Autism Spectrum Disorder and Perivascular Spaces: An Integrative Perspective Across the Lifespan
Abstract
1. Introduction
2. Perivascular Spaces: Structural Feature and Functional Role
| Modality | Findings in ASD | References |
|---|---|---|
| Structural MRI | ↑ total brain volume in early childhood; cortical and subcortical overgrowth; regional GM/WM alterations; increased cerebellar volume; pallidum and lateral ventricles enlarged | [9,59,60,61] |
| DTI/DKI MRI | ↓ white matter integrity in long-range tracts including corpus callosum, corona radiata, internal capsule, and inferior longitudinal fasciculus | [8,62,63] |
| Resting-state fMRI and Structural MRI | altered connectivity in DMN, SN, CEN | [64,65,66] |
3. Perivascular Spaces and Autism in Children: What We Know
3.1. Evidence on PVS Burden in ASD
3.2. Functional Implications
| Study/Year | ASD Population | Main Findings on PVS | Notes |
|---|---|---|---|
| Shen et al. 2018 [55] | High-risk infants (6–24 months) | Increased EA-CSF | Longitudinal study |
| Li et al. 2022 [63] | Toddlers (24–72 months) | Reduced perivascular diffusivity (DTI/ALPS) | ALPS index reduced in ASD vs. controls; ALPS positively correlated with age (impaired glymphatic function in ASD) |
| Garic et al. 2023 [57] | Infants (6–24 months) | Increased EA-CSF, ePVS, sleep dysfunction | Longitudinal study |
| Sotgiu et al. 2023 [58] | Children (2–7 years) | WM-PVS volume associated with male sex, younger age and insomnia in ASD | Link to DLPFC regions [58]; retrospective study |
| Tian et al. 2025 [64] | Toddlers (24–72 months) | Reduced perivascular diffusivity (DKI-ALPS) | DKI-ALPS may be more sensitive than DTI-ALPS, showing glymphatic impairment correlated with ASD severity |
| Wang et al. 2025 [8] | Children (3–7 years) | Reduced perivascular diffusivity (aDTI/ALPS) | Retrospective study |
| Frigerio et al. 2025 [74] | Children (2–8 years) | PVS count and volume associated with severity and developmental quotient | Retrospective study |
4. Perivascular Spaces and Autism in Adulthood: A Neglected Area
| Life Stage | PVS Imaging Findings | Associated Clinical Features | Unresolved Research Gaps |
|---|---|---|---|
| Infancy (0–2 yrs) | ↑ EA-CSF, ePVS [54,56] | Later ASD diagnosis; developmental delays; sleep disturbances | Few longitudinal cohorts; unclear mechanisms |
| Early childhood (2–6 yrs) | ePVS in basal ganglia and frontal white matter [57,58]; reduced perivascular diffusivity [62,63] | Language/verbal impairments, stereotypies, sensory abnormalities; sleep disturbances | Heterogeneity by sex/severity |
| Late childhood and adolescence (7–18 yrs) | Higher PVS count in frontal region [73] Alignment of ePVS burden with DMN, CEN, SN networks [66] | Cognitive and executive profiles | Sparse longitudinal tracking |
| Young–middle adulthood (19–50 yrs) | No imaging studies; indirect evidence from community MRI datasets | Variable cognitive stability; high prevalence of comorbidities | No systematic PVS mapping in adult ASD |
| Older adulthood (>50–60 yrs) | In general population ↑ PVS [24]; in ASD: no dedicated studies | Potential ↑ risk of cognitive decline and SVD | Virtually no data on PVS in aging autistic adults |
5. Neuroanatomical Hotspots in Autism: Clues for PVS Research
6. Future Perspective and Open Questions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
| ASD | Autism Spectrum Disorder |
| ICD-11 | International Classification of Diseases |
| PVS | Perivascular spaces |
| ePVS | enlarged perivascular spaces |
| SLYM | subarachnoid lymphatic-like membrane |
| CSF | cerebrospinal fluid |
| AQP4 | aquaporin 4 |
| MRI | magnetic resonance imaging |
| fMRI | functional magnetic resonance imaging |
| EA-CSF | extra-axial CSF |
| DTI-ALPS | diffusion tensor imaging along the perivascular space |
| DKI-ALPS | diffusion kurtosis analysis along the perivascular space |
| DMN | default mode network |
| CEN | central executive network |
| SN | salience network |
References
- Lord, C.; Brugha, T.S.; Charman, T.; Cusack, J.; Dumas, G.; Frazier, T.; Jones, E.J.H.; Jones, R.M.; Pickles, A.; State, M.W.; et al. Autism Spectrum Disorder. Nat. Rev. Dis. Primers 2020, 6, 5. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013; ISBN 978-0-89042-555-8. [Google Scholar]
- Tafolla, M.; Singer, H.; Lord, C. Autism Spectrum Disorder Across the Lifespan. Annu. Rev. Clin. Psychol. 2025, 21, 193–220. [Google Scholar] [CrossRef]
- Al-Beltagi, M. Autism Medical Comorbidities. WJCP 2021, 10, 15–28. [Google Scholar] [CrossRef]
- Lai, M.-C.; Kassee, C.; Besney, R.; Bonato, S.; Hull, L.; Mandy, W.; Szatmari, P.; Ameis, S.H. Prevalence of Co-Occurring Mental Health Diagnoses in the Autism Population: A Systematic Review and Meta-Analysis. Lancet Psychiatry 2019, 6, 819–829. [Google Scholar] [CrossRef] [PubMed]
- Loomes, R.; Hull, L.; Mandy, W.P.L. What Is the Male-to-Female Ratio in Autism Spectrum Disorder? A Systematic Review and Meta-Analysis. J. Am. Acad. Child Adolesc. Psychiatry 2017, 56, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Bo, M.; Carta, A.; Cipriani, C.; Cavassa, V.; Simula, E.R.; Huyen, N.T.; Phan, G.T.H.; Noli, M.; Matteucci, C.; Sotgiu, S.; et al. HERVs Endophenotype in Autism Spectrum Disorder: Human Endogenous Retroviruses, Specific Immunoreactivity, and Disease Association in Different Family Members. Microorganisms 2024, 13, 9. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; He, K.; Zhang, L.; Xu, D.; Li, X.; Wang, L.; Peng, B.; Qiu, A.; Dai, Y.; Zhao, C.; et al. Assessment of Glymphatic Function and White Matter Integrity in Children with Autism Using Multi-Parametric MRI and Machine Learning. Eur. Radiol. 2025, 35, 1623–1636. [Google Scholar] [CrossRef]
- Ecker, C.; Bookheimer, S.Y.; Murphy, D.G.M. Neuroimaging in Autism Spectrum Disorder: Brain Structure and Function across the Lifespan. Lancet Neurol. 2015, 14, 1121–1134. [Google Scholar] [CrossRef]
- Elsabbagh, M.; Divan, G.; Koh, Y.; Kim, Y.S.; Kauchali, S.; Marcín, C.; Montiel-Nava, C.; Patel, V.; Paula, C.S.; Wang, C.; et al. Global Prevalence of Autism and Other Pervasive Developmental Disorders. Autism Res. 2012, 5, 160–179. [Google Scholar] [CrossRef]
- Maenner, M.J.; Warren, Z.; Williams, A.R.; Amoakohene, E.; Bakian, A.V.; Bilder, D.A.; Durkin, M.S.; Fitzgerald, R.T.; Furnier, S.M.; Hughes, M.M.; et al. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2020. MMWR Surveill. Summ. 2023, 72, 1–14. [Google Scholar] [CrossRef]
- Bessé, M.; Morel-Kohlmeyer, S.; Houy-Durand, E.; Prévost, P.; Tuller, L.; Bouazzaoui, B.; Taconnat, L.; Capdeville, J.; Angel, L.; Gomot, M. Cognitive and Cerebral Aging Research in Autism: A Systematic Review on an Emerging Topic. Autism Res. 2025, 18, 1122–1145. [Google Scholar] [CrossRef]
- Kris, M. Healthy Aging and Older Adults with Autism: A Scoping Review. Gerontologist 2024, 64, gnae026. [Google Scholar]
- Van Niekerk, M.E.H.; Groen, W.; Vissers, C.T.W.M.; Van Driel-de Jong, D.; Kan, C.C.; Oude Voshaar, R.C. Diagnosing Autism Spectrum Disorders in Elderly People. Int. Psychogeriatr. 2011, 23, 700–710. [Google Scholar] [CrossRef]
- Lever, A.G.; Geurts, H.M. Is Older Age Associated with Higher Self- and Other-Rated ASD Characteristics? J. Autism Dev. Disord. 2018, 48, 2038–2051. [Google Scholar] [CrossRef] [PubMed]
- Howlin, P.; Moss, P.; Savage, S.; Rutter, M. Social Outcomes in Mid- to Later Adulthood among Individuals Diagnosed with Autism and Average Nonverbal IQ as Children. J. Am. Acad. Child Adolesc. Psychiatry 2013, 52, 572–581. [Google Scholar] [CrossRef]
- Yarar, E.Z.; Roestorf, A.; Spain, D.; Howlin, P.; Bowler, D.; Charlton, R.; Happé, F. Aging and Autism: Do Measures of Autism Symptoms, Co-Occurring Mental Health Conditions, or Quality of Life Differ between Younger and Older Autistic Adults? Autism Res. 2022, 15, 1482–1494. [Google Scholar] [CrossRef] [PubMed]
- Roestorf, A.; Bowler, D.M.; Deserno, M.K.; Howlin, P.; Klinger, L.; McConachie, H.; Parr, J.R.; Powell, P.; Van Heijst, B.F.C.; Geurts, H.M. “Older Adults with ASD: The Consequences of Aging.” Insights from a Series of Special Interest Group Meetings Held at the International Society for Autism Research 2016–2017. Res. Autism Spectr. Disord. 2019, 63, 3–12. [Google Scholar] [CrossRef]
- Edelson, S.M.; Nicholas, D.B.; Stoddart, K.P.; Bauman, M.B.; Mawlam, L.; Lawson, W.B.; Jose, C.; Morris, R.; Wright, S.D. Strategies for Research, Practice, and Policy for Autism in Later Life: A Report from a Think Tank on Aging and Autism. J. Autism Dev. Disord. 2021, 51, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Rudie, J.D.; Rauschecker, A.M.; Nabavizadeh, S.A.; Mohan, S. Neuroimaging of Dilated Perivascular Spaces: From Benign and Pathologic Causes to Mimics. J. Neuroimaging 2018, 28, 139–149. [Google Scholar] [CrossRef]
- Lynch, K.M.; Sepehrband, F.; Toga, A.W.; Choupan, J. Brain Perivascular Space Imaging across the Human Lifespan. NeuroImage 2023, 271, 120009. [Google Scholar] [CrossRef]
- Kipnis, J. The Anatomy of Brainwashing. Science 2024, 385, 368–370. [Google Scholar] [CrossRef]
- Szczygielski, J.; Kopańska, M.; Wysocka, A.; Oertel, J. Cerebral Microcirculation, Perivascular Unit, and Glymphatic System: Role of Aquaporin-4 as the Gatekeeper for Water Homeostasis. Front. Neurol. 2021, 12, 767470. [Google Scholar] [CrossRef]
- Wardlaw, J.M.; Benveniste, H.; Nedergaard, M.; Zlokovic, B.V.; Mestre, H.; Lee, H.; Doubal, F.N.; Brown, R.; Ramirez, J.; MacIntosh, B.J.; et al. Perivascular Spaces in the Brain: Anatomy, Physiology and Pathology. Nat. Rev. Neurol. 2020, 16, 137–153. [Google Scholar] [CrossRef] [PubMed]
- Møllgård, K.; Beinlich, F.R.M.; Kusk, P.; Miyakoshi, L.M.; Delle, C.; Plá, V.; Hauglund, N.L.; Esmail, T.; Rasmussen, M.K.; Gomolka, R.S.; et al. A Mesothelium Divides the Subarachnoid Space into Functional Compartments. Science 2023, 379, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Plá, V.; Bitsika, S.; Giannetto, M.J.; Ladron-de-Guevara, A.; Gahn-Martinez, D.; Mori, Y.; Nedergaard, M.; Møllgård, K. Structural Characterization of SLYM—A 4th Meningeal Membrane. Fluids Barriers CNS 2023, 20, 93. [Google Scholar] [CrossRef]
- Iliff, J.J.; Wang, M.; Liao, Y.; Plogg, B.A.; Peng, W.; Gundersen, G.A.; Benveniste, H.; Vates, G.E.; Deane, R.; Goldman, S.A.; et al. A Paravascular Pathway Facilitates CSF Flow Through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid β. Sci. Transl. Med. 2012, 4, 147ra111. [Google Scholar] [CrossRef]
- Hablitz, L.M.; Nedergaard, M. The Glymphatic System: A Novel Component of Fundamental Neurobiology. J. Neurosci. 2021, 41, 7698–7711. [Google Scholar] [CrossRef]
- Murdock, M.H.; Yang, C.-Y.; Sun, N.; Pao, P.-C.; Blanco-Duque, C.; Kahn, M.C.; Kim, T.; Lavoie, N.S.; Victor, M.B.; Islam, M.R.; et al. Multisensory Gamma Stimulation Promotes Glymphatic Clearance of Amyloid. Nature 2024, 627, 149–156. [Google Scholar] [CrossRef]
- Mestre, H.; Hablitz, L.M.; Xavier, A.L.; Feng, W.; Zou, W.; Pu, T.; Monai, H.; Murlidharan, G.; Castellanos Rivera, R.M.; Simon, M.J.; et al. Aquaporin-4-Dependent Glymphatic Solute Transport in the Rodent Brain. eLife 2018, 7, e40070. [Google Scholar] [CrossRef] [PubMed]
- Plog, B.A.; Dashnaw, M.L.; Hitomi, E.; Peng, W.; Liao, Y.; Lou, N.; Deane, R.; Nedergaard, M. Biomarkers of Traumatic Injury Are Transported from Brain to Blood via the Glymphatic System. J. Neurosci. 2015, 35, 518–526. [Google Scholar] [CrossRef]
- Barisano, G.; Lynch, K.M.; Sibilia, F.; Lan, H.; Shih, N.-C.; Sepehrband, F.; Choupan, J. Imaging Perivascular Space Structure and Function Using Brain MRI. NeuroImage 2022, 257, 119329. [Google Scholar] [CrossRef]
- Yu, L.; Hu, X.; Li, H.; Zhao, Y. Perivascular Spaces, Glymphatic System and MR. Front. Neurol. 2022, 13, 844938. [Google Scholar] [CrossRef] [PubMed]
- Barisano, G.; Sheikh-Bahaei, N.; Law, M.; Toga, A.W.; Sepehrband, F. Body Mass Index, Time of Day and Genetics Affect Perivascular Spaces in the White Matter. J. Cereb. Blood Flow Metab. 2021, 41, 1563–1578. [Google Scholar] [CrossRef] [PubMed]
- Potter, G.M.; Chappell, F.M.; Morris, Z.; Wardlaw, J.M. Cerebral Perivascular Spaces Visible on Magnetic Resonance Imaging: Development of a Qualitative Rating Scale and Its Observer Reliability. Cerebrovasc. Dis. 2015, 39, 224–231. [Google Scholar] [CrossRef]
- Kwee, R.M.; Kwee, T.C. Virchow-Robin Spaces at MR Imaging. RadioGraphics 2007, 27, 1071–1086. [Google Scholar] [CrossRef]
- Botta, D.; Hutuca, I.; Ghoul, E.E.; Sveikata, L.; Assal, F.; Lövblad, K.-O.; Kurz, F.T. Emerging Non-Invasive MRI Techniques for Glymphatic System Assessment in Neurodegenerative Disease. J. Neuroradiol. 2025, 52, 101322. [Google Scholar] [CrossRef]
- Xin, S.H.; Tan, L.; Cao, X.; Yu, J.T.; Tan, L. Clearance of Amyloid Beta and Tau in Alzheimer’s Disease: From Mechanisms to Therapy. Neurotox. Res. 2018, 34, 733–748. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Achariyar, T.M.; Li, B.; Liao, Y.; Mestre, H.; Hitomi, E.; Regan, S.; Kasper, T.; Peng, S.; Ding, F.; et al. Suppression of Glymphatic Fluid Transport in a Mouse Model of Alzheimer’s Disease. Neurobiol. Dis. 2016, 93, 215–225. [Google Scholar] [CrossRef]
- Li, H.; Yao, Q.; Huang, X.; Yang, X.; Yu, C. The Role and Mechanism of Aβ Clearance Dysfunction in the Glymphatic System in Alzheimer’s Disease Comorbidity. Front. Neurol. 2024, 15, 1474439. [Google Scholar] [CrossRef]
- Lopes, D.M.; Llewellyn, S.K.; Bury, S.E.; Wang, J.; Wells, J.A.; Gegg, M.E.; Verona, G.; Lythgoe, M.F.; Harrison, I.F. The Influence of the Glymphatic System on α-Synuclein Propagation: The Role of Aquaporin-4. Brain 2025, 148, 4519–4531. [Google Scholar] [CrossRef]
- Schubert, J.J.; Veronese, M.; Marchitelli, L.; Bodini, B.; Tonietto, M.; Stankoff, B.; Brooks, D.J.; Bertoldo, A.; Edison, P.; Turkheimer, F.E. Dynamic 11C-PiB PET Shows Cerebrospinal Fluid Flow Alterations in Alzheimer Disease and Multiple Sclerosis. J. Nucl. Med. 2019, 60, 1452–1460. [Google Scholar] [CrossRef] [PubMed]
- Reeves, B.C.; Karimy, J.K.; Kundishora, A.J.; Mestre, H.; Cerci, H.M.; Matouk, C.; Alper, S.L.; Lundgaard, I.; Nedergaard, M.; Kahle, K.T. Glymphatic System Impairment in Alzheimer’s Disease and Idiopathic Normal Pressure Hydrocephalus. Trends Mol. Med. 2020, 26, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.; Yue, Y.; Ba, F.; He, T.; Tang, X.; Hu, X.; Pu, J.; Huang, C.; Lv, W.; Zhang, B.; et al. Diffusion along Perivascular Spaces as Marker for Impairment of Glymphatic System in Parkinson’s Disease. NPJ Park. Dis. 2022, 8, 174. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; He, X.Z.; Li, Z.H.; Meng, J.C.; Mao, R.T.; Li, X.; Xue, R.; Gui, Q.; Zhang, G.X.; et al. Interaction Between the Glymphatic System and α-Synuclein in Parkinson’s Disease. Mol. Neurobiol. 2023, 60, 2209–2222. [Google Scholar] [CrossRef]
- Granberg, T.; Moridi, T.; Brand, J.S.; Neumann, S.; Hlavica, M.; Piehl, F.; Ineichen, B.V. Enlarged Perivascular Spaces in Multiple Sclerosis on Magnetic Resonance Imaging: A Systematic Review and Meta-Analysis. J. Neurol. 2020, 267, 3199–3212. [Google Scholar] [CrossRef]
- Alghanimy, A.; Work, L.M.; Holmes, W.M. The Glymphatic System and Multiple Sclerosis: An Evolving Connection. Mult. Scler. Relat. Disord. 2024, 83, 105456. [Google Scholar] [CrossRef] [PubMed]
- Ang, P.S.; Zhang, D.M.; Azizi, S.-A.; Norton De Matos, S.A.; Brorson, J.R. The Glymphatic System and Cerebral Small Vessel Disease. J. Stroke Cerebrovasc. Dis. 2024, 33, 107557. [Google Scholar] [CrossRef]
- Vittorini, M.G.; Sahin, A.; Trojan, A.; Yusifli, S.; Alashvili, T.; Bonifácio, G.V.; Paposhvili, K.; Tischler, V.; Lampl, C.; Sacco, S.; et al. The Glymphatic System in Migraine and Other Headaches. J. Headache Pain 2024, 25, 34. [Google Scholar] [CrossRef]
- Lara, F.R.; Scruton, A.L.; Pinheiro, A.; Demissie, S.; Parva, P.; Charidimou, A.; Francis, M.; Himali, J.J.; DeCarli, C.; Beiser, A.; et al. Aging, Prevalence and Risk Factors of MRI-Visible Enlarged Perivascular Spaces. Aging 2022, 14, 6844–6858. [Google Scholar] [CrossRef]
- Ineichen, B.V.; Okar, S.V.; Proulx, S.T.; Engelhardt, B.; Lassmann, H.; Reich, D.S. Perivascular Spaces and Their Role in Neuroinflammation. Neuron 2022, 110, 3566–3581. [Google Scholar] [CrossRef]
- Shulyatnikova, T.; Hayden, M.R. Why Are Perivascular Spaces Important? Medicina 2023, 59, 917. [Google Scholar] [CrossRef] [PubMed]
- Benveniste, H.; Liu, X.; Koundal, S.; Sanggaard, S.; Lee, H.; Wardlaw, J. The Glymphatic System and Waste Clearance with Brain Aging: A Review. Gerontology 2019, 65, 106–119. [Google Scholar] [CrossRef]
- Xiong, Y.; Yu, Q.; Zhi, H.; Peng, H.; Xie, M.; Li, R.; Li, K.; Ma, Y.; Sun, P. Advances in the Study of the Glymphatic System and Aging. CNS Neurosci. Ther. 2024, 30, e14803. [Google Scholar] [CrossRef]
- Shen, M.D.; Nordahl, C.W.; Li, D.D.; Lee, A.; Angkustsiri, K.; Emerson, R.W.; Rogers, S.J.; Ozonoff, S.; Amaral, D.G. Extra-Axial Cerebrospinal Fluid in High-Risk and Normal-Risk Children with Autism Aged 2–4 Years: A Case-Control Study. Lancet Psychiatry 2018, 5, 895–904. [Google Scholar] [CrossRef]
- Peterson, M.; Prigge, M.B.D.; Bigler, E.D.; Zielinski, B.; King, J.B.; Lange, N.; Alexander, A.; Lainhart, J.E.; Nielsen, J.A. Evidence for Normal Extra-Axial Cerebrospinal Fluid Volume in Autistic Males from Middle Childhood to Adulthood. NeuroImage 2021, 240, 118387. [Google Scholar] [CrossRef]
- Garic, D.; McKinstry, R.C.; Rutsohn, J.; Slomowitz, R.; Wolff, J.; MacIntyre, L.C.; Weisenfeld, L.A.H.; Kim, S.H.; Pandey, J.; John, T.; et al. Enlarged Perivascular Spaces in Infancy and Autism Diagnosis, Cerebrospinal Fluid Volume, and Later Sleep Problems. JAMA Netw. Open 2023, 6, e2348341. [Google Scholar] [CrossRef]
- Sotgiu, M.A.; Lo Jacono, A.; Barisano, G.; Saderi, L.; Cavassa, V.; Montella, A.; Crivelli, P.; Carta, A.; Sotgiu, S. Brain Perivascular Spaces and Autism: Clinical and Pathogenic Implications from an Innovative Volumetric MRI Study. Front. Neurosci. 2023, 17, 1205489. [Google Scholar] [CrossRef]
- Sotgiu, S.; Cavassa, V.; Puci, M.V.; Sotgiu, M.A.; Turilli, D.; Jacono, A.L.; Nuvoli, A.; Masala, S.; Barisano, G.; Carta, A. Enlarged Perivascular Spaces under the Dorso-Lateral Prefrontal Cortex and Severity of Autism. Sci. Rep. 2025, 15, 8142. [Google Scholar] [CrossRef]
- Turner, A.H.; Greenspan, K.S.; Van Erp, T.G.M. Pallidum and Lateral Ventricle Volume Enlargement in Autism Spectrum Disorder. Psychiatry Res. Neuroimaging 2016, 252, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Baizer, J.S. Neuroanatomy of Autism: What Is the Role of the Cerebellum? Cereb. Cortex 2024, 34, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Christensen, D.; Shin, Y.S.; Wang, J.; Cuomo, C.R.; Dentry, T.; Gemmell, H.M.; Pulver, S.L.; Orlando, A.-M.; McKinney, W.S.; Stevens, C.J.; et al. Subcortical Brain Volume Variations in Autistic Individuals across the Lifespan. Mol. Autism 2025, 16, 46. [Google Scholar] [CrossRef]
- Li, X.; Ruan, C.; Zibrila, A.I.; Musa, M.; Wu, Y.; Zhang, Z.; Liu, H.; Salimeen, M. Children with Autism Spectrum Disorder Present Glymphatic System Dysfunction Evidenced by Diffusion Tensor Imaging along the Perivascular Space. Medicine 2022, 101, e32061. [Google Scholar] [CrossRef]
- Tian, P.; Xue, Y.; Zhu, X.; Liu, Z.; Bian, B.; Jia, F.; Dou, L.; Lv, X.; Zhao, T.; Li, D. Abnormal Glymphatic System Function in Children with Autism Spectrum Disorder: A Diffusion Kurtosis Imaging Study. Eur. J. Pediatr. 2025, 184, 411. [Google Scholar] [CrossRef]
- Uddin, L.Q.; Supekar, K.; Menon, V. Reconceptualizing Functional Brain Connectivity in Autism from a Developmental Perspective. Front. Hum. Neurosci. 2013, 7, 458. [Google Scholar] [CrossRef]
- Courchesne, E.; Pierce, K. Brain Overgrowth in Autism during a Critical Time in Development: Implications for Frontal Pyramidal Neuron and Interneuron Development and Connectivity. Int. J. Dev. Neurosci. 2005, 23, 153–170. [Google Scholar] [CrossRef]
- Sotgiu, S.; Barisano, G.; Cavassa, V.; Puci, M.V.; Nuvoli, A.; Masala, S.A.; Carta, A. Cognitive Brain Networks and Enlarged Perivascular Spaces: Implications for Symptom Severity and Support Needs in Children with Autism. J. Clin. Med. 2025, 14, 3029. [Google Scholar] [CrossRef]
- Taber, K.H.; Shaw, J.B.; Loveland, K.A.; Pearson, D.A.; Lane, D.M.; Hayman, L.A. Accentuated Virchow-Robin Spaces in the Centrum Semiovale in Children with Autistic Disorder. J. Comput. Assist. Tomogr. 2004, 28, 263–268. [Google Scholar] [CrossRef]
- Zeegers, M.; Van Der Grond, J.; Durston, S.; Nievelstein, R.J.; Witkamp, T.; Van Daalen, E.; Buitelaar, J.; Engeland, H.V. Radiological Findings in Autistic and Developmentally Delayed Children. Brain Dev. 2006, 28, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Boddaert, N.; Zilbovicius, M.; Philipe, A.; Robel, L.; Bourgeois, M.; Barthélemy, C.; Seidenwurm, D.; Meresse, I.; Laurier, L.; Desguerre, I.; et al. MRI Findings in 77 Children with Non-Syndromic Autistic Disorder. PLoS ONE 2009, 4, e4415. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.D.; Nordahl, C.W.; Young, G.S.; Wootton-Gorges, S.L.; Lee, A.; Liston, S.E.; Harrington, K.R.; Ozonoff, S.; Amaral, D.G. Early Brain Enlargement and Elevated Extra-Axial Fluid in Infants Who Develop Autism Spectrum Disorder. Brain 2013, 136, 2825–2835. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.D.; Kim, S.H.; McKinstry, R.C.; Gu, H.; Hazlett, H.C.; Nordahl, C.W.; Emerson, R.W.; Shaw, D.; Elison, J.T.; Swanson, M.R.; et al. Increased Extra-Axial Cerebrospinal Fluid in High-Risk Infants Who Later Develop Autism. Biol. Psychiatry 2017, 82, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, M.K.; Mestre, H.; Nedergaard, M. Fluid Transport in the Brain. Physiol. Rev. 2022, 102, 1025–1151. [Google Scholar] [CrossRef]
- Frigerio, G.; Rizzato, G.; Peruzzo, D.; Ciceri, T.; Mani, E.; Lanteri, F.; Mariani, V.; Molteni, M.; Agarwal, N. Perivascular Space Burden in Children with Autism Spectrum Disorder Correlates With Neurodevelopmental Severity. J. Magn. Reson. Imaging 2025, 62, 1496–1506. [Google Scholar] [CrossRef]
- Fetit, R.; Hillary, R.F.; Price, D.J.; Lawrie, S.M. The Neuropathology of Autism: A Systematic Review of Post-Mortem Studies of Autism and Related Disorders. Neurosci. Biobehav. Rev. 2021, 129, 35–62. [Google Scholar] [CrossRef]
- Carmassi, C.; Palagini, L.; Caruso, D.; Masci, I.; Nobili, L.; Vita, A.; Dell’Osso, L. Systematic Review of Sleep Disturbances and Circadian Sleep Desynchronization in Autism Spectrum Disorder: Toward an Integrative Model of a Self-Reinforcing Loop. Front. Psychiatry 2019, 10, 366. [Google Scholar] [CrossRef]
- Xie, L.; Kang, H.; Xu, Q.; Chen, M.J.; Liao, Y.; Thiyagarajan, M.; O’Donnell, J.; Christensen, D.J.; Nicholson, C.; Iliff, J.J.; et al. Sleep Drives Metabolite Clearance from the Adult Brain. Science 2013, 342, 373–377. [Google Scholar] [CrossRef]
- Wegiel, J.; Frackowiak, J.; Mazur-Kolecka, B.; Schanen, N.C.; Cook, E.H.; Sigman, M.; Brown, W.T.; Kuchna, I.; Wegiel, J.; Nowicki, K.; et al. Abnormal Intracellular Accumulation and Extracellular Aβ Deposition in Idiopathic and Dup15q11.2-Q13 Autism Spectrum Disorders. PLoS ONE 2012, 7, e35414. [Google Scholar] [CrossRef] [PubMed]
- Westmark, C.J. What’s hAPPening at Synapses? The Role of Amyloid β-Protein Precursor and β-Amyloid in Neurological Disorders. Mol. Psychiatry 2013, 18, 425–434. [Google Scholar] [CrossRef]
- Westmark, C.J.; Sokol, D.K.; Maloney, B.; Lahiri, D.K. Novel Roles of Amyloid-Beta Precursor Protein Metabolites in Fragile X Syndrome and Autism. Mol. Psychiatry 2016, 21, 1333–1341. [Google Scholar] [CrossRef]
- Wang, J.; Christensen, D.; Coombes, S.A.; Wang, Z. Cognitive and Brain Morphological Deviations in Middle-to-Old Aged Autistic Adults: A Systematic Review and Meta-Analysis. Neurosci. Biobehav. Rev. 2024, 163, 105782. [Google Scholar] [CrossRef] [PubMed]
- Happé, F.; Charlton, R.A. Aging in Autism Spectrum Disorders: A Mini-Review. Gerontology 2012, 58, 70–78. [Google Scholar] [CrossRef]
- Hategan, A.; Bourgeois, J.A.; Goldberg, J. Aging with Autism Spectrum Disorder: An Emerging Public Health Problem. Int. Psychogeriatr. 2017, 29, 695–697. [Google Scholar] [CrossRef]
- Mason, D.; Ronald, A.; Ambler, A.; Caspi, A.; Houts, R.; Poulton, R.; Ramrakha, S.; Wertz, J.; Moffitt, T.E.; Happé, F. Autistic Traits Are Associated with Faster Pace of Aging: Evidence from the Dunedin Study at Age 45. Autism Res. 2021, 14, 1684–1694. [Google Scholar] [CrossRef]
- Lever, A.G.; Geurts, H.M. Age-Related Differences in Cognition across the Adult Lifespan in Autism Spectrum Disorder. Autism Res. 2016, 9, 666–676. [Google Scholar] [CrossRef]
- Mason, D.; Stewart, G.R.; Capp, S.J.; Happé, F. Older Age Autism Research: A Rapidly Growing Field, but Still a Long Way to Go. Autism Adulthood 2022, 4, 164–172. [Google Scholar] [CrossRef]
- Croen, L.A.; Zerbo, O.; Qian, Y.; Massolo, M.L.; Rich, S.; Sidney, S.; Kripke, C. The Health Status of Adults on the Autism Spectrum. Autism 2015, 19, 814–823. [Google Scholar] [CrossRef]
- Bishop, L.; Charlton, R.A.; McLean, K.J.; McQuaid, G.A.; Lee, N.R.; Wallace, G.L. Cardiovascular Disease Risk Factors in Autistic Adults: The Impact of Sleep Quality and Antipsychotic Medication Use. Autism Res. 2023, 16, 569–579. [Google Scholar] [CrossRef]
- Vivanti, G.; Tao, S.; Lyall, K.; Robins, D.L.; Shea, L.L. The Prevalence and Incidence of Early-Onset Dementia among Adults with Autism Spectrum Disorder. Autism Res. 2021, 14, 2189–2199. [Google Scholar] [CrossRef] [PubMed]
- Jessen, N.A.; Munk, A.S.F.; Lundgaard, I.; Nedergaard, M. The Glymphatic System: A Beginner’s Guide. Neurochem. Res. 2015, 40, 2583–2599. [Google Scholar] [CrossRef] [PubMed]
- Ballester, P.; Richdale, A.L.; Baker, E.K.; Peiró, A.M. Sleep in Autism: A Biomolecular Approach to Aetiology and Treatment. Sleep Med. Rev. 2020, 54, 101357. [Google Scholar] [CrossRef] [PubMed]
- Rhodus, E.K.; Barber, J.; Kryscio, R.J.; Abner, E.L.; Bahrani, A.A.; Lewis, K.E.S.; Carey, B.; Nelson, P.T.; Van Eldik, L.J.; Jicha, G.A. Frontotemporal Neurofibrillary Tangles and Cerebrovascular Lesions Are Associated with Autism Spectrum Behaviors in Late-Life Dementia. J. Neurol. 2022, 269, 5105–5113. [Google Scholar] [CrossRef]
- Hand, B.N.; Angell, A.M.; Harris, L.; Carpenter, L.A. Prevalence of Physical and Mental Health Conditions in Medicare-Enrolled, Autistic Older Adults. Autism 2020, 24, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Wardlaw, J.M.; Smith, C.; Dichgans, M. Small Vessel Disease: Mechanisms and Clinical Implications. Lancet Neurol. 2019, 18, 684–696. [Google Scholar] [CrossRef] [PubMed]
- Estes, M.L.; McAllister, A.K. Immune Mediators in the Brain and Peripheral Tissues in Autism Spectrum Disorder. Nat. Rev. Neurosci. 2015, 16, 469–486. [Google Scholar] [CrossRef] [PubMed]
- Sotgiu, S.; Manca, S.; Gagliano, A.; Minutolo, A.; Melis, M.C.; Pisuttu, G.; Scoppola, C.; Bolognesi, E.; Clerici, M.; Guerini, F.R.; et al. Immune Regulation of Neurodevelopment at the Mother–Foetus Interface: The Case of Autism. Clin. Transl. Immunol. 2020, 9, e1211. [Google Scholar] [CrossRef] [PubMed]
- Gardner, R.M.; Brynge, M.; Sjöqvist, H.; Dalman, C.; Karlsson, H. Maternal Immune Activation and Autism in Offspring: What Is the Evidence for Causation? Biol. Psychiatry 2025, 97, 1127–1138. [Google Scholar] [CrossRef]
- Hughes, H.K.; Moreno, R.J.; Ashwood, P. Innate Immune Dysfunction and Neuroinflammation in Autism Spectrum Disorder (ASD). Brain Behav. Immun. 2023, 108, 245–254. [Google Scholar] [CrossRef]
- Careaga, M.; Murai, T.; Bauman, M.D. Maternal Immune Activation and Autism Spectrum Disorder: From Rodents to Nonhuman and Human Primates. Biol. Psychiatry 2017, 81, 391–401. [Google Scholar] [CrossRef]
- Vargas, D.L.; Nascimbene, C.; Krishnan, C.; Zimmerman, A.W.; Pardo, C.A. Neuroglial Activation and Neuroinflammation in the Brain of Patients with Autism. Ann. Neurol. 2005, 57, 67–81. [Google Scholar] [CrossRef]
- Zeidán-Chuliá, F.; Salmina, A.B.; Malinovskaya, N.A.; Noda, M.; Verkhratsky, A.; Moreira, J.C.F. The Glial Perspective of Autism Spectrum Disorders. Neurosci. Biobehav. Rev. 2014, 38, 160–172. [Google Scholar] [CrossRef]
- Mestre, H.; Mori, Y.; Nedergaard, M. The Brain’s Glymphatic System: Current Controversies. Trends Neurosci. 2020, 43, 458–466. [Google Scholar] [CrossRef]
- Unnisa, A.; Greig, N.H.; Kamal, M.A. Modelling the Interplay Between Neuron-Glia Cell Dysfunction and GlialTherapy in Autism Spectrum Disorder. Curr. Neuropharmacol. 2023, 21, 547–559. [Google Scholar] [CrossRef]
- Sepehrband, F.; Barisano, G.; Sheikh-Bahaei, N.; Cabeen, R.P.; Choupan, J.; Law, M.; Toga, A.W. Image Processing Approaches to Enhance Perivascular Space Visibility and Quantification Using MRI. Sci. Rep. 2019, 9, 12351. [Google Scholar] [CrossRef]
- Uddin, L.Q.; Supekar, K.; Lynch, C.J.; Khouzam, A.; Phillips, J.; Feinstein, C.; Ryali, S.; Menon, V. Salience Network–Based Classification and Prediction of Symptom Severity in Children with Autism. JAMA Psychiatry 2013, 70, 869. [Google Scholar] [CrossRef]
- Sato, W.; Uono, S. The atypical social brain network in autism: Advances in structural and functional MRI studies. Curr. Opin. Neurol. 2019, 32, 617–621. [Google Scholar] [CrossRef]
- Berg, L.M.; Gurr, C.; Leyhausen, J.; Seelemeyer, H.; Bletsch, A.; Schaefer, T.; Pretzsch, C.M.; Oakley, B.; Loth, E.; Floris, D.L.; et al. The Neuroanatomical Substrates of Autism and ADHD and Their Link to Putative Genomic Underpinnings. Mol. Autism 2023, 14, 36. [Google Scholar] [CrossRef] [PubMed]
- Redcay, E.; Courchesne, E. When Is the Brain Enlarged in Autism? A Meta-Analysis of All Brain Size Reports. Biol. Psychiatry 2005, 58, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Clausi, S.; Olivito, G.; Siciliano, L.; Lupo, M.; Laghi, F.; Baiocco, R.; Leggio, M. The Cerebellum Is Linked to Theory of Mind Alterations in Autism. A Direct Clinical and MRI Comparison between Individuals with Autism and Cerebellar Neurodegenerative Pathologies. Autism Res. 2021, 14, 2300–2313. [Google Scholar] [CrossRef] [PubMed]
- Donovan, A.P.A.; Basson, M.A. The Neuroanatomy of Autism—A Developmental Perspective. J. Anat. 2017, 230, 4–15. [Google Scholar] [CrossRef]
- McElroy, C.L.; Wang, B.; Zhang, H.; Jin, K. Cerebellum and Aging: Update and Challenges. Aging Dis. 2024, 15, 2345. [Google Scholar] [CrossRef]
- Baron-Cohen, S.; Ring, H.A.; Bullmore, E.T.; Wheelwright, S.; Ashwin, C.; Williams, S.C.R. The Amygdala Theory of Autism. Neurosci. Biobehav. Rev. 2000, 24, 355–364. [Google Scholar] [CrossRef]
- Amaral, D.G.; Schumann, C.M.; Nordahl, C.W. Neuroanatomy of Autism. Trends Neurosci. 2008, 31, 137–145. [Google Scholar] [CrossRef]
- Seguin, D.; Pac, S.; Wang, J.; Nicolson, R.; Martinez-Trujillo, J.; Anagnostou, E.; Lerch, J.P.; Hammill, C.; Schachar, R.; Crosbie, J.; et al. Amygdala Subnuclei Volumes and Anxiety Behaviors in Children and Adolescents with Autism Spectrum Disorder, Attention Deficit Hyperactivity Disorder, and Obsessive–Compulsive Disorder. Hum. Brain Mapp. 2022, 43, 4805–4816. [Google Scholar] [CrossRef]
- Liu, J.; Chen, H.; Wang, H.; Wang, Z. Neural Correlates of Facial Recognition Deficits in Autism Spectrum Disorder: A Comprehensive Review. Front. Psychiatry 2025, 15, 1464142. [Google Scholar] [CrossRef] [PubMed]
- Floris, D.L.; Llera, A.; Zabihi, M.; Moessnang, C.; Jones, E.J.H.; Mason, L.; Haartsen, R.; Holz, N.E.; Mei, T.; Elleaume, C.; et al. A Multimodal Neural Signature of Face Processing in Autism within the Fusiform Gyrus. Nat. Mental Health 2025, 3, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Meyer-Lindenberg, H.; Moessnang, C.; Oakley, B.; Ahmad, J.; Mason, L.; Jones, E.J.H.; Hayward, H.L.; Cooke, J.; Crawley, D.; Holt, R.; et al. Facial Expression Recognition Is Linked to Clinical and Neurofunctional Differences in Autism. Mol. Autism 2022, 13, 43. [Google Scholar] [CrossRef] [PubMed]
- Wilkes, B.J.; Archer, D.B.; Farmer, A.L.; Bass, C.; Korah, H.; Vaillancourt, D.E.; Lewis, M.H. Cortico-Basal Ganglia White Matter Microstructure Is Linked to Restricted Repetitive Behavior in Autism Spectrum Disorder. Mol. Autism 2024, 15, 6. [Google Scholar] [CrossRef]
- Boespflug, E.L.; Schwartz, D.L.; Lahna, D.; Pollock, J.; Iliff, J.J.; Kaye, J.A.; Rooney, W.; Silbert, L.C. MR Imaging–Based Multimodal Autoidentification of Perivascular Spaces (mMAPS): Automated Morphologic Segmentation of Enlarged Perivascular Spaces at Clinical Field Strength. Radiology 2018, 286, 632–642. [Google Scholar] [CrossRef]
- Taoka, T.; Naganawa, S. Glymphatic Imaging Using MRI. J. Magn. Reson. Imaging 2020, 51, 11–24. [Google Scholar] [CrossRef]
- Rasmussen, M.K.; Mestre, H.; Nedergaard, M. The Glymphatic Pathway in Neurological Disorders. Lancet Neurol. 2018, 17, 1016–1024. [Google Scholar] [CrossRef]
- Davoudi, S.; Rahdar, M.; Hosseinmardi, N.; Behzadi, G.; Janahmadi, M. Chronic Inhibition of Astrocytic Aquaporin-4 Induces Autistic-like Behavior in Control Rat Offspring Similar to Maternal Exposure to Valproic Acid. Physiol. Behav. 2023, 269, 114286. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, G.; Kim, H.J.; Fox, Z.; Jäger, H.R.; Wilson, D.; Charidimou, A.; Na, H.K.; Na, D.L.; Seo, S.W.; Werring, D.J. MRI-Visible Perivascular Space Locations Distinguishes Alzheimer’s Disease from Subcortical Vascular Cognitive Impairment Independently of Amyloid Burden. Brain 2017, 140, 1107–1116. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.; Benveniste, H.; Black, S.E.; Charpak, S.; Dichgans, M.; Joutel, A.; Nedergaard, M.; Smith, K.J.; Zlokovic, B.V.; Wardlaw, J.M. Understanding the Role of the Perivascular Space in Cerebral Small Vessel Disease. Cardiovasc. Res. 2018, 114, 1462–1473. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sotgiu, M.A.; Carta, A.; Cavassa, V.; Montella, A.; Masala, S.; Barisano, G.; Sotgiu, S. Autism Spectrum Disorder and Perivascular Spaces: An Integrative Perspective Across the Lifespan. J. Clin. Med. 2025, 14, 8886. https://doi.org/10.3390/jcm14248886
Sotgiu MA, Carta A, Cavassa V, Montella A, Masala S, Barisano G, Sotgiu S. Autism Spectrum Disorder and Perivascular Spaces: An Integrative Perspective Across the Lifespan. Journal of Clinical Medicine. 2025; 14(24):8886. https://doi.org/10.3390/jcm14248886
Chicago/Turabian StyleSotgiu, Maria Alessandra, Alessandra Carta, Vanna Cavassa, Andrea Montella, Salvatore Masala, Giuseppe Barisano, and Stefano Sotgiu. 2025. "Autism Spectrum Disorder and Perivascular Spaces: An Integrative Perspective Across the Lifespan" Journal of Clinical Medicine 14, no. 24: 8886. https://doi.org/10.3390/jcm14248886
APA StyleSotgiu, M. A., Carta, A., Cavassa, V., Montella, A., Masala, S., Barisano, G., & Sotgiu, S. (2025). Autism Spectrum Disorder and Perivascular Spaces: An Integrative Perspective Across the Lifespan. Journal of Clinical Medicine, 14(24), 8886. https://doi.org/10.3390/jcm14248886

