Drug-Coated Balloons and Bioresorbable Scaffolds in Spontaneous Coronary Artery Dissections
Abstract
1. Introduction
2. Pathophysiological Mechanisms
3. Angiographic Characteristics and Classification
4. Current Interventional Management: Indications and Challenges
5. Drug Coated Balloons
5.1. Rationale for Use in SCAD
5.2. Evolution and Current Technologies
6. Bioresorbable Scaffolds
6.1. Evolution and Current Technologies
6.2. Rationale for Use in SCAD
6.3. Available Evidence
6.4. Procedural Considerations and Imaging Guidance
7. Future Research Directions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Bcharah, H.; Bcharah, G.; Nabi, H.A.; Dreher, L.; Ibrahim, R.; Abdelnabi, M.; Pham, H.N.; Kanaan, C.; Kumar, S.; Baudhuin, L.M.; et al. Extracoronary Arterial Pathologies in Patients With Spontaneous Coronary Artery Dissection. Am. J. Cardiol. 2025, 258, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Capodanno, D. Very Late Outcomes of Drug-Eluting Stents: The “catch-down” Phenomenon. Eur. Heart J. 2016, 37, 3396–3398. [Google Scholar] [CrossRef] [PubMed]
- Narducci, M.L.; Flore, F.; Simonini, C.; Carmina, V.; Montone, R.A.; Pinnacchio, G.; Bencardino, G.; Perna, F.; Animati, F.M.; Tremamunno, S.; et al. High Incidence of Adverse Events in Spontaneous Coronary Artery Dissection Patients during Mid-Term Follow-up: A Persistent Challenge Ahead. Minerva Cardiol. Angiol. 2025; ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Waterbury, T.M.; Tweet, M.S.; Hayes, S.N.; Eleid, M.F.; Bell, M.R.; Lerman, A.; Singh, M.; Best, P.J.M.; Lewis, B.R.; Rihal, C.S.; et al. Early Natural History of Spontaneous Coronary Artery Dissection. Circ. Cardiovasc. Interv. 2018, 11, e006772. [Google Scholar] [CrossRef]
- Hayes, S.N.; Tweet, M.S.; Adlam, D.; Kim, E.S.H.; Gulati, R.; Price, J.E.; Rose, C.H. Spontaneous Coronary Artery Dissection: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 76, 961–984. [Google Scholar] [CrossRef]
- Crousillat, D.; Sarma, A.; Wood, M.; Naderi, S.; Leon, K.; Gibson, C.M.; Aday, A.; Grodzinsky, A.; Izard, K.; Kovacic, J.C.; et al. Spontaneous Coronary Artery Dissection: Current Knowledge, Research Gaps, and Innovative Research Initiatives: JACC Advances Expert Panel. JACC Adv. 2024, 3, 101385. [Google Scholar] [CrossRef]
- Jackson, R.; Al-Hussaini, A.; Joseph, S.; van Soest, G.; Wood, A.; Macaya, F.; Gonzalo, N.; Cade, J.; Caixeta, A.; Hlinomaz, O.; et al. Spontaneous Coronary Artery Dissection: Pathophysiological Insights From Optical Coherence Tomography. JACC Cardiovasc. Imaging 2019, 12, 2475–2488. [Google Scholar] [CrossRef]
- Offen, S.; Yang, C.; Saw, J. Spontaneous Coronary Artery Dissection (SCAD): A Contemporary Review. Clin. Cardiol. 2024, 47, e24236. [Google Scholar] [CrossRef]
- Saw, J.; Starovoytov, A.; Humphries, K.; Sheth, T.; So, D.; Minhas, K.; Brass, N.; Lavoie, A.; Bishop, H.; Lavi, S.; et al. Canadian Spontaneous Coronary Artery Dissection Cohort Study: In-Hospital and 30-Day Outcomes. Eur. Heart J. 2019, 40, 1188–1197. [Google Scholar] [CrossRef]
- Adlam, D.; Alfonso, F.; Maas, A.; Vrints, C.; Writing Committee. European Society of Cardiology, Acute Cardiovascular Care Association, SCAD Study Group: A Position Paper on Spontaneous Coronary Artery Dissection. Eur. Heart J. 2018, 39, 3353–3368. [Google Scholar] [CrossRef]
- Brunton, N.; Best, P.J.M.; Skelding, K.A.; Cendrowski, E.E. Spontaneous Coronary Artery Dissection (SCAD) from an Interventionalist Perspective. Curr. Cardiol. Rep. 2024, 26, 91–96. [Google Scholar] [CrossRef]
- Saw, J. Coronary Angiogram Classification of Spontaneous Coronary Artery Dissection. Catheter. Cardiovasc. Interv. 2014, 84, 1115–1122. [Google Scholar] [CrossRef]
- Eleid, M.F.; Guddeti, R.R.; Tweet, M.S.; Lerman, A.; Singh, M.; Best, P.J.; Vrtiska, T.J.; Prasad, M.; Rihal, C.S.; Hayes, S.N.; et al. Coronary Artery Tortuosity in Spontaneous Coronary Artery Dissection: Angiographic Characteristics and Clinical Implications. Circ. Cardiovasc. Interv. 2014, 7, 656–662. [Google Scholar] [CrossRef]
- Mori, R.; Macaya, F.; Giacobbe, F.; Salinas, P.; Pavani, M.; Boi, A.; Bettari, L.; Rolfo, C.; Porto, I.; Gonzalo, N.; et al. Clinical Outcomes by Angiographic Type of Spontaneous Coronary Artery Dissection. EuroIntervention 2021, 17, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Feldbaum, E.; Thompson, E.W.; Cook, T.S.; Sanghavi, M.; Wilensky, R.L.; Fiorilli, P.N.; Lewey, J. Management of Spontaneous Coronary Artery Dissection: Trends over Time. Vasc. Med. 2023, 28, 131–138. [Google Scholar] [CrossRef]
- Bollati, M.; Ercolano, V.; Mazzarotto, P. Spontaneous Coronary Dissection Review: A Complex Picture. Rev. Cardiovasc. Med. 2024, 25, 448. [Google Scholar] [CrossRef] [PubMed]
- Morena, A.; Giacobbe, F.; De Filippo, O.; Angelini, F.; Bruno, F.; Siliano, S.; Giannino, G.; Dusi, V.; Bianco, M.; Biolé, C.; et al. Advances in the Management of Spontaneous Coronary Artery Dissection (SCAD): A Comprehensive Review. Rev. Cardiovasc. Med. 2024, 25, 345. [Google Scholar] [CrossRef]
- Saw, J.; Starovoytov, A.; Aymong, E.; Inohara, T.; Alfadhel, M.; McAlister, C.; Samuel, R.; Grewal, T.; Parolis, J.A.; Sheth, T.; et al. Canadian Spontaneous Coronary Artery Dissection Cohort Study: 3-Year Outcomes. J. Am. Coll. Cardiol. 2022, 80, 1585–1597. [Google Scholar] [CrossRef] [PubMed]
- Tweet, M.S.; Eleid, M.F.; Best, P.J.M.; Lennon, R.J.; Lerman, A.; Rihal, C.S.; Holmes, D.R.; Hayes, S.N.; Gulati, R. Spontaneous Coronary Artery Dissection: Revascularization versus Conservative Therapy. Circ. Cardiovasc. Interv. 2014, 7, 777–786. [Google Scholar] [CrossRef]
- Prakash, R.; Starovoytov, A.; Heydari, M.; Mancini, G.B.J.; Saw, J. Catheter-Induced Iatrogenic Coronary Artery Dissection in Patients With Spontaneous Coronary Artery Dissection. JACC Cardiovasc. Interv. 2016, 9, 1851–1853. [Google Scholar] [CrossRef]
- Bonnet, M.; Toleva, O.; Ybarra, L.F.; Rinfret, S. Successful Treatment of Spontaneous Coronary Artery Dissection With Subintimal Tracking and Re-Entry Technique. JACC Case Rep. 2019, 1, 553–559. [Google Scholar] [CrossRef]
- Patel, A.H.; Abdelnour, M.W.; Frangieh, A.H. Drug-Coated Balloons for Coronary Interventions: A Focused Review. Methodist. Debakey Cardiovasc. J. 2025, 21, 37–53. [Google Scholar] [CrossRef] [PubMed]
- Chiastra, C.; Mazzi, V.; Lodi Rizzini, M.; Calò, K.; Corti, A.; Acquasanta, A.; De Nisco, G.; Belliggiano, D.; Cerrato, E.; Gallo, D.; et al. Coronary Artery Stenting Affects Wall Shear Stress Topological Skeleton. J. Biomech. Eng. 2022, 144, 061002. [Google Scholar] [CrossRef] [PubMed]
- Traub, O.; Berk, B.C. Laminar Shear Stress. Arterioscler. Thromb. Vasc. Biol. 1998, 18, 677–685. [Google Scholar] [CrossRef]
- Karim Galougahi, K.; Ben-Yehuda, O.; Maehara, A.; Mintz, G.S.; Stone, G.W.; Ali, Z.A. “The Scaffolding Must Be Removed Once the House Is Built”-Spontaneous Coronary Artery Dissection and the Potential of Bioresorbable Scaffolds. J. Thorac. Dis. 2016, 8, E1398–E1403. [Google Scholar] [CrossRef]
- Saw, J.; Mancini, G.B.J.; Humphries, K.H. Contemporary Review on Spontaneous Coronary Artery Dissection. J. Am. Coll. Cardiol. 2016, 68, 297–312. [Google Scholar] [CrossRef]
- O’Callaghan, D.; Rai, H.; Giacoppo, D.; Coughlan, J.J.; Durand, R.; Paradies, V.; Colleran, R.; Blake, G.J.; Alfonso, F.; Byrne, R.A. Drug Coated Balloons Versus Drug-Eluting Stents in Patients With De Novo Coronary Artery Disease. Catheter. Cardiovasc. Interv. 2025, 106, 1843–1853. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Liu, W.; Zhao, Y.; Shi, D.; Liu, R.; Wang, J.; Yu, Y.; Jia, S.; Sun, Y.; Zhou, Y. Revascularization Treatment for Spontaneous Coronary Artery Dissection: A Reconsideration of Drug-Coated Balloons and Bioresorbable Vascular Scaffold. Int. J. Cardiol. 2016, 209, 49–50. [Google Scholar] [CrossRef]
- Buccheri, D.; Piraino, D.; Cortese, B. Spontaneous Coronary Artery Dissection: A Hint into Its Diagnosis and Therapy. Int. J. Cardiol. 2016, 215, 545. [Google Scholar] [CrossRef]
- Cortese, B.; Silva Orrego, P.; Agostoni, P.; Buccheri, D.; Piraino, D.; Andolina, G.; Seregni, R.G. Effect of Drug-Coated Balloons in Native Coronary Artery Disease Left With a Dissection. JACC Cardiovasc. Interv. 2015, 8, 2003–2009. [Google Scholar] [CrossRef]
- Cowley, M.J.; Dorros, G.; Kelsey, S.F.; Van Raden, M.; Detre, K.M. Acute Coronary Events Associated with Percutaneous Transluminal Coronary Angioplasty. Am. J. Cardiol. 1984, 53, 12C–16C. [Google Scholar] [CrossRef] [PubMed]
- Kleber, F.X.; Schulz, A.; Waliszewski, M.; Hauschild, T.; Böhm, M.; Dietz, U.; Cremers, B.; Scheller, B.; Clever, Y.P. Local Paclitaxel Induces Late Lumen Enlargement in Coronary Arteries after Balloon Angioplasty. Clin. Res. Cardiol. 2015, 104, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Olsen, P.R.; Andersen, H.H.; Hebjørn, M.; Pedersen, V.M.; Hansen, L.K. The Prophylaxis of Metronidazole in Colorectal Surgery. Dan. Med. Bull. 1983, 30, 345–348. [Google Scholar]
- Pasquier, E.; Carré, M.; Pourroy, B.; Camoin, L.; Rebaï, O.; Briand, C.; Braguer, D. Antiangiogenic Activity of Paclitaxel Is Associated with Its Cytostatic Effect, Mediated by the Initiation but Not Completion of a Mitochondrial Apoptotic Signaling Pathway. Mol. Cancer Ther. 2004, 3, 1301–1310. [Google Scholar] [CrossRef]
- Cortese, B.; di Palma, G.; Latini, R.A.; Elwany, M.; Orrego, P.S.; Seregni, R.G. Immediate and Short-Term Performance of a Novel Sirolimus-Coated Balloon during Complex Percutaneous Coronary Interventions. The FAtebenefratelli SIrolimus COated-Balloon (FASICO) Registry. Cardiovasc. Revascularization Med. 2017, 18, 487–491. [Google Scholar] [CrossRef]
- Traynor, B.P.; Fitzgerald, S.; Alfonso, F.; O’Kane, P.; Sabaté, M.; Tölg, R.; Trevelyan, J.; Hahn, J.-Y.; Mylotte, D.; Wöhrle, J.; et al. Design and Rationale of a Prospective, Randomized, Non-Inferiority Trial to Determine the Safety and Efficacy of the Biolimus A9TM Drug Coated Balloon for the Treatment of in-Stent Restenosis: First-in-Man Trial (REFORM). Cardiovasc. Revasc. Med. 2023, 56, 75–81. [Google Scholar] [CrossRef]
- Saboe, A.; Upadhya, C.; Finn, A.; Basavarajaiah, S. Coronary Artery Aneurysm Post Drug-Coated Balloon Angioplasty. JACC Case Rep. 2025, 30, 103891. [Google Scholar] [CrossRef]
- Serruys, P.W.; Ormiston, J.A.; Onuma, Y.; Regar, E.; Gonzalo, N.; Garcia-Garcia, H.M.; Nieman, K.; Bruining, N.; Dorange, C.; Miquel-Hébert, K.; et al. A Bioabsorbable Everolimus-Eluting Coronary Stent System (ABSORB): 2-Year Outcomes and Results from Multiple Imaging Methods. Lancet 2009, 373, 897–910. [Google Scholar] [CrossRef]
- Haude, M.; Ince, H.; Abizaid, A.; Toelg, R.; Lemos, P.A.; von Birgelen, C.; Christiansen, E.H.; Wijns, W.; Neumann, F.-J.; Kaiser, C.; et al. Sustained Safety and Performance of the Second-Generation Drug-Eluting Absorbable Metal Scaffold in Patients with de Novo Coronary Lesions: 12-Month Clinical Results and Angiographic Findings of the BIOSOLVE-II First-in-Man Trial. Eur. Heart J. 2016, 37, 2701–2709. [Google Scholar] [CrossRef]
- Ozaki, Y.; Garcia-Garcia, H.M.; Shlofmitz, E.; Hideo-Kajita, A.; Waksman, R. Second-Generation Drug-Eluting Resorbable Magnesium Scaffold: Review of the Clinical Evidence. Cardiovasc. Revascularization Med. 2020, 21, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Cockburn, J.; Yan, W.; Bhindi, R.; Hansen, P. Spontaneous Coronary Artery Dissection Treated with Bioresorbable Vascular Scaffolds Guided by Optical Coherence Tomography. Can. J. Cardiol. 2014, 30, 1461.e1–1461.e3. [Google Scholar] [CrossRef]
- Panoulas, V.F.; Ielasi, A. Bioresorbable Scaffolds and Drug-Eluting Balloons for the Management of Spontaneous Coronary Artery Dissections. J. Thorac. Dis. 2016, 8, E1328–E1330. [Google Scholar] [CrossRef]
- Camacho Freire, S.J.; Gómez Menchero, A.E.; Roa Garrido, J.; León Jiménez, J.; Cardenal Piris, R.; Díaz Fernández, J.F. Bioresorbable Scaffolds in Spontaneous Coronary Artery Dissection: Long-Term Follow-Up in 4 Patients. Tex. Heart Inst. J. 2017, 44, 405–410. [Google Scholar] [CrossRef]
- Macaya, F.; Salinas, P.; Gonzalo, N.; Camacho-Freire, S.J.; Jackson, R.; Massot, M.; Ortas-Nadal, M.R.; Sánchez-Recalde, Á.; Díaz-Fernández, J.F.; Moreu, J.; et al. Long-Term Follow-up of Spontaneous Coronary Artery Dissection Treated with Bioresorbable Scaffolds. EuroIntervention 2019, 14, 1403–1405. [Google Scholar] [CrossRef] [PubMed]
- Ielasi, A.; Cortese, B.; Tarantini, G.; Loi, B.; Mazzarotto, P.; Gabrielli, G.; Tespili, M.; Rovera, C.; Corrado, D.; Steffenino, G. Sealing Spontaneous Coronary Artery Dissection with Bioresorbable Vascular Scaffold Implantation: Data from the Prospective “Registro Absorb Italiano” (RAI Registry). Int. J. Cardiol. 2016, 212, 44–46. [Google Scholar] [CrossRef]
- Watt, J.; Egred, M.; Khurana, A.; Bagnall, A.J.; Zaman, A.G. 1-Year Follow-Up Optical Frequency Domain Imaging of Multiple Bioresorbable Vascular Scaffolds for the Treatment of Spontaneous Coronary Artery Dissection. JACC Cardiovasc. Interv. 2016, 9, 389–391. [Google Scholar] [CrossRef]
- Gonzalo, N.; Macaya, F.; Gómez de Diego, J.J.; Escaned, J. Long-Term Outcome of a Spontaneous Coronary Artery Dissection Treated with a Bioresorbable Scaffold. EuroIntervention 2017, 13, 994–995. [Google Scholar] [CrossRef] [PubMed]
- Sengottuvelu, G.; Rajendran, R.; Dattagupta, A. Optical Coherence Tomographic Image of Dynamic Left Main Coronary Artery Compression Caused by Intramural Haematoma Due to Spontaneous Coronary Artery Dissection-Degloved Artery Managed with Bioresorbable Vascular Scaffold. EuroIntervention 2015, 11, 659. [Google Scholar] [CrossRef]
- Cortese, B.; Buccheri, D. Acutely Malapposed Bioresorbable Vascular Scaffold during Primary Angioplasty for Spontaneous Coronary Artery Dissection: Is a No-Metal Strategy Better? Int. J. Cardiol. 2016, 224, 335–336. [Google Scholar] [CrossRef]
- Berisha, L.; Camaj, A.; Sharma, S.K. Current and Future Role of Drug-Coated Balloons in the Treatment of Coronary Artery Disease. Future Cardiol. 2025, ahead of print. 1–5. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Fu, G.; Wang, X.; Song, L.; Tao, L.; Li, L.; Hou, Y.; Su, X.; Fang, Q.; Chen, L.; et al. 5-Year Outcomes With a Novel Coronary Sirolimus-Eluting Bioresorbable Scaffold: The NeoVas Randomized Trial. JACC Cardiovasc. Interv. 2025, 18, 2107–2115. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Jiao, Y.; Wang, L.; Zhang, M.; Yin, C. Research Status and Trends of Drug-Coated Balloons in Coronary Artery Disease: A Bibliometric Analysis. Front. Med. 2025, 12, 1591906. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.Y.; Muhammad, N.; Saleh, M.S.; Mohd Noor, S.N.F.; Muhammad, N.A.; Muduli, K.; Bupesh Raja, V.K.; Chong, K.V. The Potential of Stent Cell Geometry to Affect Endothelialisation Performance: A Review of Existing Research and Future Perspective. Biomed. Mater. 2025, 20, 062001. [Google Scholar] [CrossRef]
- Thordsen, S.; Briller, J.; Cruz, M.O. Cardiac Considerations in Pregnancy: A Spotlight on Peripartum Cardiomyopathy and Pregnancy-Associated Spontaneous Coronary Dissection. Obstet. Gynecol. Clin. N. Am. 2025, 52, 445–456. [Google Scholar] [CrossRef] [PubMed]
| Feature | DES | DCB | BRS |
|---|---|---|---|
| Implant status | Metallic scaffold | No implant | Temporary scaffold |
| Vasomotion restoration | Impaired | Preserved | Preserved |
| Acute flow restoration | Flow restoration | Restore flow Considered in “inside-out” mechanism | Long, flow-limiting dissections with defined entry/exit |
| Resistance to recoil | High | Limited | Moderate early wanes as scaffold resorbs |
| Iatrogenic risk | Higher overall complication and extension rates vs. routine PCI; common IMH propagation | Avoids permanent metal but still requires gentle wiring/imaging to prevent propagation | Deployment-sensitive; careful sizing/landing |
| Early/Late thrombosis and DAPT | Low with new-generation DES | Very low Shorter DAPT | Early hazard Shorter DAPT after healing |
| Suitability in tortuous vessels | Cage distorts geometry; Frequent tortuosity in SCAD | Conforms to natural curvature | Challenging delivery in acute phase |
| Suitability for long segment | Potential “full metal jacket” | Uncertain sealing | Overlap possible |
| Intravascular imaging | Confirm mechanism Sizing | Confirm mechanism and true tear | Central for sizing/landing/overlap |
| Future PCI or CABG | Crossing/landing limitations through stented segments | Fully preserved | Preserved after resorption |
| Current evidence in SCAD | Higher complication rates vs. routine PCI | Early series/experience suggest feasibility Limited Evidence | Good mid-term outcomes Case series/registries Limited Evidence |
| Future directions | - | Head-to-head limus vs. paclitaxel in SCAD Standardized lesion prep./IMH decompression protocols | Next-gen BRS evaluation (thinner struts, predictable resorption) OCT/IVUS-guided algorithms |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sagris, M.; Bantidos, M.G.; Stalikas, N.; Fyntanidou, B.; Kofos, C.; Tsioufis, K.; Karagiannidis, E.; Patsourakos, N. Drug-Coated Balloons and Bioresorbable Scaffolds in Spontaneous Coronary Artery Dissections. J. Clin. Med. 2025, 14, 8751. https://doi.org/10.3390/jcm14248751
Sagris M, Bantidos MG, Stalikas N, Fyntanidou B, Kofos C, Tsioufis K, Karagiannidis E, Patsourakos N. Drug-Coated Balloons and Bioresorbable Scaffolds in Spontaneous Coronary Artery Dissections. Journal of Clinical Medicine. 2025; 14(24):8751. https://doi.org/10.3390/jcm14248751
Chicago/Turabian StyleSagris, Marios, Marios G. Bantidos, Nikolaos Stalikas, Barbara Fyntanidou, Christos Kofos, Konstantinos Tsioufis, Efstratios Karagiannidis, and Nikolaos Patsourakos. 2025. "Drug-Coated Balloons and Bioresorbable Scaffolds in Spontaneous Coronary Artery Dissections" Journal of Clinical Medicine 14, no. 24: 8751. https://doi.org/10.3390/jcm14248751
APA StyleSagris, M., Bantidos, M. G., Stalikas, N., Fyntanidou, B., Kofos, C., Tsioufis, K., Karagiannidis, E., & Patsourakos, N. (2025). Drug-Coated Balloons and Bioresorbable Scaffolds in Spontaneous Coronary Artery Dissections. Journal of Clinical Medicine, 14(24), 8751. https://doi.org/10.3390/jcm14248751

