Heart Failure with Preserved Ejection Fraction (HFpEF), Pulse Wave Velocity, and Heart Rate Recovery Interconnections—A Brief Literature Review
Abstract
1. Introduction
1.1. Pathophysiology of HFpEF
1.2. Pulse Wave Velocity and Arterial Stiffness in Cardiovascular Assessment
1.3. Heart Rate Recovery and Exercise Testing in Cardiovascular Assessment
2. Materials and Methods
3. Results
3.1. HFpEF and Pulse Wave Velocity: Insights from Recent Studies
3.2. HFpEF and Heart Rate Recovery: Insights from Recent Studies
4. The Vascular–Autonomic–Myocardial Triangle
5. Discussion
Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| HFpEF | Heart Failure with Preserved Ejection Fraction |
| HFrEF | Heart Failure with Reduced Ejection Fraction |
| PWV | Pulse Wave Velocity |
| HRR | Heart Rate Recovery |
| LV | Left Ventricle/Left Ventricular |
| LVH | Left Ventricular Hypertrophy |
| baPWV | Brachial-Ankle Pulse Wave Velocity |
| cfPWV | Carotid-Femoral Pulse Wave Velocity |
| CPET | Cardiopulmonary Exercise Test |
| 6MWT | Six-Minute Walk Test |
| E/E’ | Ratio of mitral inflow E velocity to mitral annular E’ (diastolic function index) |
| RCT | Randomized Controlled Trial |
| MESA | Multi-Ethnic Study of Atherosclerosis |
References
- Dunlay, S.M.; Roger, V.L.; Redfield, M.M. Epidemiology of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 2017, 14, 591–602. [Google Scholar] [CrossRef] [PubMed]
- Borlaug, B.A.; Sharma, K.; Shah, S.J.; Ho, J.E. Heart Failure with Preserved Ejection Fraction: JACC Scientific Statement. J. Am. Coll. Cardiol. 2023, 81, 1810–1834. [Google Scholar] [CrossRef] [PubMed]
- Krittanawong, C.; Britt, W.M.; Rizwan, A.; Siddiqui, R.; Khawaja, M.; Khan, R.; Joolharzadeh, P.; Newman, N.; Rivera, M.R.; Tang, W.H.W. Clinical Update in Heart Failure with Preserved Ejection Fraction. Curr. Heart Fail. Rep. 2024, 21, 461–484. [Google Scholar] [CrossRef] [PubMed]
- Youn, J.C.; Ahn, Y.; Jung, H.O. Pathophysiology of Heart Failure with Preserved Ejection Fraction. Heart Fail. Clin. 2021, 17, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.L.; Jo, S.H. Arterial Stiffness and Heart Failure with Preserved Ejection Fraction. J. Korean Med. Sci. 2024, 39, e195. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Velmeden, D.; Söhne, J.; Schuch, A.; Zeid, S.; Schulz, A.; Troebs, S.O.; Müller, F.; Heidorn, M.W.; Buch, G.; Belanger, N.; et al. Role of Heart Rate Recovery in Chronic Heart Failure: Results from the MyoVasc Study. J. Am. Heart Assoc. 2025, 14, e039792. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ji, C.; Wang, G.; Huang, Z.; Zhu, C.; Liu, Y. Estimated pulse wave velocity and risk of new-onset heart failure. ESC Heart Fail. 2024, 11, 2120–2128. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dewar, A.; Kass, L.; Stephens, R.C.M.; Tetlow, N.; Desai, T. Heart Rate Recovery Assessed by Cardiopulmonary Exercise Testing in Patients with Cardiovascular Disease: Relationship with Prognosis. Int. J. Environ. Res. Public Health 2023, 20, 4678. [Google Scholar] [CrossRef]
- Obokata, M.; Reddy, Y.N.V.; Borlaug, B.A. Diastolic Dysfunction and Heart Failure with Preserved Ejection Fraction: Understanding Mechanisms by Using Noninvasive Methods. JACC Cardiovasc. Imaging 2020, 13, 245–257. [Google Scholar] [CrossRef]
- Pecchia, B.; Samuel, R.; Shah, V.; Newman, E.; Gibson, G.T. Mechanisms of exercise intolerance in heart failure with preserved ejection fraction (HFpEF). Heart Fail. Rev. 2025, 30, 777–789. [Google Scholar] [CrossRef]
- DeVore, A.D.; McNulty, S.; Alenezi, F.; Ersboll, M.; Vader, J.M.; Oh, J.K.; Lin, G.; Redfield, M.M.; Lewis, G.; Semigran, M.J.; et al. Impaired left ventricular global longitudinal strain in patients with heart failure with preserved ejection fraction: Insights from the RELAX trial. Eur. J. Heart Fail. 2017, 19, 893–900. [Google Scholar] [CrossRef]
- Fukuta, H.; Goto, T.; Kamiya, T. Effects of beta-blocker withdrawal in patients with heart failure with preserved ejection fraction: A protocol for systematic review and meta-analysis. PLoS ONE 2023, 18, e0294347. [Google Scholar] [CrossRef]
- Patel, R.N.; Sharma, A.; Prasad, A.; Bansal, S. Heart Failure with Preserved Ejection Fraction with CKD: A Narrative Review of a Multispecialty Disorder. Kidney Med. 2023, 5, 100705. [Google Scholar] [CrossRef]
- Reddy, Y.N.V.; Andersen, M.J.; Obokata, M.; Koepp, K.E.; Kane, G.C.; Melenovsky, V.; Olson, T.P.; Borlaug, B.A. Arterial Stiffening with Exercise in Patients with Heart Failure and Preserved Ejection Fraction. J. Am. Coll. Cardiol. 2017, 70, 136–148. [Google Scholar] [CrossRef]
- Taqueti, V.R. Coronary Microvascular Dysfunction in Heart Failure with Preserved Ejection Fraction—Common, Unrecognized, and Prevalent in Patients with or Without Epicardial CAD. JAMA Cardiol. 2021, 6, 1118–1120. [Google Scholar] [CrossRef]
- Gevaert, A.B.; Boen, J.R.A.; Segers, V.F.; Van Craenenbroeck, E.M. Heart Failure with Preserved Ejection Fraction: A Review of Cardiac and Noncardiac Pathophysiology. Front. Physiol. 2019, 10, 638. [Google Scholar] [CrossRef]
- Ma, C.; Luo, H.; Fan, L.; Liu, X.; Gao, C. Heart failure with preserved ejection fraction: An update on pathophysiology, diagnosis, treatment, and prognosis. Braz. J. Med. Biol. Res. 2020, 53, e9646. [Google Scholar] [CrossRef]
- Marshall, A.G.; Neikirk, K.; Afolabi, J.; Mwesigwa, N.; Shao, B.; Kirabo, A.; Reddy, A.K.; Hinton, A., Jr. Update on the Use of Pulse Wave Velocity to Measure Age-Related Vascular Changes. Curr. Hypertens. Rep. 2024, 26, 131–140. [Google Scholar] [CrossRef]
- Petre, I.; Iurciuc, S.; Buleu, F.; Petre, I.; Moleriu, R.D.; Popa, D.; Turi, V.; Bordianu, A.; Tasdemir, R.; Craciun, L.M.; et al. The Impact of Medical Physical Training and a Structured Personalized Exercise Training Program on Hemodynamic Parameters and Arterial Stiffness in Pregnant Women. Biomedicines 2024, 12, 986. [Google Scholar] [CrossRef]
- Xue, R.; Zhang, J.; Zhen, Z.; Liang, W.; Li, Y.; Zhang, L.; Dong, Y.; Dong, B.; Liu, C. Estimated pulse wave velocity predicts mortality in patients with heart failure with preserved ejection fraction. Hell. J. Cardiol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Tokitsu, T.; Yamamoto, E.; Oike, F.; Hirata, Y.; Tsujita, K.; Yamamuro, M.; Kaikita, K.; Hokimoto, S. Clinical significance of brachial-ankle pulse-wave velocity in patients with heart failure with preserved left ventricular ejection fraction. J. Hypertens. 2018, 36, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Turi, V.-R.; Luca, C.T.; Gaita, D.; Iurciuc, S.; Petre, I.; Iurciuc, M.; Horvath, T.; Cozma, D. Diagnosing Arterial Stiffness in Pregnancy and Its Implications in the Cardio-Renal-Metabolic Chain. Diagnostics 2022, 12, 2221. [Google Scholar] [CrossRef]
- van de Vegte, Y.J.; van der Harst, P.; Verweij, N. Heart Rate Recovery 10 Seconds After Cessation of Exercise Predicts Death. J. Am. Heart Assoc. 2018, 7, e008341. [Google Scholar] [CrossRef]
- Pierpont, G.L.; Adabag, S.; Yannopoulos, D. Pathophysiology of exercise heart rate recovery: A comprehensive analysis. Ann. Noninvasive Electrocardiol. 2013, 18, 107–117. [Google Scholar] [CrossRef]
- Cozgarea, A.; Cozma, D.; Teodoru, M.; Lazăr-Höcher, A.-I.; Cirin, L.; Faur-Grigori, A.-A.; Lazăr, M.-A.; Crișan, S.; Gaiță, D.; Luca, C.-T.; et al. Heart Rate Recovery: Up to Date in Heart Failure—A Literature Review. J. Clin. Med. 2024, 13, 3328. [Google Scholar] [CrossRef]
- Cahalin, L.P.; Arena, R.; Labate, V.; Bandera, F.; Lavie, C.J.; Guazzi, M. Heart rate recovery after the 6 min walk test rather than distance ambulated is a powerful prognostic indicator in heart failure with reduced and preserved ejection fraction: A comparison with cardiopulmonary exercise testing. Eur. J. Heart Fail. 2013, 15, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Cole, C.R.; Blackstone, E.H.; Pashkow, F.J.; Snader, C.E.; Lauer, M.S. Heart-rate recovery immediately after exercise as a predictor of mortality. N. Engl. J. Med. 1999, 341, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Palau, P.; de la Espriella, R.; Seller, J.; Santas, E.; Domínguez, E.; Bodí, V.; Sanchis, J.; Núñez, E.; Bayés-Genís, A.; Bertomeu-González, V.; et al. β-Blocker Withdrawal and Functional Capacity Improvement in Patients with Heart Failure with Preserved Ejection Fraction. JAMA Cardiol. 2024, 9, 392–396. [Google Scholar] [CrossRef]
- Jannasz, I.; Sondej, T.; Targowski, T.; Dobrowolski, A.; Olszewski, R. Pomiar prędkości fali tętna–użyteczne narzędzie w ocenie sztywności tętnic [Pulse wave velocity–a useful tool in assessing the stiffness of the arteries]. Pol. Merkur. Lek. 2019, 46, 257–262. Polish. [Google Scholar] [PubMed]
- Zhong, Q.; Hu, M.J.; Cui, Y.J.; Liang, L.; Zhou, M.M.; Yang, Y.W.; Huang, F. Carotid-Femoral Pulse Wave Velocity in the Prediction of Cardiovascular Events and Mortality: An Updated Systematic Review and Meta-Analysis. Angiology 2018, 69, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Sang, T.; Lv, N.; Dang, A.; Cheng, N.; Zhang, W. Brachial-ankle pulse wave velocity and prognosis in patients with atherosclerotic cardiovascular disease: A systematic review and meta-analysis. Hypertens. Res. 2021, 44, 1175–1185. [Google Scholar] [CrossRef] [PubMed]
- Heffernan, K.S.; Charry, D.; Xu, J.; Tanaka, H.; Churilla, J.R. Estimated pulse wave velocity and incident heart failure and its subtypes: Findings from the multi-ethnic study of atherosclerosis. Am. Heart J. Plus Cardiol. Res. Pract. 2023, 25, 100238. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tanaka, A.; Tomiyama, H.; Maruhashi, T.; Matsuzawa, Y.; Miyoshi, T.; Kabutoya, T.; Kario, K.; Sugiyama, S.; Munakata, M.; Ito, H.; et al. Physiological Diagnosis Criteria for Vascular Failure Committee. Physiological Diagnostic Criteria for Vascular Failure. Hypertension 2018, 72, 1060–1071. [Google Scholar] [CrossRef] [PubMed]
- Desai, A.S.; Mitchell, G.F.; Fang, J.C.; Creager, M.A. Central aortic stiffness is increased in patients with heart failure and preserved ejection fraction. J. Card. Fail. 2009, 15, 658–664. [Google Scholar] [CrossRef] [PubMed]
- Ali, D.; Callan, N.; Ennis, S.; Powell, R.; McGuire, S.; McGregor, G.; Weickert, M.O.; Miller, M.A.; Cappuccio, F.P.; Banerjee, P. Heart failure with preserved ejection fraction (HFpEF) pathophysiology study (IDENTIFY-HF): Does increased arterial stiffness associate with HFpEF, in addition to ageing and vascular effects of comorbidities? Rationale and design. BMJ Open 2019, 9, e027984. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nakamura, T.; Uematsu, M.; Deyama, J.; Watanabe, Y.; Nakamura, K.; Kobayashi, T.; Saito, Y.; Fujioka, D.; Kawabata, K.I.; Obata, J.E.; et al. Pulmonary Vascular Resistance Is Associated with Brachial-Ankle Pulse-Wave Velocity and Adverse Clinical Outcomes in Patients with Heart Failure with Preserved Ejection Fraction. J. Card. Fail. 2019, 25, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Tartière-Kesri, L.; Tartière, J.M.; Logeart, D.; Beauvais, F.; Cohen Solal, A. Increased proximal arterial stiffness and cardiac response with moderate exercise in patients with heart failure and preserved ejection fraction. J. Am. Coll. Cardiol. 2012, 59, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Blaha, M.J.; DeFilippis, A.P. Multi-Ethnic Study of Atherosclerosis (MESA): JACC Focus Seminar 5/8. J. Am. Coll. Cardiol. 2021, 77, 3195–3216. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tang, Y.D.; Dewland, T.A.; Wencker, D.; Katz, S.D. Post-exercise heart rate recovery independently predicts mortality risk in patients with chronic heart failure. J. Card. Fail. 2009, 15, 850–855. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nanas, S.; Anastasiou-Nana, M.; Dimopoulos, S.; Sakellariou, D.; Alexopoulos, G.; Kapsimalakou, S.; Papazoglou, P.; Tsolakis, E.; Papazachou, O.; Roussos, C.; et al. Early heart rate recovery after exercise predicts mortality in patients with chronic heart failure. Int. J. Cardiol. 2006, 110, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Andrade, G.N.; Rodrigues, T.; Takada, J.Y.; Braga, L.M.; Umeda, I.I.K.; Nascimento, J.A.; Pereira-Filho, H.G.; Grupi, C.J.; Salemi, V.M.C.; Jacob-Filho, W.; et al. Prolonged heart rate recovery time after 6-minute walk test is an independent risk factor for cardiac events in heart failure: A prospective cohort study. Physiotherapy 2022, 114, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Hamo, C.E.; DeJong, C.; Hartshorne-Evans, N.; Lund, L.H.; Shah, S.J.; Solomon, S.; Lam, C.S.P. Heart failure with preserved ejection fraction. Nat. Rev. Dis. Primers 2024, 10, 55. [Google Scholar] [CrossRef] [PubMed]
- Phan, T.T.; Shivu, G.N.; Abozguia, K.; Davies, C.; Nassimizadeh, M.; Jimenez, D.; Weaver, R.; Ahmed, I.; Frenneaux, M. Impaired heart rate recovery and chronotropic incompetence in patients with heart failure with preserved ejection fraction. Circ. Heart Fail. 2010, 3, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Cahalin, L.P.; Arena, R.; Labate, V.; Bandera, F.; Guazzi, M. Predictors of abnormal heart rate recovery in patients with heart failure reduced and preserved ejection fraction. Eur. J. Prev. Cardiol. 2014, 21, 906–914. [Google Scholar] [CrossRef] [PubMed]
- Cozlac, A.R.; Petrescu, L.; Crisan, S.; Luca, C.T.; Vacarescu, C.; Streian, C.G.; Lazar, M.A.; Gurgu, A.; Dragomir, A.; Goanta, E.V.; et al. A Novel and Simple Exercise Test Parameter to Assess Responsiveness to Cardiac Resynchronization Therapy. Diagnostics 2020, 10, 920. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Maldonado-Martín, S.; Brubaker, P.H.; Ozemek, C.; Jayo-Montoya, J.A.; Becton, J.T.; Kitzman, D.W. Impact of β-Blockers on Heart Rate and Oxygen Uptake During Exercise and Recovery in Older Patients with Heart Failure with Preserved Ejection Fraction. J. Cardiopulm. Rehabil. Prev. 2020, 40, 174–177. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sengupta, P.P.; Korinek, J.; Belohlavek, M.; Narula, J.; Vannan, M.A.; Jahangir, A.; Khandheria, B.K. Left ventricular structure and function: Basic science for cardiac imaging. J. Am. Coll. Cardiol. 2006, 48, 1988–2001. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.J.; Sands, G.B.; LeGrice, I.J.; Young, A.A.; Ennis, D.B. Myocardial mesostructure and mesofunction. Am. J. Physiol. Heart Circ. Physiol. 2022, 323, H257–H275. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Beyhoff, N.; Lohr, D.; Foryst-Ludwig, A.; Klopfleisch, R.; Brix, S.; Grune, J.; Thiele, A.; Erfinanda, L.; Tabuchi, A.; Kuebler, W.M.; et al. Characterization of Myocardial Microstructure and Function in an Experimental Model of Isolated Subendocardial Damage. Hypertension 2019, 74, 295–304. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Russo, C.; Jin, Z.; Palmieri, V.; Homma, S.; Rundek, T.; Elkind, M.S.; Sacco, R.L.; Di Tullio, M.R. Arterial stiffness and wave reflection: Sex differences and relationship with left ventricular diastolic function. Hypertension 2012, 60, 362–368. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Y.; Lu, M. Estimated Pulse Wave Velocity-to-Global Longitudinal Strain Ratio: A Tool for Differentiating Heart Failure Subtypes? Cardiology 2025, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Gharacholou, S.M.; Scott, C.G.; Borlaug, B.A.; Kane, G.C.; McCully, R.B.; Oh, J.K.; Pellikka, P.A. Relationship between diastolic function and heart rate recovery after symptom-limited exercise. J. Card. Fail. 2012, 18, 34–40. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Skaluba, S.J.; Litwin, S.E. Doppler-derived left ventricular filling pressures and the regulation of heart rate recovery after exercise in patients with suspected coronary artery disease. Am. J. Cardiol. 2005, 95, 832–837. [Google Scholar] [CrossRef] [PubMed]
- Wolk, R.; Somers, V.K.; Gibbons, R.J.; Olson, T.; O’Malley, K.; Johnson, B.D. Pathophysiological characteristics of heart rate recovery in heart failure. Med. Sci. Sports Exerc. 2006, 38, 1367–1373. [Google Scholar] [CrossRef] [PubMed]



| Study Title | Authors | Year | Population | Key Findings on PWV |
|---|---|---|---|---|
| Estimated pulse wave velocity predicts mortality in patients with heart failure with preserved ejection fraction | Xue et al. [20] | 2024 | 1764 patients with HFpEF | In patients with HFpEF, elevated ePWV predicted both all-cause and cardiac mortality |
| Estimated pulse wave velocity and incident heart failure and its subtypes: Findings from the multi-ethnic study of atherosclerosis | Heffernan et al. [32] | 2023 | 6814 community adults (MESA study; 138 developed HFpEF) | Over 12.5 years, individuals with higher baseline PWV had a greater incidence of HFpEF. The highest quartile of PWV had approximately a fourfold higher risk of developing HFpEF versus the lowest quartile, implicating arterial stiffness as a risk factor for HFpEF onset. |
| Pulmonary vascular resistance is associated with brachial-ankle pulse-wave velocity and adverse clinical outcomes in patients with heart failure with preserved ejection fraction | Nakamura et al. [36] | 2019 | 198 HFpEF patients | Systemic arterial stiffness has been associated with increased pulmonary vascular resistance and with the development of precapillary pulmonary hypertension in patients with HFpEF. |
| Clinical significance of brachial-ankle pulse wave velocity in patients with heart failure with preserved left ventricular ejection fraction | Tokitsu et al. [21] | 2018 | 502 HFpEF patients (3-year follow-up) | Prognostic J-curve for stiffness: Both very high and very low baPWV were associated with increased cardiovascular events in HFpEF. Intermediate stiffness conferred the lowest risk, suggesting arterial stiffness assessment can help stratify HFpEF prognosis. |
| Arterial stiffening with exercise in patients with heart failure and preserved ejection fraction | Reddy et al. [14] | 2017 | 98 HFpEF vs. 22 hypertensive controls | Arterial compliance was lower in HFpEF than in hypertensive controls, independent of blood pressure. On exercise, HFpEF patients showed an increase in aortic stiffening, whereas controls had a slight decrease, leading to worse ventricular-arterial coupling in HFpEF. |
| Central aortic stiffness is increased in patients with heart failure and preserved ejection fraction | Desai et al. [34] | 2009 | 53 patients, of whom 16 with HFpEF and HTN, 23 with HTN but without HFpEF, and 14 had healthy controls | HFpEF patients had significantly increased central aortic stiffness compared to healthy age-matched controls (higher carotid-femoral PWV), indicating pronounced arterial stiffening in HFpEF. |
| Study Title | Authors | Year | Population | Key Findings on HRR |
|---|---|---|---|---|
| Role of heart rate recovery in chronic heart failure: Results from the MyoVasc study | Velmeden et al. [6] | 2025 | 1289 patients with HF across the entire spectrum of ejection fraction | HRR60 demonstrated a strong association with worsening heart failure, particularly in patients with HFpEF |
| Impact of beta-blockers on heart rate and oxygen uptake during exercise and recovery in older patients with heart failure with preserved ejection fraction | Maldonado-Martin et al. [46] | 2020 | 174 HFpEF patients (BB = 59; NBB = 115) | Treatment with beta-blockers does not affect HRR in patients with HFpEF compared to those not receiving beta-blocker therapy. |
| Predictors of abnormal heart rate recovery in patients with heart failure, reduced and preserved ejection fraction | Cahalin et al. [44] | 2014 | 240 HF patients (200 HFrEF, 40 HFpEF) | Correlates of abnormal HRR: In this cohort, worse HRR was associated with poorer exercise performance and echocardiographic indices. Notably, a high E/E′ (reflecting diastolic dysfunction) and the presence of exercise oscillatory ventilation were independent predictors of abnormal HRR, linking impaired HRR with HF severity in both HFpEF and HFrEF. |
| Heart rate recovery after the 6 min walk test, rather than distance ambulated, is a powerful prognostic indicator in heart failure with reduced and preserved ejection fraction: a comparison with cardiopulmonary exercise testing | Cahalin et al. [26] | 2013 | 258 HF patients (216 HFrEF, 42 HFpEF) | HRR as top prognostic marker: HRR1 after both 6MWT and CPX was the strongest predictor of mortality or hospitalization in multivariate models (p < 0.001). A blunted HRR conferred significantly higher risk, overshadowing 6MWT distance and peak VO2. This suggests HRR is a powerful integrative measure of risk in HF, including HFpEF. |
| Impaired heart rate recovery and chronotropic incompetence in patients with heart failure with preserved ejection fraction | Phan et al. [43] | 2010 | 41 HFpEF vs. 41 controls (no β-blockers) | Chronotropic incompetence and slow HRR in HFpEF: HFpEF patients used a significantly smaller fraction of heart rate reserve during exercise. Abnormal 1 min HRR (≤12 bpm drop) was observed in 23% of HFpEF patients vs. 2% of controls, indicating impaired vagal rebound in HFpEF. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suciu, B.-S.; Turi, V.R.; Crisan, S.; Luca, C.T.; Lazar, D.-C.; Faur-Grigori, A.A.; Petrescu, M.; Dache, A.; Cioca, F.; Văcărescu, C.; et al. Heart Failure with Preserved Ejection Fraction (HFpEF), Pulse Wave Velocity, and Heart Rate Recovery Interconnections—A Brief Literature Review. J. Clin. Med. 2025, 14, 8781. https://doi.org/10.3390/jcm14248781
Suciu B-S, Turi VR, Crisan S, Luca CT, Lazar D-C, Faur-Grigori AA, Petrescu M, Dache A, Cioca F, Văcărescu C, et al. Heart Failure with Preserved Ejection Fraction (HFpEF), Pulse Wave Velocity, and Heart Rate Recovery Interconnections—A Brief Literature Review. Journal of Clinical Medicine. 2025; 14(24):8781. https://doi.org/10.3390/jcm14248781
Chicago/Turabian StyleSuciu, Bogdan-Simion, Vladiana Romina Turi, Simina Crisan, Constantin Tudor Luca, Daniela-Cornelia Lazar, Adelina Andreea Faur-Grigori, Manuela Petrescu, Andreea Dache, Flavius Cioca, Cristina Văcărescu, and et al. 2025. "Heart Failure with Preserved Ejection Fraction (HFpEF), Pulse Wave Velocity, and Heart Rate Recovery Interconnections—A Brief Literature Review" Journal of Clinical Medicine 14, no. 24: 8781. https://doi.org/10.3390/jcm14248781
APA StyleSuciu, B.-S., Turi, V. R., Crisan, S., Luca, C. T., Lazar, D.-C., Faur-Grigori, A. A., Petrescu, M., Dache, A., Cioca, F., Văcărescu, C., & Cozma, D. (2025). Heart Failure with Preserved Ejection Fraction (HFpEF), Pulse Wave Velocity, and Heart Rate Recovery Interconnections—A Brief Literature Review. Journal of Clinical Medicine, 14(24), 8781. https://doi.org/10.3390/jcm14248781

