Targeting Atherosclerosis: Cholesterol-Lowering Therapies with a New Immunometabolic Dress for an Old Disease
Abstract
1. Introduction
2. Towards the Immune-Metabolic Hypothesis of Atherosclerosis
3. Cholesterol-Lowering Drugs Also Anti-Inflammatory
3.1. Cholesterol Synthesis Inhibitors
3.2. PCSK9 Inhibitors
3.3. Ezetimibe
3.4. Direct Anti-Inflammatory Therapy: Canakinumab (CANTOS)
| Intervention | Study Type | Effect on Inflammation | Effect on Cardiovascular Risk/Plaque | Reference |
|---|---|---|---|---|
| Experimental studies | ||||
| Simvastatin | Experimental (human PBMCs stimulated with cholesterol crystals) | ↓ IL-1β release and inflammasome activation in PBMCs; ↓ NLRP3 signaling | Indirect: statins reduce hs-CRP and clinical events in many trials (pleiotropic effects) | [41] |
| Atorvastatin | Experimental (human cell line) | ↓ NLRP3 inflammasome via suppression of TLR4/MyD88/NF-kB pathway; ↓ IL-1β cleaved caspase-1 | na (preclinical study) | [40] |
| Ezetimibe | Experimental (in vivo, diabetic rats) | ↓ AGE | na (preclinical study) | [55] |
| Clinical studies | ||||
| Rosuvastatin | Two nested CVD case–control studies: JUPITER and TNT trials (primary and secondary prevention) | IgG N-glycans profile associated with incident CVD: an agalactosylated glycan related to increased risk of CVD, several digalactosylated and sialylated IgG glycans related to decreased risk | IgG glycan score was positively associated with future CVD | [46] |
| Anti-inflammatory therapies in ASCVD (systematic review) | Systematic review (clinical studies) | ↓ hs-CRP, ↓ IL-6 (summarized effects across several trials) | Mixed evidence for ↓ MACE depending on therapy | [44] |
| Rosuvastatin (JUPITER trial) | Clinical interventional trial (RCT) | ↓ hs-CRP | ↓ MACE in patients with normal LDL-C | [45] |
| IgG glycosylation traits, GlycA | Carotid and femoral plaques | Yes | [11] | |
| Canakinumab (anti-IL-1β) (CANTOS) | Clinical trial (RCT) | ↓ IL-1β and ↓ hs-CRP | ↓ MACE independent of LDL-C | [31] |
| Ezetimibe + statin (IMPROVE-IT study) | Clinical trial (randomized controlled trial) | ↓ LDL and hs-CRP (mixed data across studies) | ↓ CV events when ezetimibe added to statins post-ACS | [52,53] |
| PCSK9 inhibitors (alirocumab; observational, GlycA/B/F markers) | Observational (pre-/post in high CV risk subjects) | ↓ GlycA ~12%, GlycF, GlycB; ↓ ApoC-III and TG; minimal/ no change in hs-CRP | Major ↓ LDL-C; indirect implications for CV risk reduction | [51] |
| PCSK9 inhibitors (evolocumab/alirocumab) | Clinical observational (human carotid plaques) | ↓ plaque pro-inflammatory proteins (NLRP3, IL-1β, TNFα) | Plaque stabilization features, ↓ MACE | [16] |
| Dietary interventions (Mediterranean diet, omega-3 PUFA) | Clinical trial (RCT, cohort) | ↓ inflammatory markers (IL-6, CRP) | ↓ CV risk | [57,58] |
4. Conclusions and Perspectives
5. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ACLY | Adenosine triphosphate (ATP)-citrate lyase |
| AGE | Advanced glycation end-products |
| ApoB | Apolipoprotein B |
| ApoC-III | Apolipoprotein CIII |
| ASCVD | Atherosclerotic cardiovascular diseases |
| CANTOS | Canakinumab Anti-Inflammatory Thrombosis Outcomes Study |
| CLEAR | ACL-Inhibiting Regimen |
| CML | Carboxymethyl-lysine |
| COLCOT | Colchicine Cardiovascular Outcomes Trial |
| CVD | Cardiovascular disease |
| GlycA | Glycoprotein A |
| GlycB | Glycoprotein B |
| hs-CRP | High-sensitivity C-reactive protein |
| HMG-CoA | 3-hydroxy-3-methylglutaryl-coenzyme A |
| 1H-NMR | Proton nuclear magnetic resonance |
| IgG | Immunoglobulin |
| IL | Interleukin |
| IMPROVE-IT | Improved Reduction in Outcomes: Vytorin Efficacy International Trial |
| JUPITER | Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin |
| LDL-C | Low-density lipoprotein cholesterol |
| LDLR | Low-density lipoprotein receptor |
| MESA | Multi-Ethnic Study of Atherosclerosis |
| NF-κB | Nuclear factor-kappa B |
| NLRP3 | Nucleotide-binding oligomerization domain (NOD)-, leucine-rich repeat (LRR)-, and pyrin domain-containing protein 3 |
| PBMCs | Peripheral blood mononuclear cells |
| PCSK9 | Proprotein convertase subtilisin/kexin 9 |
| RCT | Randomized clinical trials |
| ROS | Reactive oxygen species |
| TLR | Toll-like receptor |
| TNF-α | Tumor necrosis factor α |
| TNT | Treating to New Targets |
| T1D | Type 1 diabetes |
References
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-Y.; Li, C.-J.; Hou, M.-F.; Chu, P.-Y. New Insights into the Role of Inflammation in the Pathogenesis of Atherosclerosis. Int. J. Mol. Sci. 2017, 18, 2034. [Google Scholar] [CrossRef]
- Frostegård, J. Immunity, Atherosclerosis and Cardiovascular Disease. BMC Med. 2013, 11, 117. [Google Scholar] [CrossRef]
- Cervantes, J.; Kanter, J.E. Monocyte and Macrophage Foam Cells in Diabetes-Accelerated Atherosclerosis. Front. Cardiovasc. Med. 2023, 10, 1213177. [Google Scholar] [CrossRef] [PubMed]
- Libby, P. Inflammation in Atherosclerosis. Nature 2022, 420, 868–874. [Google Scholar] [CrossRef]
- Hansson, G.K. Inflammation, Atherosclerosis, and Coronary Artery Disease. N. Engl. J. Med. 2005, 352, 1685–1695. [Google Scholar] [CrossRef]
- Mauricio, D.; Castelblanco, E.; Alonso, N. Cholesterol and Inflammation in Atherosclerosis: An Immune-Metabolic Hypothesis. Nutrients 2020, 12, 2444. [Google Scholar] [CrossRef]
- Fleetwood, A.J.; Noonan, J.; La Gruta, N.; Kallies, A.; Murphy, A.J. Immunometabolism in Atherosclerotic Disorders. Nat. Cardiovasc. Res. 2024, 3, 637–650. [Google Scholar] [CrossRef]
- Fuertes-Martín, R.; Correig, X.; Vallvé, J.-C.; Amigó, N. Title: Human Serum/Plasma Glycoprotein Analysis by 1H-NMR, an Emerging Method of Inflammatory Assessment. J. Clin. Med. 2020, 9, 354. [Google Scholar] [CrossRef]
- Serés-Noriega, T.; Giménez, M.; Perea, V.; Blanco, J.; Vinagre, I.; Pané, A.; Ruiz, S.; Cofán, M.; Mesa, A.; Esmatjes, E.; et al. Quantification of Glycoproteins by Nuclear Magnetic Resonance Associated with Preclinical Carotid Atherosclerosis in Patients with Type 1 Diabetes. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 2099–2108. [Google Scholar] [CrossRef] [PubMed]
- Menni, C.; Gudelj, I.; Macdonald-Dunlop, E.; Mangino, M.; Zierer, J.; Bešić, E.; Joshi, P.K.; Trbojević-Akmačić, I.; Chowienczyk, P.J.; Spector, T.D.; et al. Glycosylation Profile of Immunoglobulin G Is Cross-Sectionally Associated With Cardiovascular Disease Risk Score and Subclinical Atherosclerosis in Two Independent Cohorts. Circ. Res. 2018, 122, 1555–1564. [Google Scholar] [CrossRef] [PubMed]
- Dev, K.; Sharma, S.B.; Garg, S.; Aggarwal, A.; Madhu, S. V Glycated Apolipoprotein B-A Surrogate Marker of Subclinical Atherosclerosis. Diabetes Metab. Syndr. 2016, 10, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Fashanu, O.E.; Oyenuga, A.O.; Zhao, D.; Tibuakuu, M.; Mora, S.; Otvos, J.D.; Stein, J.H.; Michos, E.D. GlycA, a Novel Inflammatory Marker and Its Association With Peripheral Arterial Disease and Carotid Plaque: The Multi-Ethnic Study of Atherosclerosis. Angiology 2019, 70, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Keser, T.; Vučković, F.; Barrios, C.; Zierer, J.; Wahl, A.; Akinkuolie, A.O.; Štambuk, J.; Nakić, N.; Pavić, T.; Periša, J.; et al. Effects of Statins on the Immunoglobulin G Glycome. Biochim. Biophys. Acta. Gen. Subj. 2017, 1861, 1152–1158. [Google Scholar] [CrossRef]
- Jamialahmadi, T.; Reiner, Ž.; Simental-Mendia, L.E.; Almahmeed, W.; Karav, S.; Eid, A.H.; Giammarile, F.; Sahebkar, A. Effect of Statins on Arterial Wall Inflammation as Assessed by 18F-FDG PET CT: An Updated Systematic Review and Meta-Analysis. J. Inflamm. 2024, 21, 52. [Google Scholar] [CrossRef]
- Marfella, R.; Prattichizzo, F.; Sardu, C.; Paolisso, P.; D’Onofrio, N.; Scisciola, L.; La Grotta, R.; Frigé, C.; Ferraraccio, F.; Panarese, I.; et al. Evidence of an Anti-Inflammatory Effect of PCSK9 Inhibitors within the Human Atherosclerotic Plaque. Atherosclerosis 2023, 378, 117180. [Google Scholar] [CrossRef]
- Sparrow, C.P.; Burton, C.A.; Hernandez, M.; Mundt, S.; Hassing, H.; Patel, S.; Rosa, R.; Hermanowski-Vosatka, A.; Wang, P.R.; Zhang, D.; et al. Simvastatin Has Anti-Inflammatory and Antiatherosclerotic Activities Independent of Plasma Cholesterol Lowering. Arterioscler. Thromb. Vasc. Biol. 2001, 21, 115–121. [Google Scholar] [CrossRef]
- Kleemann, R.; Princen, H.M.G.; Emeis, J.J.; Jukema, J.W.; Fontijn, R.D.; Horrevoets, A.J.G.; Kooistra, T.; Havekes, L.M. Rosuvastatin Reduces Atherosclerosis Development beyond and Independent of Its Plasma Cholesterol-Lowering Effect in APOE*3-Leiden Transgenic Mice: Evidence for Antiinflammatory Effects of Rosuvastatin. Circulation 2003, 108, 1368–1374. [Google Scholar] [CrossRef]
- Bea, F.; Blessing, E.; Bennett, B.; Levitz, M.; Wallace, E.P.; Rosenfeld, M.E. Simvastatin Promotes Atherosclerotic Plaque Stability in ApoE-Deficient Mice Independently of Lipid Lowering. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 1832–1837. [Google Scholar] [CrossRef]
- Momtazi-Borojeni, A.A.; Sabouri-Rad, S.; Gotto, A.M.; Pirro, M.; Banach, M.; Awan, Z.; Barreto, G.E.; Sahebkar, A. PCSK9 and Inflammation: A Review of Experimental and Clinical Evidence. Eur. Heart J. Cardiovasc. Pharmacother. 2019, 5, 237–245. [Google Scholar] [CrossRef]
- Tang, Y.; Li, S.-L.; Hu, J.-H.; Sun, K.-J.; Liu, L.-L.; Xu, D.-Y. Research Progress on Alternative Non-Classical Mechanisms of PCSK9 in Atherosclerosis in Patients with and without Diabetes. Cardiovasc. Diabetol. 2020, 19, 33. [Google Scholar] [CrossRef]
- Ding, Z.; Pothineni, N.V.K.; Goel, A.; Lüscher, T.F.; Mehta, J.L. PCSK9 and Inflammation: Role of Shear Stress, pro-Inflammatory Cytokines, and LOX-1. Cardiovasc. Res. 2020, 116, 908–915. [Google Scholar] [CrossRef] [PubMed]
- Karagiannis, A.D.; Liu, M.; Toth, P.P.; Zhao, S.; Agrawal, D.K.; Libby, P.; Chatzizisis, Y.S. Pleiotropic Anti-Atherosclerotic Effects of PCSK9 InhibitorsFrom Molecular Biology to Clinical Translation. Curr. Atheroscler. Rep. 2018, 20, 20. [Google Scholar] [CrossRef]
- Akinkuolie, A.O.; Glynn, R.J.; Padmanabhan, L.; Ridker, P.M.; Mora, S. Circulating N-Linked Glycoprotein Side-Chain Biomarker, Rosuvastatin Therapy, and Incident Cardiovascular Disease: An Analysis From the JUPITER Trial. J. Am. Heart Assoc. 2016, 5, e003822. [Google Scholar] [CrossRef] [PubMed]
- Young, J.L.; Libby, P.; Schönbeck, U. Cytokines in the Pathogenesis of Atherosclerosis. Thromb. Haemost. 2002, 88, 554–567. [Google Scholar] [CrossRef]
- Wang, X.; Jin, A.; An, M.; Ding, Y.; Tuo, Y.; Qiu, Y. Etomidate Deteriorates the Toxicity of Advanced Glycation End Products to Human Endothelial Eahy926 Cells. J. Toxicol. Sci. 2014, 39, 887–896. [Google Scholar] [CrossRef][Green Version]
- Konstantinov, I.E.; Mejevoi, N.; Anichkov, N.M.; Nikolai, N. Anichkov and His Theory of Atherosclerosis. Texas Heart Inst. J. 2006, 33, 417–423. [Google Scholar][Green Version]
- Tall, A.R.; Yvan-Charvet, L. Cholesterol, Inflammation and Innate Immunity. Nat. Rev. Immunol. 2015, 15, 104–116. [Google Scholar] [CrossRef]
- Rajamäki, K.; Lappalainen, J.; Oörni, K.; Välimäki, E.; Matikainen, S.; Kovanen, P.T.; Eklund, K.K. Cholesterol Crystals Activate the NLRP3 Inflammasome in Human Macrophages: A Novel Link between Cholesterol Metabolism and Inflammation. PLoS ONE 2010, 5, e11765. [Google Scholar] [CrossRef]
- Xiao, Q.; Hou, R.; Xie, L.; Niu, M.; Pan, X.; Zhu, X. Macrophage Metabolic Reprogramming and Atherosclerotic Plaque Microenvironment: Fostering Each Other? Clin. Transl. Med. 2023, 13, e1257. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef] [PubMed]
- Everett, B.M.; MacFadyen, J.G.; Thuren, T.; Libby, P.; Glynn, R.J.; Ridker, P.M. Inhibition of Interleukin-1β and Reduction in Atherothrombotic Cardiovascular Events in the CANTOS Trial. J. Am. Coll. Cardiol. 2020, 76, 1660–1670. [Google Scholar] [CrossRef]
- Tardif, J.-C.; Kouz, S.; Waters, D.D.; Bertrand, O.F.; Diaz, R.; Maggioni, A.P.; Pinto, F.J.; Ibrahim, R.; Gamra, H.; Kiwan, G.S.; et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. N. Engl. J. Med. 2019, 381, 2497–2505. [Google Scholar] [CrossRef]
- Ridker, P.M.; Bhatt, D.L.; Pradhan, A.D.; Glynn, R.J.; MacFadyen, J.G.; Nissen, S.E. Inflammation and Cholesterol as Predictors of Cardiovascular Events among Patients Receiving Statin Therapy: A Collaborative Analysis of Three Randomised Trials. Lancet 2023, 401, 1293–1301. [Google Scholar] [CrossRef]
- Altaf, A.; Qu, P.; Zhao, Y.; Wang, H.; Lou, D.; Niu, N. NLRP3 Inflammasome in Peripheral Blood Monocytes of Acute Coronary Syndrome Patients and Its Relationship with Statins. Coron. Artery Dis. 2015, 26, 409–421. [Google Scholar] [CrossRef]
- Preiss, D.; Tobert, J.A.; Hovingh, G.K.; Reith, C. Lipid-Modifying Agents, From Statins to PCSK9 Inhibitors: JACC Focus Seminar. J. Am. Coll. Cardiol. 2020, 75, 1945–1955. [Google Scholar] [CrossRef]
- Garwood, C.L.; Cabral, K.P.; Brown, R.; Dixon, D.L. Current and Emerging PCSK9-Directed Therapies to Reduce LDL-C and ASCVD Risk: A State-of-the-Art Review. Pharmacotherapy 2025, 45, 54–65. [Google Scholar] [CrossRef]
- Krähenbühl, S.; Pavik-Mezzour, I.; von Eckardstein, A. Unmet Needs in LDL-C Lowering: When Statins Won’t Do! Drugs 2016, 76, 1175–1190. [Google Scholar] [CrossRef]
- Khan, S.; Huda, B.; Bhurka, F.; Patnaik, R.; Banerjee, Y. Molecular and Immunomodulatory Mechanisms of Statins in Inflammation and Cancer Therapeutics with Emphasis on the NF-ΚB, NLRP3 Inflammasome, and Cytokine Regulatory Axes. Int. J. Mol. Sci. 2025, 26, 8429. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; Ye, B.; Lin, L.; Cai, X.; Huang, W.; Huang, Z. Atorvastatin Suppresses NLRP3 Inflammasome Activation via TLR4/MyD88/NF-ΚB Signaling in PMA-Stimulated THP-1 Monocytes. Biomed. Pharmacother. 2016, 82, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Boland, A.J.; Gangadharan, N.; Kavanagh, P.; Hemeryck, L.; Kieran, J.; Barry, M.; Walsh, P.T.; Lucitt, M. Simvastatin Suppresses Interleukin Iβ Release in Human Peripheral Blood Mononuclear Cells Stimulated With Cholesterol Crystals. J. Cardiovasc. Pharmacol. Ther. 2018, 23, 509–517. [Google Scholar] [CrossRef]
- Koushki, K.; Shahbaz, S.K.; Mashayekhi, K.; Sadeghi, M.; Zayeri, Z.D.; Taba, M.Y.; Banach, M.; Al-Rasadi, K.; Johnston, T.P.; Sahebkar, A. Anti-Inflammatory Action of Statins in Cardiovascular Disease: The Role of Inflammasome and Toll-Like Receptor Pathways. Clin. Rev. Allergy Immunol. 2021, 60, 175–199. [Google Scholar] [CrossRef]
- Cui, H.; Soga, K.; Tamehiro, N.; Adachi, R.; Hachisuka, A.; Hirose, A.; Kondo, K.; Nishimaki-Mogami, T. Statins Repress Needle-like Carbon Nanotube- or Cholesterol Crystal-Stimulated IL-1β Production by Inhibiting the Uptake of Crystals by Macrophages. Biochem. Pharmacol. 2021, 188, 114580. [Google Scholar] [CrossRef]
- Pan, Y.; Fan, F.; Jiang, J.; Zhang, Y. Clinical outcomes of anti-inflammatory therapies inhibiting the NLRP3/IL-1β/IL-6/CRP pathway in coronary artery disease patients: A systemic review and meta-analysis of 37,056 individuals from 32 randomized trials. Inflamm. Res. 2025, 74, 99. [Google Scholar] [CrossRef]
- Ridker, P.M.; Danielson, E.; Fonseca, F.A.; Genest, J.; Gotto, A.M., Jr.; Kastelein, J.J.; Koenig, W.; Libby, P.; Lorenzatti, A.J.; Macfadyen, J.G.; et al. JUPITER Trial Study Group. Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin: A prospective study of the JUPITER trial. Lancet 2009, 373, 1175–1182. [Google Scholar] [CrossRef] [PubMed]
- Hoshi, R.A.; Plavša, B.; Liu, Y.; Trbojević-Akmačić, I.; Glynn, R.J.; Ridker, P.M.; Cummings, R.D.; Gudelj, I.; Lauc, G.; Demler, O.V.; et al. N-Glycosylation Profiles of Immunoglobulin G and Future Cardiovascular Events. Circ. Res. 2024, 134, e3–e14. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, A.C.; Leiter, L.A.; Stroes, E.S.G.; Baum, S.J.; Hanselman, J.C.; Bloedon, L.T.; Lalwani, N.D.; Patel, P.M.; Zhao, X.; Duell, P.B. Effect of Bempedoic Acid vs Placebo Added to Maximally Tolerated Statins on Low-Density Lipoprotein Cholesterol in Patients at High Risk for Cardiovascular Disease: The CLEAR Wisdom Randomized Clinical Trial. JAMA 2019, 322, 1780–1788. [Google Scholar] [CrossRef]
- Ray, K.K.; Bays, H.E.; Catapano, A.L.; Lalwani, N.D.; Bloedon, L.T.; Sterling, L.R.; Robinson, P.L.; Ballantyne, C.M. Clear Harmony Trial Safety and Efficacy of Bempedoic Acid to Reduce LDL Cholesterol. N. Engl. J. Med. 2019, 380, 1022–1032. [Google Scholar] [CrossRef] [PubMed]
- Laufs, U.; Banach, M.; Mancini, G.B.J.; Gaudet, D.; Bloedon, L.T.; Sterling, L.R.; Kelly, S.; Stroes, E.S.G. Efficacy and Safety of Bempedoic Acid in Patients With Hypercholesterolemia and Statin Intolerance. J. Am. Heart Assoc. 2019, 8, e011662. [Google Scholar] [CrossRef]
- Ballantyne, C.M.; Banach, M.; Mancini, G.B.J.; Lepor, N.E.; Hanselman, J.C.; Zhao, X.; Leiter, L.A. Efficacy and Safety of Bempedoic Acid Added to Ezetimibe in Statin-Intolerant Patients with Hypercholesterolemia: A Randomized, Placebo-Controlled Study. Atherosclerosis 2018, 277, 195–203. [Google Scholar] [CrossRef]
- Rehues, P.; Girona, J.; Guardiola, M.; Plana, N.; Scicali, R.; Piro, S.; Muñiz-Grijalvo, O.; Díaz-Díaz, J.L.; Recasens, L.; Pinyol, M.; et al. PCSK9 Inhibitors Have Apolipoprotein C-III-Related Anti-Inflammatory Activity, Assessed by 1H-NMR Glycoprotein Profile in Subjects at High or Very High Cardiovascular Risk. Int. J. Mol. Sci. 2023, 24, 2319. [Google Scholar] [CrossRef]
- Cannon, C.P.; Blazing, M.A.; Giugliano, R.P.; McCagg, A.; White, J.A.; Theroux, P.; Darius, H.; Lewis, B.S.; Ophuis, T.O.; Jukema, J.W.; et al. Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. N. Engl. J. Med. 2015, 372, 2387–2397. [Google Scholar] [CrossRef]
- Sager, P.T.; Melani, L.; Lipka, L.; Strony, J.; Yang, B.; Suresh, R.; Veltri, E. Ezetimibe Study Group Effect of Coadministration of Ezetimibe and Simvastatin on High-Sensitivity C-Reactive Protein. Am. J. Cardiol. 2003, 92, 1414–1418. [Google Scholar] [CrossRef]
- Ren, Y.; Zhu, H.; Fan, Z.; Gao, Y.; Tian, N. Comparison of the Effect of Rosuvastatin versus Rosuvastatin/Ezetimibe on Markers of Inflammation in Patients with Acute Myocardial Infarction. Exp. Ther. Med. 2017, 14, 4942–4950. [Google Scholar] [CrossRef]
- Nabi, R.; Alvi, S.S.; Shah, A.; Chaturvedi, C.P.; Faisal, M.; Alatar, A.A.; Ahmad, S.; Khan, M.S. Ezetimibe Attenuates Experimental Diabetes and Renal Pathologies via Targeting the Advanced Glycation, Oxidative Stress and AGE-RAGE Signalling in Rats. Arch. Physiol. Biochem. 2023, 129, 831–846. [Google Scholar] [CrossRef]
- Saito, I.; Azuma, K.; Kakikawa, T.; Oshima, N.; Hanson, M.E.; Tershakovec, A.M. A Randomized, Double-Blind, Placebo-Controlled Study of the Effect of Ezetimibe on Glucose Metabolism in Subjects with Type 2 Diabetes Mellitus and Hypercholesterolemia. Lipids Health Dis. 2015, 14, 40. [Google Scholar] [CrossRef] [PubMed]
- Tsoupras, A.; Lordan, R.; Zabetakis, I. Inflammation, Not Cholesterol, Is a Cause of Chronic Disease. Nutrients 2018, 10, 604. [Google Scholar] [CrossRef] [PubMed]
- Hernando-Redondo, J.; Hernáez, Á.; Sanllorente, A.; Pintó, X.; Estruch, R.; Salas-Salvadó, J.; Corella, D.; Arós, F.; Martínez-González, M.Á.; Subirana, I.; et al. Mediterranean Diet Modulates Gene Expression of Cholesterol Efflux Receptors in High-Risk Cardiovascular Patients. Mol. Nutr. Food Res. 2025, 69, e70050. [Google Scholar] [CrossRef]
- Hotamisligil, G.S. Inflammation and Metabolic Disorders. Nature 2006, 444, 860–867. [Google Scholar] [CrossRef]
- Navarese, E.P.; Podhajski, P.; Gurbel, P.A.; Grzelakowska, K.; Ruscio, E.; Tantry, U.; Magielski, P.; Kubica, A.; Niezgoda, P.; Adamski, P.; et al. PCSK9 Inhibition During the Inflammatory Stage of SARS-CoV-2 Infection. J. Am. Coll. Cardiol. 2023, 81, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Masana, L.; Correig, E.; Rodríguez-Borjabad, C.; Anoro, E.; Arroyo, J.A.; Jericó, C.; Pedragosa, A.; la Miret, M.; Näf, S.; Pardo, A.; et al. Effect of Statin Therapy on SARS-CoV-2 Infection-Related Mortality in Hospitalized Patients. Eur. Heart J. Cardiovasc. Pharmacother. 2022, 8, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Traeuble, K.; Munz, M.; Pauli, J.; Sachs, N.; Vafadarnejad, E.; Carrillo-Roa, T.; Maegdefessel, L.; Kastner, P.; Heinig, M. Integrated single-cell atlas of human atherosclerotic plaques. Nat. Commun. 2025, 16, 8255. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Feng, Y.; Liu, X.; Sun, H.; Guo, Z.; Shao, J.; Li, K.; Chen, J.; Shu, K.; Kong, D.; et al. Molecular landscape of atherosclerotic plaque progression: Insights from proteomics, single-cell transcriptomics and genomics. BMC Med. 2025, 23, 254. [Google Scholar] [CrossRef] [PubMed]


| Study | Biomarker(s) | Atherosclerosis Outcome | Independence from LDL | Reference |
|---|---|---|---|---|
| Quantification of glycoproteins by 1H-NMR in T1D | GlycA, GlycB, GlycF (H/W ratios) | Carotid plaque presence and number | Yes | [10] |
| IgG glycosylation profile and subclinical atherosclerosis | IgG glycosylation traits, GlycA | Carotid and femoral plaques | Yes | [11] |
| GlycA and PAD/Carotid Plaque (MESA) | GlycA (1H-NMR) | Carotid plaques, ABI | No/attenuated after LDL adjustment | [13] |
| Glycated ApoB as a surrogate marker | Serum glycated ApoB | Carotid intima-media thickness, plaque presence | No/lipid-mediated | [12] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Julve, J.; Rodriguez-Calvo, R.; Perret, B.; Martinez, L.O.; Mauricio, D. Targeting Atherosclerosis: Cholesterol-Lowering Therapies with a New Immunometabolic Dress for an Old Disease. J. Clin. Med. 2025, 14, 8777. https://doi.org/10.3390/jcm14248777
Julve J, Rodriguez-Calvo R, Perret B, Martinez LO, Mauricio D. Targeting Atherosclerosis: Cholesterol-Lowering Therapies with a New Immunometabolic Dress for an Old Disease. Journal of Clinical Medicine. 2025; 14(24):8777. https://doi.org/10.3390/jcm14248777
Chicago/Turabian StyleJulve, Josep, Ricardo Rodriguez-Calvo, Bertrand Perret, Laurent O. Martinez, and Didac Mauricio. 2025. "Targeting Atherosclerosis: Cholesterol-Lowering Therapies with a New Immunometabolic Dress for an Old Disease" Journal of Clinical Medicine 14, no. 24: 8777. https://doi.org/10.3390/jcm14248777
APA StyleJulve, J., Rodriguez-Calvo, R., Perret, B., Martinez, L. O., & Mauricio, D. (2025). Targeting Atherosclerosis: Cholesterol-Lowering Therapies with a New Immunometabolic Dress for an Old Disease. Journal of Clinical Medicine, 14(24), 8777. https://doi.org/10.3390/jcm14248777

