]
- Kosiborod, M.; Rasmussen, H.S.; Lavin, P.; Qunibi, W.Y.; Spinowitz, B.; Packham, D.; Roger, S.D.; Yang, A.; Lerma, E.; Singh, B. Effect of sodium zirconium cyclosilicate on potassium lowering for 28 days among outpatients with hyperkalemia: The HARMONIZE randomized clinical trial. JAMA 2014, 312, 2223–2233. [Google Scholar] [CrossRef]
- Packham, D.K.; Rasmussen, H.S.; Lavin, P.T.; El-Shahawy, M.A.; Roger, S.D.; Block, G.; Qunibi, W.; Pergola, P.; Singh, B. Sodium zirconium cyclosilicate in hyperkalemia. N. Engl. J. Med. 2015, 372, 222–231. [Google Scholar] [CrossRef]
- Amin, A.N.; Menoyo, J.; Singh, B.; Kim, C.S. Efficacy and safety of sodium zirconium cyclosilicate in patients with baseline serum potassium level >/= 5.5 mmol/L: Pooled analysis from two phase 3 trials. BMC Nephrol. 2019, 20, 440. [Google Scholar] [CrossRef] [PubMed]
- Spinowitz, B.S.; Fishbane, S.; Pergola, P.E.; Roger, S.D.; Lerma, E.V.; Butler, J.; von Haehling, S.; Adler, S.H.; Zhao, J.; Singh, B.; et al. Sodium Zirconium Cyclosilicate among Individuals with Hyperkalemia: A 12-Month Phase 3 Study. Clin. J. Am. Soc. Nephrol. 2019, 14, 798–809. [Google Scholar] [CrossRef] [PubMed]
- Roger, S.D.; Lavin, P.T.; Lerma, E.V.; McCullough, P.A.; Butler, J.; Spinowitz, B.S.; von Haehling, S.; Kosiborod, M.; Zhao, J.; Fishbane, S.; et al. Long-term safety and efficacy of sodium zirconium cyclosilicate for hyperkalaemia in patients with mild/moderate versus severe/end-stage chronic kidney disease: Comparative results from an open-label, Phase 3 study. Nephrol. Dial. Transplant. 2021, 36, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Fishbane, S.; Ford, M.; Fukagawa, M.; McCafferty, K.; Rastogi, A.; Spinowitz, B.; Staroselskiy, K.; Vishnevskiy, K.; Lisovskaja, V.; Al-Shurbaji, A.; et al. A Phase 3b, Randomized, Double-Blind, Placebo-Controlled Study of Sodium Zirconium Cyclosilicate for Reducing the Incidence of Predialysis Hyperkalemia. J. Am. Soc. Nephrol. 2019, 30, 1723–1733. [Google Scholar] [CrossRef]
- Fishbane, S.; Dember, L.M.; Jadoul, M.; Kovesdy, C.P.; Guzman, N.; Kordzakhia, G.; Lisovskaja, V.; Sekar, P.; Wessman, P.; Al-Shurbaji, A.; et al. The randomized DIALIZE-Outcomes trial evaluated sodium zirconium cyclosilicate in hemodialysis. Kidney Int. 2025, 108, 686–694. [Google Scholar] [CrossRef]
- Kosiborod, M.N.; Cherney, D.Z.I.; Desai, A.S.; Testani, J.M.; Verma, S.; Chinnakondepalli, K.; Dolling, D.; Patel, S.; Dahl, M.; Eudicone, J.M.; et al. Sodium Zirconium Cyclosilicate for Management of Hyperkalemia During Spironolactone Optimization in Patients With Heart Failure. J. Am. Coll. Cardiol. 2025, 85, 971–984. [Google Scholar] [CrossRef]
- Chay, J.; Choo, J.C.J.; Finkelstein, E.A. Cost-effectiveness of sodium zirconium cyclosilicate for advanced chronic kidney patients in Singapore. Nephrology 2024, 29, 278–287. [Google Scholar] [CrossRef]
- Weir, M.R.; Bakris, G.L.; Bushinsky, D.A.; Mayo, M.R.; Garza, D.; Stasiv, Y.; Wittes, J.; Christ-Schmidt, H.; Berman, L.; Pitt, B.; et al. Patiromer in patients with kidney disease and hyperkalemia receiving RAAS inhibitors. N. Engl. J. Med. 2015, 372, 211–221. [Google Scholar] [CrossRef]
- Bakris, G.L.; Pitt, B.; Weir, M.R.; Freeman, M.W.; Mayo, M.R.; Garza, D.; Stasiv, Y.; Zawadzki, R.; Berman, L.; Bushinsky, D.A.; et al. Effect of Patiromer on Serum Potassium Level in Patients with Hyperkalemia and Diabetic Kidney Disease: The AMETHYST-DN Randomized Clinical Trial. JAMA 2015, 314, 151–161. [Google Scholar] [CrossRef]
- Middleton, J.P.; Sun, S.; Murray, S.; Davenport, C.A.; Daubert, J.P. Randomized Trial of Patiromer on Efficacy to Reduce Episodic Hyperkalemia in Patients with ESKD Treated with Hemodialysis. Kidney Int. Rep. 2024, 9, 3218–3225. [Google Scholar] [CrossRef]
- Palmer, B.F.; Clegg, D.J. Achieving the Benefits of a High-Potassium, Paleolithic Diet, Without the Toxicity. Mayo Clin. Proc. 2016, 91, 496–508. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Trieu, K.; Yoshimura, S.; Neal, B.; Woodward, M.; Campbell, N.R.C.; Li, Q.; Lackland, D.T.; Leung, A.A.; Anderson, C.A.M.; et al. Effect of dose and duration of reduction in dietary sodium on blood pressure levels: Systematic review and meta-analysis of randomised trials. BMJ 2020, 368, m315. [Google Scholar] [CrossRef] [PubMed]
- Filippini, T.; Naska, A.; Kasdagli, M.I.; Torres, D.; Lopes, C.; Carvalho, C.; Moreira, P.; Malavolti, M.; Orsini, N.; Whelton, P.K.; et al. Potassium Intake and Blood Pressure: A Dose-Response Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2020, 9, e015719. [Google Scholar] [CrossRef] [PubMed]
- Jafarnejad, S.; Mirzaei, H.; Clark, C.C.T.; Taghizadeh, M.; Ebrahimzadeh, A. The hypotensive effect of salt substitutes in stage 2 hypertension: A systematic review and meta-analysis. BMC Cardiovasc. Disord. 2020, 20, 98. [Google Scholar] [CrossRef]
- He, F.J.; Tan, M.; Ma, Y.; MacGregor, G.A. Salt Reduction to Prevent Hypertension and Cardiovascular Disease: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 75, 632–647. [Google Scholar] [CrossRef]
- Greer, R.C.; Marklund, M.; Anderson, C.A.M.; Cobb, L.K.; Dalcin, A.T.; Henry, M.; Appel, L.J. Potassium-Enriched Salt Substitutes as a Means to Lower Blood Pressure: Benefits and Risks. Hypertension 2020, 75, 266–274. [Google Scholar] [CrossRef]
- Neal, B.; Wu, Y.; Feng, X.; Zhang, R.; Zhang, Y.; Shi, J.; Zhang, J.; Tian, M.; Huang, L.; Li, Z.; et al. Effect of Salt Substitution on Cardiovascular Events and Death. N. Engl. J. Med. 2021, 385, 1067–1077. [Google Scholar] [CrossRef]
- Yin, X.; Rodgers, A.; Perkovic, A.; Huang, L.; Li, K.C.; Yu, J.; Wu, Y.; Wu, J.H.Y.; Marklund, M.; Huffman, M.D.; et al. Effects of salt substitutes on clinical outcomes: A systematic review and meta-analysis. Heart 2022, 108, 1608–1615. [Google Scholar] [CrossRef]
- Kelly, J.T.; Su, G.; Zhang, L.; Qin, X.; Marshall, S.; Gonzalez-Ortiz, A.; Clase, C.M.; Campbell, K.L.; Xu, H.; Carrero, J.J. Modifiable Lifestyle Factors for Primary Prevention of CKD: A Systematic Review and Meta-Analysis. J. Am. Soc. Nephrol. 2021, 32, 239–253. [Google Scholar] [CrossRef]
- Kim, H.J.; Koh, H.B.; Heo, G.Y.; Kim, H.W.; Park, J.T.; Chang, T.I.; Yoo, T.H.; Kang, S.W.; Kalantar-Zadeh, K.; Rhee, C.; et al. Higher potassium intake is associated with a lower risk of chronic kidney disease: Population-based prospective study. Am. J. Clin. Nutr. 2024, 119, 1044–1051. [Google Scholar] [CrossRef] [PubMed]
- Ramos, C.I.; Gonzalez-Ortiz, A.; Espinosa-Cuevas, A.; Avesani, C.M.; Carrero, J.J.; Cuppari, L. Does dietary potassium intake associate with hyperkalemia in patients with chronic kidney disease? Nephrol. Dial. Transplant. 2021, 36, 2049–2057. [Google Scholar] [CrossRef] [PubMed]
- Bernier-Jean, A.; Wong, G.; Saglimbene, V.; Ruospo, M.; Palmer, S.C.; Natale, P.; Garcia-Larsen, V.; Johnson, D.W.; Tonelli, M.; Hegbrant, J.; et al. Dietary Potassium Intake and All-Cause Mortality in Adults Treated with Hemodialysis. Clin. J. Am. Soc. Nephrol. 2021, 16, 1851–1861. [Google Scholar] [CrossRef] [PubMed]
- Mirmiran, P.; Nazeri, P.; Bahadoran, Z.; Khalili-Moghadam, S.; Azizi, F. Dietary Sodium to Potassium Ratio and the Incidence of Chronic Kidney Disease in Adults: A Longitudinal Follow-Up Study. Prev. Nutr. Food Sci. 2018, 23, 87–93. [Google Scholar] [CrossRef]
- Kieneker, L.M.; Bakker, S.J.; de Boer, R.A.; Navis, G.J.; Gansevoort, R.T.; Joosten, M.M. Low potassium excretion but not high sodium excretion is associated with increased risk of developing chronic kidney disease. Kidney Int. 2016, 90, 888–896. [Google Scholar] [CrossRef]
- He, J.; Mills, K.T.; Appel, L.J.; Yang, W.; Chen, J.; Lee, B.T.; Rosas, S.E.; Porter, A.; Makos, G.; Weir, M.R.; et al. Urinary Sodium and Potassium Excretion and CKD Progression. J. Am. Soc. Nephrol. 2016, 27, 1202–1212. [Google Scholar] [CrossRef]
- Araki, S.; Haneda, M.; Koya, D.; Kondo, K.; Tanaka, S.; Arima, H.; Kume, S.; Nakazawa, J.; Chin-Kanasaki, M.; Ugi, S.; et al. Urinary Potassium Excretion and Renal and Cardiovascular Complications in Patients with Type 2 Diabetes and Normal Renal Function. Clin. J. Am. Soc. Nephrol. 2015, 10, 2152–2158. [Google Scholar] [CrossRef]
- Smyth, A.; Dunkler, D.; Gao, P.; Teo, K.K.; Yusuf, S.; O’Donnell, M.J.; Mann, J.F.; Clase, C.M.; on behalf of the Ontarget and Transcend Investigators. The relationship between estimated sodium and potassium excretion and subsequent renal outcomes. Kidney Int. 2014, 86, 1205–1212. [Google Scholar] [CrossRef]
- Kim, H.W.; Park, J.T.; Yoo, T.H.; Lee, J.; Chung, W.; Lee, K.B.; Chae, D.W.; Ahn, C.; Kang, S.W.; Choi, K.H.; et al. Urinary Potassium Excretion and Progression of CKD. Clin. J. Am. Soc. Nephrol. 2019, 14, 330–340. [Google Scholar] [CrossRef]
- Smyth, A.; Griffin, M.; Yusuf, S.; Mann, J.F.; Reddan, D.; Canavan, M.; Newell, J.; O’Donnell, M. Diet and Major Renal Outcomes: A Prospective Cohort Study. The NIH-AARP Diet and Health Study. J. Ren. Nutr. 2016, 26, 288–298. [Google Scholar] [CrossRef]
- Noori, N.; Kalantar-Zadeh, K.; Kovesdy, C.P.; Murali, S.B.; Bross, R.; Nissenson, A.R.; Kopple, J.D. Dietary potassium intake and mortality in long-term hemodialysis patients. Am. J. Kidney Dis. 2010, 56, 338–347. [Google Scholar] [CrossRef]
- Leonberg-Yoo, A.K.; Tighiouart, H.; Levey, A.S.; Beck, G.J.; Sarnak, M.J. Urine Potassium Excretion, Kidney Failure, and Mortality in CKD. Am. J. Kidney Dis. 2017, 69, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Eisenga, M.F.; Kieneker, L.M.; Soedamah-Muthu, S.S.; van den Berg, E.; Deetman, P.E.; Navis, G.J.; Gans, R.O.; Gaillard, C.A.; Bakker, S.J.; Joosten, M.M. Urinary potassium excretion, renal ammoniagenesis, and risk of graft failure and mortality in renal transplant recipients. Am. J. Clin. Nutr. 2016, 104, 1703–1711. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.T.; Palmer, S.C.; Wai, S.N.; Ruospo, M.; Carrero, J.J.; Campbell, K.L.; Strippoli, G.F.M. Healthy Dietary Patterns and Risk of Mortality and ESRD in CKD: A Meta-Analysis of Cohort Studies. Clin. J. Am. Soc. Nephrol. 2017, 12, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Sumida, K.; Biruete, A.; Kistler, B.M.; Khor, B.H.; Ebrahim, Z.; Giannini, R.; Sussman-Dabach, E.J.; Avesani, C.M.; Chan, M.; Lambert, K.; et al. New Insights Into Dietary Approaches to Potassium Management in Chronic Kidney Disease. J. Ren. Nutr. 2023, 33, S6–S12. [Google Scholar] [CrossRef]
- Cupisti, A.; Kalantar-Zadeh, K. Management of natural and added dietary phosphorus burden in kidney disease. Semin. Nephrol. 2013, 33, 180–190. [Google Scholar] [CrossRef]
- Appel, L.J.; Moore, T.J.; Obarzanek, E.; Vollmer, W.M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Vogt, T.M.; Cutler, J.A.; Windhauser, M.M.; et al. A clinical trial of the effects of dietary patterns on blood pressure. N. Engl. J. Med. 1997, 336, 1117–1124. [Google Scholar] [CrossRef]
- Appel, L.J.; Champagne, C.M.; Harsha, D.W.; Cooper, L.S.; Obarzanek, E.; Elmer, P.J.; Stevens, V.J.; Vollmer, W.M.; Lin, P.H.; Svetkey, L.P.; et al. Effects of comprehensive lifestyle modification on blood pressure control: Main results of the PREMIER clinical trial. JAMA 2003, 289, 2083–2093. [Google Scholar] [CrossRef]
- Saneei, P.; Salehi-Abargouei, A.; Esmaillzadeh, A.; Azadbakht, L. Influence of Dietary Approaches to Stop Hypertension (DASH) diet on blood pressure: A systematic review and meta-analysis on randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 1253–1261. [Google Scholar] [CrossRef]
- Siervo, M.; Lara, J.; Chowdhury, S.; Ashor, A.; Oggioni, C.; Mathers, J.C. Effects of the Dietary Approach to Stop Hypertension (DASH) diet on cardiovascular risk factors: A systematic review and meta-analysis. Br. J. Nutr. 2015, 113, 1–15. [Google Scholar] [CrossRef]
- Levitan, E.B.; Wolk, A.; Mittleman, M.A. Relation of consistency with the dietary approaches to stop hypertension diet and incidence of heart failure in men aged 45 to 79 years. Am. J. Cardiol. 2009, 104, 1416–1420. [Google Scholar] [CrossRef] [PubMed]
- Goyal, P.; Balkan, L.; Ringel, J.B.; Hummel, S.L.; Sterling, M.R.; Kim, S.; Arora, P.; Jackson, E.A.; Brown, T.M.; Shikany, J.M.; et al. The Dietary Approaches to Stop Hypertension (DASH) Diet Pattern and Incident Heart Failure. J. Card. Fail. 2021, 27, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Soltani, S.; Arablou, T.; Jayedi, A.; Salehi-Abargouei, A. Adherence to the dietary approaches to stop hypertension (DASH) diet in relation to all-cause and cause-specific mortality: A systematic review and dose-response meta-analysis of prospective cohort studies. Nutr. J. 2020, 19, 37. [Google Scholar] [CrossRef] [PubMed]
- Nowson, C.A.; Wattanapenpaiboon, N.; Pachett, A. Low-sodium Dietary Approaches to Stop Hypertension-type diet including lean red meat lowers blood pressure in postmenopausal women. Nutr. Res. 2009, 29, 8–18. [Google Scholar] [CrossRef]
- Scialla, J.J.; Anderson, C.A. Dietary acid load: A novel nutritional target in chronic kidney disease? Adv. Chronic Kidney Dis. 2013, 20, 141–149. [Google Scholar] [CrossRef]
- Sacks, F.M.; Svetkey, L.P.; Vollmer, W.M.; Appel, L.J.; Bray, G.A.; Harsha, D.; Obarzanek, E.; Conlin, P.R.; Miller, E.R., 3rd; Simons-Morton, D.G.; et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. N. Engl. J. Med. 2001, 344, 3–10. [Google Scholar] [CrossRef]
- Rebholz, C.M.; Crews, D.C.; Grams, M.E.; Steffen, L.M.; Levey, A.S.; Miller, E.R., 3rd; Appel, L.J.; Coresh, J. DASH (Dietary Approaches to Stop Hypertension) Diet and Risk of Subsequent Kidney Disease. Am. J. Kidney Dis. 2016, 68, 853–861. [Google Scholar] [CrossRef]
- Lee, H.S.; Lee, K.B.; Hyun, Y.Y.; Chang, Y.; Ryu, S.; Choi, Y. DASH dietary pattern and chronic kidney disease in elderly Korean adults. Eur. J. Clin. Nutr. 2017, 71, 755–761. [Google Scholar] [CrossRef]
- Maroto-Rodriguez, J.; Ortola, R.; Cabanas-Sanchez, V.; Martinez-Gomez, D.; Rodriguez-Artalejo, F.; Sotos-Prieto, M. Diet quality patterns and chronic kidney disease incidence: A UK Biobank cohort study. Am. J. Clin. Nutr. 2025, 121, 445–453. [Google Scholar] [CrossRef]
- Hu, E.A.; Coresh, J.; Anderson, C.A.M.; Appel, L.J.; Grams, M.E.; Crews, D.C.; Mills, K.T.; He, J.; Scialla, J.; Rahman, M.; et al. Adherence to Healthy Dietary Patterns and Risk of CKD Progression and All-Cause Mortality: Findings From the CRIC (Chronic Renal Insufficiency Cohort) Study. Am. J. Kidney Dis. 2021, 77, 235–244. [Google Scholar] [CrossRef]
- Banerjee, T.; Crews, D.C.; Tuot, D.S.; Pavkov, M.E.; Burrows, N.R.; Stack, A.G.; Saran, R.; Bragg-Gresham, J.; Powe, N.R.; Centers for Disease, C.; et al. Poor accordance to a DASH dietary pattern is associated with higher risk of ESRD among adults with moderate chronic kidney disease and hypertension. Kidney Int. 2019, 95, 1433–1442. [Google Scholar] [CrossRef] [PubMed]
- Chauveau, P.; Aparicio, M.; Bellizzi, V.; Campbell, K.; Hong, X.; Johansson, L.; Kolko, A.; Molina, P.; Sezer, S.; Wanner, C.; et al. Mediterranean diet as the diet of choice for patients with chronic kidney disease. Nephrol. Dial. Transplant. 2018, 33, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Cigarran Guldris, S.; Latorre Catala, J.A.; Sanjurjo Amado, A.; Menendez Granados, N.; Pineiro Varela, E. Fibre Intake in Chronic Kidney Disease: What Fibre Should We Recommend? Nutrients 2022, 14, 4419. [Google Scholar] [CrossRef] [PubMed]
- Bakis, H.; Chauveau, P.; Combe, C.; Pfirmann, P. Mediterranean Diet for Cardiovascular Risk Reduction in Chronic Kidney Disease. Adv. Kidney Dis. Health 2023, 30, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. 2020, 76, S1–S107. [Google Scholar] [CrossRef]
- Perez-Torres, A.; Caverni-Munoz, A.; Gonzalez Garcia, E. Mediterranean Diet and Chronic Kidney Disease (CKD): A Practical Approach. Nutrients 2022, 15, 97. [Google Scholar] [CrossRef]
- D’Alessandro, C.; Giannese, D.; Panichi, V.; Cupisti, A. Mediterranean Dietary Pattern Adjusted for CKD Patients: The MedRen Diet. Nutrients 2023, 15, 1256. [Google Scholar] [CrossRef]
- Hansrivijit, P.; Oli, S.; Khanal, R.; Ghahramani, N.; Thongprayoon, C.; Cheungpasitporn, W. Mediterranean diet and the risk of chronic kidney disease: A systematic review and meta-analysis. Nephrology 2020, 25, 913–918. [Google Scholar] [CrossRef]
- Podadera-Herreros, A.; Alcala-Diaz, J.F.; Gutierrez-Mariscal, F.M.; Jimenez-Torres, J.; Cruz-Ares, S.; Arenas-de Larriva, A.P.; Cardelo, M.P.; Torres-Pena, J.D.; Luque, R.M.; Ordovas, J.M.; et al. Long-term consumption of a mediterranean diet or a low-fat diet on kidney function in coronary heart disease patients: The CORDIOPREV randomized controlled trial. Clin. Nutr. 2022, 41, 552–559. [Google Scholar] [CrossRef]
- Papadaki, A.; Nolen-Doerr, E.; Mantzoros, C.S. The Effect of the Mediterranean Diet on Metabolic Health: A Systematic Review and Meta-Analysis of Controlled Trials in Adults. Nutrients 2020, 12, 3342. [Google Scholar] [CrossRef]
- Kwon, Y.J.; Joo, Y.S.; Yun, H.R.; Lim, L.R.; Yang, J.; Lee, H.S.; Kim, H.M.; Lee, H.; Lee, J.E.; Lee, J.W. Safety and impact of the Mediterranean diet in patients with chronic kidney disease: A pilot randomized crossover trial. Front. Nutr. 2024, 11, 1463502. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, C.; Piccoli, G.B.; Cupisti, A. The “phosphorus pyramid”: A visual tool for dietary phosphate management in dialysis and CKD patients. BMC Nephrol. 2015, 16, 9. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Pineda, M.; Vercet, A.; Yague-Ruiz, C. Are Food Additives a Really Problematic Hidden Source of Potassium for Chronic Kidney Disease Patients? Nutrients 2021, 13, 3569. [Google Scholar] [CrossRef] [PubMed]
- Parpia, A.S.; L’Abbe, M.; Goldstein, M.; Arcand, J.; Magnuson, B.; Darling, P.B. The Impact of Additives on the Phosphorus, Potassium, and Sodium Content of Commonly Consumed Meat, Poultry, and Fish Products Among Patients with Chronic Kidney Disease. J. Ren. Nutr. 2018, 28, 83–90. [Google Scholar] [CrossRef]
- Cecchini, V.; Sabatino, A.; Contzen, B.; Avesani, C.M. Food additives containing potassium, phosphorus, and sodium in ultra-processed foods: Potential harms to individuals with chronic kidney disease. Eur. J. Clin. Nutr. 2025, 1–6. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Gutekunst, L.; Mehrotra, R.; Kovesdy, C.P.; Bross, R.; Shinaberger, C.S.; Noori, N.; Hirschberg, R.; Benner, D.; Nissenson, A.R.; et al. Understanding sources of dietary phosphorus in the treatment of patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2010, 5, 519–530. [Google Scholar] [CrossRef]
- Carlisle, E.J.; Donnelly, S.M.; Ethier, J.H.; Quaggin, S.E.; Kaiser, U.B.; Vasuvattakul, S.; Kamel, K.S.; Halperin, M.L. Modulation of the secretion of potassium by accompanying anions in humans. Kidney Int. 1991, 39, 1206–1212. [Google Scholar] [CrossRef]
- Al-Qusairi, L.; Ferdaus, M.Z.; Pham, T.D.; Li, D.; Grimm, P.R.; Zapf, A.M.; Abood, D.C.; Tahaei, E.; Delpire, E.; Wall, S.M.; et al. Dietary anions control potassium excretion: It is more than a poorly absorbable anion effect. Am. J. Physiol. Renal Physiol. 2023, 325, F377–F393. [Google Scholar] [CrossRef]
- Batista, R.A.B.; Japur, C.C.; Prestes, I.V.; Fortunato Silva, J.; Cavanha, M.; das Gracas Pena, G. Potassium reduction in food by preparation technique for the dietetic management of patients with chronic kidney disease: A review. J. Hum. Nutr. Diet. 2021, 34, 736–746. [Google Scholar] [CrossRef]
- Martinez-Pineda, M.; Yague-Ruiz, C.; Caverni-Munoz, A.; Vercet-Tormo, A. Reduction of potassium content of green bean pods and chard by culinary processing. Tools for chronic kidney disease. Nefrologia 2016, 36, 427–432. [Google Scholar] [CrossRef]
- Iman, Y.; Balshaw, R.; Alexiuk, M.; Hingwala, J.; Cahill, L.; Mollard, R.; Tangri, N.; Mackay, D. Dietary potassium liberalization with fruit and vegetables versus potassium restriction in people with chronic kidney disease (DK-Lib CKD): A clinical trial protocol. BMC Nephrol. 2023, 24, 301. [Google Scholar] [CrossRef]
- Liebman, S.E.; Baran, A.; Barnett, T.D.; Campbell, T.M.; Chen, L.; Friedman, S.M.; Hasan, S.; Le, T.H.; Monk, R.D.; Sabescumar, J.; et al. The Effects of a Whole-Food Plant-Based Nutrition Education Program on Blood Pressure and Potassium in Chronic Kidney Disease: A Proof-of-Concept Study. Nutrients 2025, 17, 779. [Google Scholar] [CrossRef]
- Xu, X.; Zeng, L.; Jha, V.; Cobb, L.K.; Shibuya, K.; Appel, L.J.; Neal, B.; Schutte, A.E. Potassium-Enriched Salt Substitutes: A Review of Recommendations in Clinical Management Guidelines. Hypertension 2024, 81, 400–414. [Google Scholar] [CrossRef]
| Dose Reduction of RAASi | ||
|---|---|---|
| Study | Population | Outcomes |
| Svensson et al. 2024 [25] | Retrospective multination cohort study involving 40,059 patients (Germany, Spain, Sweden and UK) with CKD and/or heart failure with a history of RAASi related hyperkalemia | Higher risk of 6-month hospitalization |
| Svensson et al. 2024 [26] | Retrospective cohort study involving 28,613 patients (Sweden and Japan) with CKD and/or heart failure with a history of RAASi related hyperkalemia | Longer hospital length of stay/hospitalized days |
| Kanda et al. 2023 [23] | Retrospective cohort study involving 21,508 patients (Japan and USA) with CKD and/or heart failure with a history of RAASi related hyperkalemia who either (i) discontinued or (ii) down-titrated their RAASi compared to patients who maintained/up-titrated their RAASi dose following the hyperkalemia episode | Both discontinuation and dose reduction of RAASi was associated with higher risk of cardiorenal composite outcome (heart failure emergency room visits/hospitalizations, progression to ESKD) |
| Discontinuation of RAASi | ||
| Study | Population | Outcomes |
| Fu et al. 2021 [21] | Retrospective cohort study involving 10,254 patients (Sweden) who developed advanced CKD, eGFR < 30 mL/min/1.73 m2 stratified by continuation of RAASi | Higher risk of MACE and all-cause mortality Lower risk of ESKD |
| Leon et al. 2022 [19] | Retrospective cohort study involving 78,490 patients (Canada) with CKD with a history of RAASi related hyperkalemia | Higher risk of all-cause mortality, CV mortality and increased risk of dialysis initiation |
| Yang et al. 2023 [24] | Prospective, population-based cohort study involving 10,400 patients (Hong Kong) with type 2 diabetes and advanced CKD, eGFR < 30 mL/min/1.73 m2 stratified by continuation of RAASi | Higher risk of MACE, heart failure and ESKD |
| Bhandari et al. 2022 [22] | Multi-center, randomized, controlled trial involving 411 patients with advanced CKD, eGFR < 30 mL/min/1.73 m2 comparing discontinuation vs. continuation of RAASi | No difference in primary outcome of eGFR at 3 years No difference in key secondary outcomes of CKD progression, ESKD Reported similar incidence of adverse events with respect to cardiovascular events and deaths, however not adequately powered to detect significant differences in either outcome MACE, all-cause mortality |
| Study | Population | Outcomes |
|---|---|---|
| Suenaga et al. 2025 [47] | Prospective cohort study involving 4314 participants (Japan) with CKD | Higher risk of CKD progression |
| Ma et al. 2022 [48] | Meta-analysis of 6 studies involving 10,709 healthy adult participants * (namely the Health Professionals Follow-up Study, the Nurses’ Health Study, the Nurses’ Health Study II, the Prevention of Renal and Vascular End-Stage Disease Study and the Trials of Hypertension Follow-up Studies) | Higher risk of cardiovascular disease; dose-dependent |
| Narasaki et al. 2022 [50] | Retrospective cohort study involving 37,893 participants stratified according to normal and impaired kidney function | Higher risk of all-cause mortality irrespective of kidney function Higher risk of all-cause mortality in patients with CKD when paired with high protein, low fiber and high phosphorus intake |
| Narasaki et al. 2021 [49] | Prospective cohort study involving 415 participants (USA) with ESKD on maintenance HD | Higher risk of all-cause mortality |
| Study | Population | Outcomes |
|---|---|---|
| Saneei et al. 2014 [99] | Systematic review and meta-analysis of 17 randomized, controlled studies involving 2561 participants | DASH diet significantly reduced systolic blood pressure by 6.74 mmHg and diastolic blood pressure by 3.54 mmHg, particularly amongst participants with hypertension |
| Siervo et al. 2015 [100] | Systematic review and meta-analysis of 20 randomized, controlled studies involving 1917 participants | DASH diet significantly reduced systolic blood pressure, diastolic blood pressure and total cholesterol, particularly amongst participants with increased cardiometabolic risk; these improvements in cardiovascular risk factors predicted ~13% reduction in the 10-year Framingham risk score for cardiovascular disease |
| Rebholz et al. 2016 [107] | Prospective cohort study involving 14,882 participants from the Atherosclerosis Risk in Communities (ARIC) Study with baseline eGFR ≥ 60 mL/min/1.73 m2 | DASH diet associated with lower risk of incident CKD High red meat and processed meat intake (animal-based protein) was associated with higher risk of CKD whereas high nuts, legumes and low-fat dairy product intake (vegetable and dairy sources of protein) was associated with lower risk for CKD |
| Lee et al. 2017 [108] | Retrospective cohort study involving 2408 elderly participants (Korea) NOTE mean age 72.4 ± 5.1 years old; only 23.8% had diabetes mellitus and 13.9% had CKD | DASH diet associated with lower risk of CKD |
| Maroto-Rodriguez et al. 2025 [109] | Prospective cohort study involving 106,870 participants from the UK Biobank | DASH diet associated with lower risk of CKD |
| Hu et al. 2021 [110] | Prospective cohort study involving 2403 participants with eGFR 20–70 mL/min/1.73 m2 from the Chronic Renal Insufficiency Cohort (CRIC) Study cohort | DASH diet associated with lower risk of CKD progression and all-cause mortality |
| Banerjee et al. 2019 [111] | Retrospective cohort study involving 1110 participants (USA) with HTN and CKD, eGFR 30–59 mL/min/1.73 m2 NOTE study population included participants of Third National Health and Nutritional Examination Survey conducted from 1988 to 1994 before the DASH study was published | DASH diet associated with lower risk of ESKD, particularly in patients with diabetes Mediation analyses identified potassium and magnesium intake as strong mediators and dietary acid load and protein intake as partial mediators of the observed association between the DASH diet and ESKD |
| Soltani et al. 2020 [103] | Systematic review and meta-analysis of 13 prospective cohort studies involving 1,240,308 participants | DASH diet associated with lower risk of all-cause mortality |
| Study | Population | Outcomes |
|---|---|---|
| Hansrivijit et al. 2020 [118] | Systematic review and meta-analysis of 4 studies involving 8467 participants | Mediterranean diet reduced risk of incident CKD |
| Podadera-Herreros et al. 2022 [119] | Randomized, controlled trial involving 1002 participants with type 2 diabetes mellitus, coronary heart disease and eGFR ≥ 30 mL/min/1.73 m2 from the CORDIOPREV study cohort; comparing Mediterranean diet vs. a low-fat diet | Mediterranean diet reduced rate of eGFR decline, particularly in patients with mildly impaired eGFR 60–89 mL/min/1.73 m2 |
| Maroto-Rodriguez et al. 2025 [109] | Prospective cohort study involving 106,870 participants from the UK Biobank | Alternate Mediterranean diet associated with lower risk of CKD |
| Hu et al. 2021 [110] | Prospective cohort study involving 2403 participants with eGFR 20–70 mL/min/1.73 m2 from the Chronic Renal Insufficiency Cohort (CRIC) Study cohort | Alternate Mediterranean diet associated with lower risk of CKD progression and all-cause mortality |
| Papadaki et al. 2020 [120] | Systematic review and meta-analysis of 57 studies involving 36,983 participants | Mediterranean diet improved metabolic syndrome components/cardiovascular risk factor control in addition to reduced risk of cardiovascular disease and stroke |
| Kwon et al. 2024 [121] | A pilot, randomized, controlled trial with crossover design involving 50 participants (Korea) with CKD G3–G4; comparing Mediterranean Proper Optimal Balance (MEDi-POB) diet vs. control for 12 weeks | MEDi-POB diet significantly lowered dietary sodium intake, increased total CO2 levels (indicating reduced dietary acid load) and non-significant increase in dietary potassium intake; there were no significant changes in kidney function, serum and urinary potassium levels—pilot study indicating safety of Mediterranean diet in patients with CKD G3–G4 |
| Cooking Technique | Level of Potassium Reduction | Suggested Food Group (s) |
|---|---|---|
| Cooking in water | Highest reduction in potassium (32–71%) | Most food groups except fish/seafood, cereal and derivates |
| Soaking (and other techniques involving water) | Good efficacy in reduction in potassium (17–60%) | Cruciferous vegetables Leafy vegetables Legumes |
| Steam Cooking | Modest efficacy in reduction in potassium (11–38%) | Most food groups except cereal and derivates * |
| Dry Heat Cooking | Lowest efficacy in reduction in potassium | Reserve for use in fruit and derivates, tubers and roots |
| Organization | Year | Recommendation |
|---|---|---|
| International Guidelines | ||
| Kidney Disease: Improving Global Outcomes | 2024 | 3.3.2 Use renal dieticians or accredited nutrition providers to educate people with CKD about dietary adaptations regarding sodium, phosphorus, potassium, and protein intake, tailored to their individual needs, and severity of CKD and other comorbid conditions 3.11.5 In early stages of CKD, high intake of foods naturally rich in potassium appears to be protective against disease progression, and dietary restriction of foods naturally containing potassium, such as fruits and vegetables, may be harmful to cardiac health; therefore, such restriction is not endorsed. 3.11.5.1 Implement an individualized approach in people with CKD G3–G5 and emergent hyperkalemia that includes dietary and pharmacologic intervention and takes into consideration associated comorbidities and quality of life (QoL). Assessment and education through a renal dietician or an accredited nutrition provider are advised |
| Regional Guidelines | ||
| Europe Renal Association | 2014 | Nil recommendations |
| Caring for Australian & New Zealanders with Kidney Impairment | 2013 | Early CKD patients with persistent hyperkalemia restrict their dietary potassium intake with the assistance of an appropriately qualified dietician. |
| National Guidelines | ||
| Kidney Disease Outcomes Quality Initiative | 2020 | In adults with CKD 3–5D or post transplantation, it is reasonable to adjust dietary potassium intake to maintain serum potassium within normal range (OPINION) In adults with CKD 3–5D (2D) or post transplantation (OPINION) with either hyperkalemia or hypokalemia, we suggest that dietary or supplemental potassium intake be based on patient’s individual needs and clinician judgement. |
| Organization | Year | Recommendation |
|---|---|---|
| International Guidelines | ||
| Kidney Disease: Improving Global Outcomes | 2024 | Nil recommendation |
| Kidney Disease: Improving Global Outcomes | 2021 | The Dietary Approaches to Stop Hypertension (DASH)–type diet or use of salt substitutes that are rich in potassium may not be appropriate for patients with advanced CKD or those with hyporeninemic hypoaldosteronism or other causes of impaired potassium excretion because of the potential for hyperkalemia. |
| Regional Guidelines | ||
| Europe Renal Association | 2014 | Nil recommendations |
| Caring for Australian & New Zealanders with Kidney Impairment | 2013 | Patients with CKD should not use salt substitutes that contain high amounts of potassium salt. Early CKD patients with persistent hyperkalemia restrict their dietary potassium intake with the assistance of an appropriately qualified dietician. |
| National Guidelines | ||
| Kidney Disease Outcomes Quality Initiative | 2020 | Nil recommendations |
| Degree of Hyperkalemia | Recommendations |
|---|---|
| Mild Serum K+ 5.1–5.4 mmol/L | Address correctable factors
Avoid reduction/discontinuation of RAASi |
| Moderate Serum K+ 5.5–5.9 mmol/L | Address correctable factors as detailed above Assessment of symptoms and/or complications related to hyperkalemia
|
| Severe/Life-threatening Serum K+ ≥ 6.0 mmol/L | Urgent assessment and intervention required in accident and emergency/hospital
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kog, Z.X.; Lee, I.W.Z.; Teh, S.P. Rethinking Potassium Management in Chronic Kidney Disease—A Modern Approach. J. Clin. Med. 2025, 14, 8917. https://doi.org/10.3390/jcm14248917
Kog ZX, Lee IWZ, Teh SP. Rethinking Potassium Management in Chronic Kidney Disease—A Modern Approach. Journal of Clinical Medicine. 2025; 14(24):8917. https://doi.org/10.3390/jcm14248917
Chicago/Turabian StyleKog, Zheng Xi, Ivan Wei Zhen Lee, and Swee Ping Teh. 2025. "Rethinking Potassium Management in Chronic Kidney Disease—A Modern Approach" Journal of Clinical Medicine 14, no. 24: 8917. https://doi.org/10.3390/jcm14248917
APA StyleKog, Z. X., Lee, I. W. Z., & Teh, S. P. (2025). Rethinking Potassium Management in Chronic Kidney Disease—A Modern Approach. Journal of Clinical Medicine, 14(24), 8917. https://doi.org/10.3390/jcm14248917

