Delirium in Extracorporeal Membrane Oxygenation (ECMO) Patients: A Systematic Review and Meta-Analysis of Prevalence, Risk Factors, and Outcomes
Abstract
1. Introduction
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Study Selection and Data Extraction
2.3. Data Synthesis and Statistical Analysis
3. Results
3.1. Study Selection and Characteristics
3.2. Prevalence of Delirium
3.3. Influence of Assessment Tools
3.4. Risk Factors for Delirium
3.5. Clinical Outcomes and Evidence Gaps
3.6. Meta-Regression and Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bartlett, R.H.; Gazzaniga, A.B.; Huxtable, R.F.; Schippers, H.C.; O’cOnnor, M.J.; Jefferies, M.R. Extracorporeal circulation (ECMO) in neonatal respiratory failure. J. Thorac. Cardiovasc. Surg. 1977, 74, 826–833. [Google Scholar] [CrossRef]
- Zwischenberger, J.B.; Pitcher, H.T. Extracorporeal Membrane Oxygenation Management: Techniques to Liberate from Extracorporeal Membrane Oxygenation and Manage Post-Intensive Care Unit Issues. Crit. Care Clin. 2017, 33, 843–853. [Google Scholar] [CrossRef]
- Butt, W.; MacLaren, G. Extracorporeal membrane oxygenation 2016: An update. F1000Research 2016, 5, 750. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Hachamovitch, R.; Kittleson, M.; Patel, J.; Arabia, F.; Moriguchi, J.; Esmailian, F.; Azarbal, B. Complications of extracorporeal membrane oxygenation for treatment of cardiogenic shock and cardiac arrest: A meta-analysis of 1866 adult patients. Ann. Thorac. Surg. 2014, 97, 610–616. [Google Scholar] [CrossRef]
- Kalra, A.; Kang, J.K.; Khanduja, S.; Menta, A.K.; Ahmad, S.A.; Liu, O.; Rodriguez, E.; Spann, M.; Hernandez, A.V.; Brodie, D.; et al. Long-Term Neuropsychiatric, Neurocognitive, and Functional Outcomes of Patients Receiving ECMO: A Systematic Review and Meta-Analysis. Neurology 2024, 102, e208081. [Google Scholar] [CrossRef] [PubMed]
- Obreja, V.; Marcarian, T.; Miller, P.S. Ambulation Protocol for Adult Patients Receiving Extracorporeal Membrane Oxygenation: A Quality Improvement Initiative. Crit. Care Nurse 2025, 45, 52–60. [Google Scholar] [CrossRef]
- Zhang, G.-B.; Lv, J.-M.; Yu, W.-J.; Li, H.-Y.; Wu, L.; Zhang, S.-L.; Shi, G.-Z.; Huang, H.-W. The associations of post-stroke delirium with outcomes: A systematic review and meta-analysis. BMC Med. 2024, 22, 470. [Google Scholar] [CrossRef]
- Ma, X.; Cheng, H.; Zhao, Y.; Zhu, Y. Prevalence and risk factors of subsyndromal delirium in ICU: A systematic review and meta-analysis. Intensive Crit. Care Nurs. 2025, 86, 103834. [Google Scholar] [CrossRef]
- Meagher, D.J.; Leonard, M.; Donnelly, S.; Conroy, M.; Adamis, D.; Trzepacz, P.T. A longitudinal study of motor subtypes in delirium: Relationship with other phenomenology, etiology, medication exposure and prognosis. J. Psychosom. Res. 2011, 71, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Li, J.; Ma, X.; Li, H.; Shao, K.; Wei, S.; Zhang, X.; Li, M.; Wu, X.; Li, Y.; et al. Dexrazoxane Attenuates Blood-Brain Barrier Injury During Venoarterial Extracorporeal Membrane Oxygenation. ASAIO J. 2025. [Google Scholar] [CrossRef]
- Son, Y.J.; Hyun Park, S.; Lee, Y.; Lee, H.J. Prevalence and risk factors for in-hospital mortality of adult patients on veno-arterial extracorporeal membrane oxygenation for cardiogenic shock and cardiac arrest: A systematic review and meta-analysis. Intensive Crit Care Nurs. 2024, 85, 103756. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Stroup, D.F.; Berlin, J.A.; Morton, S.C.; Olkin, I.; Williamson, G.D.; Rennie, D.; Moher, D.; Becker, B.J.; Sipe, T.A.; Thacker, S.B. Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000, 283, 2008–2012. [Google Scholar] [CrossRef]
- Munn, Z.; Barker, T.H.; Moola, S.; Tufanaru, C.; Stern, C.; McArthur, A.; Stephenson, M.; Aromataris, E. Methodological quality of case series studies: An introduction to the JBI critical appraisal tool. JBI Evid. Synth. 2019, 18, 2127–2133. [Google Scholar] [CrossRef]
- Wells, G.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Available online: https://www.evidencebasedpublichealth.de/download/Newcastle_Ottowa_Scale_Pope_Bruce.pdf (accessed on 30 October 2020).
- Gusmao-Flores, D.; Salluh, J.I.F.; Chalhub, R.Á.; Quarantini, L.C. The confusion assessment method for the intensive care unit (CAM-ICU) and intensive care delirium screening checklist (ICDSC) for the diagnosis of delirium: A systematic review and meta-analysis of clinical studies. Crit. Care 2012, 16, R115. [Google Scholar] [CrossRef]
- Devlin, J.W.; Skrobik, Y.; Gélinas, C.; Needham, D.M.; Slooter, A.J.C.; Pandharipande, P.P.; Watson, P.L.; Weinhouse, G.L.; Nunnally, M.E.; Rochwerg, B.; et al. Clinical Practice Guidelines for the Prevention and Management of Pain, Agitation Sedation, Delirium, Immobility and Sleep Disruption in Adult Patients in the ICU. Crit. Care Med. 2018, 46, 825–873. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K.; Balas, M.C.; Stollings, J.L.; McNett, M.; Girard, T.D.; Chanques, G.; Kho, M.E.; Pandharipande, P.P.; Weinhouse, G.L.; Brummel, N.E.; et al. A Focused Update to the Clinical Practice Guidelines for the Prevention and Management of Pain, Anxiety, Agitation/Sedation, Delirium, Immobility, and Sleep Disruption in Adult Patients in the ICU. Crit. Care Med. 2025, 53, e711–e727. [Google Scholar] [CrossRef]
- Oh, T.K.; Park, H.Y.; Song, I.-A. Delirium and long-term outcomes among survivors of extracorporeal membrane oxygenation therapy: A nationwide cohort study in South Korea. J. Intensive Care Med. 2022, 37, 870–876. [Google Scholar] [CrossRef]
- Debacker, J.; Tamberg, E.; Munshi, L.; Burry, L.; Fan, E.; Mehta, S. Sedation practice in extracorporeal membrane oxygenation-treated patients with acute respiratory distress syndrome: A retrospective study. Asaio J. 2018, 64, 544–551. [Google Scholar] [CrossRef] [PubMed]
- Paternoster, G.; Bertini, P.; Belletti, A.; Landoni, G.; Gallotta, S.; Palumbo, D.; Isirdi, A.; Guarracino, F. Venovenous extracorporeal membrane oxygenation in awake non-intubated patients with COVID-19 ARDS at high risk for barotrauma. J. Cardiothorac. Vasc. Anesth. 2022, 36, 2975–2982. [Google Scholar] [CrossRef] [PubMed]
- Youn, T.; Kim, D.; Park, T.K.; Cho, Y.H.; Cho, S.H.; Choi, J.Y.; Sung, K.; Jeon, E.-S.; Yang, J.H. Clinical outcomes of early extubation strategy in patients undergoing extracorporeal membrane oxygenation as a bridge to heart transplantation. J. Korean Med. Sci. 2020, 35, e346. [Google Scholar] [CrossRef]
- Skelton, P.A.; Lillyblad, M.P.; Eckman, P.M.; Samara, M.A.; Williams, D.M.; Wilson, K.J.; Stanberry, L.I.; Hryniewicz, K.M. Clinical outcomes associated with sedation and analgesia in patients supported with venoarterial extracorporeal membrane oxygenation. Int. J. Artif. Organs 2020, 43, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Liu, O.; Sun, P.Y.; Ahmad, S.A.; Kalra, A.; Feng, A.; Whitman, G.J.R.; Kim, B.S.; Cho, S.-M.; On behalf of the HERALD Investigators. Characteristics and risk factors of delirium in patients on veno-arterial extracorporeal membrane oxygenation. Perfusion 2025, 40, 2676591251319684. [Google Scholar] [CrossRef]
- Nguyen, D.N.; Huyghens, L.; Wellens, F.; Schiettecatte, J.; Smitz, J.; Vincent, J.-L. Serum S100B protein could help to detect cerebral complications associated with extracorporeal membrane oxygenation (ECMO). Neurocrit. Care 2014, 20, 367–374. [Google Scholar] [CrossRef]
- Tramm, R.; Hodgson, C.; Ilic, D.; Sheldrake, J.; Pellegrino, V. Identification and prevalence of PTSD risk factors in ECMO patients: A single centre study. Aust. Crit. Care 2015, 28, 31–36. [Google Scholar] [CrossRef]
- DeGrado, J.R.; Hohlfelder, B.; Ritchie, B.M.; Anger, K.E.; Reardon, D.P.; Weinhouse, G.L. Evaluation of sedatives, analgesics, and neuromuscular blocking agents in adults receiving extracorporeal membrane oxygenation. J. Crit. Care 2017, 37, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Hou, D.; Tian, X.; Wang, L.; Li, C.; Jia, M.; Hou, X. Risk factors for agitation and hyperactive delirium in adult postcardiotomy patients with extracorporeal membrane oxygenation support: An observational study. Perfusion 2020, 35, 534–542. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, S.; Khanijo, S. Delirium incidence and functional recovery in a post-ECMO cohort. Chest 2024, 166, A2371. [Google Scholar] [CrossRef]
- Sklienka, P.; Burša, F.; Frelich, M.; Máca, J.; Vodička, V.; Straková, H.; Bílená, M.; Romanová, T.; Tomášková, H. Optimizing the safety and efficacy of the awake venovenous extracorporeal membrane oxygenation in patients with COVID-19-related ARDS. Ther. Adv. Respir. Dis. 2024, 18, 17534666241282590. [Google Scholar] [CrossRef]
- Krupa, S.; Friganovic, A.; Mędrzycka-Dąbrowska, W. Occurrence of delirium during ECMO therapy in a Critical Care Unit in Poland-A cross-sectional pilot study. J. Environ. Res. Public Health 2021, 18, 4029. [Google Scholar] [CrossRef]
- Al-Kawaz, M.; Shou, B.; Prokupets, R.; Whitman, G.; Geocadin, R.; Cho, S. Mild hypothermia and neurologic outcomes in patients undergoing venoarterial extracorporeal membrane oxygenation. J. Card. Surg. 2022, 37, 825–830. [Google Scholar] [CrossRef]
- Kawazoe, T.; Ishida, T.; Jobu, K.; Kawada, K.; Morisawa, S.; Tomida, J.; Iihara, N.; Kawasaki, Y.; Hamada, Y. Risk Factors for Delirium in Patients with Acute Heart Failure: A Systematic Review and Meta-Analysis. Biol. Pharm. Bull. 2025, 48, 1131–1141. [Google Scholar] [CrossRef]
- Shekar, K.; Fraser, J.F.; Smith, M.T.; Roberts, J.A. Pharmacokinetic changes in patients receiving extracorporeal membrane oxygenation. J. Crit. Care 2012, 27, 741.e9–741.e18. [Google Scholar] [CrossRef]
- Nørholt, C.; Skov, S.N.; Nielsen, P.F.; Christensen, S.; Andersen, L.W.; Granfeldt, A. Sequestration of Remimazolam and Midazolam in an In-Vitro Extracorporeal Membrane Oxygenation Circuit. ASAIO J. 2025. [Google Scholar] [CrossRef]
- Lemaitre, F.; Hasni, N.; Leprince, P.; Corvol, E.; Belhabib, G.; Fillâtre, P.; Luyt, C.-E.; Leven, C.; Farinotti, R.; Fernandez, C.; et al. Propofol, midazolam, vancomycin and cyclosporine therapeutic drug monitoring in extracorporeal membrane oxygenation circuits primed with whole human blood. Crit. Care 2015, 19, 40. [Google Scholar] [CrossRef]
- Raffaeli, G.; Allegaert, K.; Koch, B.; Cavallaro, G.; Mosca, F.; Tibboel, D.; Wildschut, E.D. In Vitro Adsorption of Analgosedative Drugs in New Extracorporeal Membrane Oxygenation Circuits. Pediatr. Crit. Care Med. 2018, 19, e251–e258. [Google Scholar] [CrossRef]
- Burzyńska, M.; Uryga, A.; Kasprowicz, M.; Czosnyka, M.; Goździk, W.; Robba, C. Cerebral Autoregulation, Cerebral Hemodynamics, and Injury Biomarkers, in Patients with COVID-19 Treated with Veno-Venous Extracorporeal Membrane Oxygenation. Neurocrit. Care 2023, 39, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Ong, B.A.; Geocadin, R.; Choi, C.W.; Whitman, G.; Cho, S.-M. Brain magnetic resonance imaging in adult survivors of extracorporeal membrane oxygenation. Perfusion 2021, 36, 814–824. [Google Scholar] [CrossRef] [PubMed]
- Krewulak, K.D.; Stelfox, H.T.; Ely, E.W.; Fiest, K.M. Risk factors and outcomes among delirium subtypes in adult ICUs: A systematic review. J. Crit. Care 2020, 56, 257–264. [Google Scholar] [CrossRef]
- Stevens, R.D.; Sharshar, T.; Ely, E.W. (Eds.) Brain Disorders in Critical Illness; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Eleveld, D.J.; Colin, P.J.; Berg, J.P.V.D.; Koomen, J.V.; Stoehr, T.; Struys, M.M. Development and analysis of a remimazolam pharmacokinetics and pharmacodynamics model with proposed dosing and concentrations for anaesthesia and sedation. Br. J. Anaesth. 2025, 135, 206–217. [Google Scholar] [CrossRef] [PubMed]
- Noel, A.; Jarry, S.; Lepage, M.-A.; Cavayas, Y.A.; Sirois, M.G.; Fernandes, A.; Bouhout, I.; Ben-Ali, W.; Noly, P.-E.; Plourde, G.; et al. Cerebral microembolism upon intraoperative venoarterial extracorporeal membrane oxygenation initiation in postcardiotomy shock: A case series. JTCVS Tech. 2024, 29, 82–87. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, N.F.; Buttram, S.D.W.; Maa, T.; Lovett, M.E.; Reuter-Rice, K.; LaRovere, K.L.; Pediatric Neurocritical Care Research Group (PNCRG). Cerebrovascular Physiology During Pediatric Extracorporeal Membrane Oxygenation: A Multicenter Study Using Transcranial Doppler Ultrasonography. Pediatr. Crit. Care Med. 2019, 20, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Balas, M.C.; Vasilevskis, E.E.; Burke, W.J.; Boehm, L.; Pun, B.T.; Olsen, K.M.; Peitz, G.J.; Ely, E.W. Critical care nurses’ role in implementing the “ABCDE bundle” into practice. Crit. Care Nurse 2012, 32, 35–38, 40–47; quiz 48. [Google Scholar] [CrossRef]



| First Author (Year) | Country | Design. Sample Size | Delirium Cases/Prevalence (%) | Mean Age | ECMO Indication | ECMO Duration (Days) | Delirium Assessment Tool | ECMO Type | Quality Grade | Conclusion |
|---|---|---|---|---|---|---|---|---|---|---|
| Oh et al. (2022) [19] | South Korea | Retrospective, 8153 | 570 (6.9) | 52 | Mixed | 6.7 | ICD-10 | Mixed | High | Large administrative cohort showed low reported delirium prevalence (6.9%) based on ICD-10 coding, suggesting potential underdetection. |
| Debacker et al. (2018) [20] | Canada | Retrospective, 45 | 26 (57.7) | 47 (IQR 35–56) | Respiratory failure | NR | CAM-ICU and ICDSC | VV | Moderate | Over half of VV-ECMO patients developed delirium; deep sedation was common after ECMO initiation. |
| Paternoster et al. (2022) [21] | Italy | Observational, 7 | 1 (14.2) | 51.7 ± 12.5 | COVID-19 ARDS | Median15 (IQR 2–71) | CAM-ICU | VV | Low | Awake, non-intubated VV-ECMO was feasible in selected COVID-19 patients; delirium occurred in one case and contributed to ECMO termination. |
| Youn et al. (2020) [22] | South Korea | Retrospective, 102 | 73 (71.5) | 57 | Cardiac surgery | Mediana 10.0 (IQR 4.3–17.3) | CAM-ICU | VA | Moderate | High delirium prevalence (71.5%) observed in post-cardiac surgery VA-ECMO patients, highlighting a vulnerable subgroup. |
| Skelton et al. (2020) [23] | UK | Retrospective, 53 | 25 (47.2) | 63 | Cardiogenic shock | 6.2 | CAM-ICU | VA | Moderate | Nearly half of VA-ECMO patients developed delirium; all cases occurred during or after periods of deep sedation. |
| Liu et al. (2025) [24] | China | Retrospective, 138 | 70 (50.7) | 55 | Respiratory failure | 7.2 | CAM-ICU | VA | Moderate | Moderate delirium rate (50.7%) reported in VA-ECMO patients with respiratory failure; no association analysis provided. |
| Nguyen et al. (2014) [25] | Belgium | Prospective, 15 | 5 (33.3) | 58 | Cardiogenic shock, aspiration pneumonia | 7.7 | CAM-ICU | Mixed | Moderate | One-third of patients experienced delirium; authors emphasized the need for systematic monitoring in ECMO settings. |
| Tramm et al. (2015) [26] | Australia | Retrospective, 47 | 7 (14.8) | 60 | Respiratory failure, cardiac arrest | NR | CAM-ICU | Mixed | Low | Delirium occurred in 14.8% of patients receiving prolonged ECMO; prevalence may be underestimated due to retrospective design. |
| DeGrado et al. (2017) [27] | USA | Prospective, 32 | 16 (50.0) | 62.5 | Cardiac surgery | 6.5 | CAM-ICU | Mixed | Moderate | 50% of patients developed delirium; authors highlighted the impact of sedatives and neuromuscular blockers. |
| Wang et al. (2020) [28] | China | Retrospective, 94 | 33 (35.1) | 59 (IQR 51–67) | Mixed | 5.0 | ICDSC and CAM-ICU | Mixed | Moderate | Delirium was present in over one-third of patients; benzodiazepine use and hyperactive symptoms were associated with increased risk. |
| Eisenberg et al. (2024) [29] | USA | Retrospective, 22 | 11 (50.0) | NR | Severe respiratory failure | Mean 23 (delirium) vs. 15 (non-delirium) | NuDESC | VV | Moderate | 50% delirium prevalence post-ECMO; delirium was associated with longer ECMO runs, greater antipsychotic use, and increased rehabilitation needs. |
| Sklienka et al. (2024) [30] | Czech Republic | Retrospective, 10 | 0 | 55 ± 12 | COVID-19 | 23.3 ± 7.2 * | NuDESC | VV | Low | No delirium reported in small awake VV-ECMO cohort; results limited by sample size and retrospective nature. |
| Krupa et al. (2021) [31] | Poland | Cross-sectional, 32 | 27 (84.3) | NR | Cardiac surgery | NR | NuDESC | Mixed | Low (JBI) | High delirium prevalence (84.3%) in mixed ECMO cohort dominated by VA-ECMO; NuDESC identified mostly hypoactive cases. |
| Assessment Tool | Pooled Prevalence (%) | 95% CI | Total Sample Size | No. of Studies |
|---|---|---|---|---|
| CAM-ICU | 51 | 47–55% | 489 | 9 |
| ICDSC | 41 | 32–50% | 139 | 2 |
| NuDESC | 57 | 44–68% | 64 | 3 |
| ICD-10 | 7 | 6–8% | 8153 | 1 |
| Risk Factor | Direction of Effect | Evidence Base and Explanations |
|---|---|---|
| Deep Sedation | Increased Risk | Debacker et al. [20]: Patients were deeply sedated for the majority of the initial ECMO period, with a concurrent high delirium incidence of 58%. Liu et al. [24]: Delirium patients had more coma days, suggesting a strong link between deep sedation and delirium (or its masking). |
| Benzodiazepine Use | Increased Risk | Liu et al. [24]: The “number of sedatives” (primarily benzodiazepines) was an independent risk factor for delirium (aOR = 2.67). Skelton et al. [23]: A ≥50% reduction in benzodiazepines post-decannulation did not significantly reduce delirium incidence compared to a <50% reduction, but the authors noted that a 50% reduction may be insufficient to mitigate the risk. Wang et al. [28]: The agitation group had a higher proportion of midazolam use on ECMO day 2 (potentially a consequence of managing agitation, but reflects a strong association with adverse neurological states). |
| Sedative Polypharmacy | Increased Risk | Liu et al. [24]: Delirium patients received a significantly greater total number of analgesic-sedative drugs, and the number of sedatives was an independent predictor of delirium (aOR = 2.67). |
| Dexmedetomidine | Potential Protective Effect | Wang et al. [28]: The non-agitation group had a significantly higher proportion of dexmedetomidine use on ECMO day 2, indicating its potential protective role as an alternative sedative. |
| Ketamine | Potential Protective | Skelton et al. [23]: Patients receiving ketamine as an adjunctive sedative had a numerically lower incidence of delirium (0% vs. 14%), though it was not statistically significant, likely due to small sample size. |
| Early Empirical Sedation Reduction | Inconclusive Effect | Skelton et al. [23]: Empirically reducing benzodiazepines by 50% or more immediately after ECMO decannulation did not significantly reduce subsequent delirium incidence. This suggests the need for more aggressive reduction protocols or optimized pre-weaning sedation strategies. |
| Study | Compared Groups | Outcomes Impacted | Findings |
|---|---|---|---|
| Youn et al. [22] | Delirium vs. non-delirium | ICU stay, mechanical ventilation | Longer ICU stay and MV duration in delirium group |
| Wang et al. [28] | Agitation (delirium) vs. control | Haloperidol use, MV duration | Higher haloperidol use, longer MV |
| Eisenberg et al. [29] | Delirium vs. non-delirium | Rehab need, recovery time | More rehab transfer, slower recovery |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, G.; Greven, J.; Kalverkamp, S.; Spillner, J.W. Delirium in Extracorporeal Membrane Oxygenation (ECMO) Patients: A Systematic Review and Meta-Analysis of Prevalence, Risk Factors, and Outcomes. J. Clin. Med. 2025, 14, 8862. https://doi.org/10.3390/jcm14248862
Yang G, Greven J, Kalverkamp S, Spillner JW. Delirium in Extracorporeal Membrane Oxygenation (ECMO) Patients: A Systematic Review and Meta-Analysis of Prevalence, Risk Factors, and Outcomes. Journal of Clinical Medicine. 2025; 14(24):8862. https://doi.org/10.3390/jcm14248862
Chicago/Turabian StyleYang, Guangmin, Johannes Greven, Sebastian Kalverkamp, and Jan W. Spillner. 2025. "Delirium in Extracorporeal Membrane Oxygenation (ECMO) Patients: A Systematic Review and Meta-Analysis of Prevalence, Risk Factors, and Outcomes" Journal of Clinical Medicine 14, no. 24: 8862. https://doi.org/10.3390/jcm14248862
APA StyleYang, G., Greven, J., Kalverkamp, S., & Spillner, J. W. (2025). Delirium in Extracorporeal Membrane Oxygenation (ECMO) Patients: A Systematic Review and Meta-Analysis of Prevalence, Risk Factors, and Outcomes. Journal of Clinical Medicine, 14(24), 8862. https://doi.org/10.3390/jcm14248862

