Data in Diabetic Foot Care: From Current State to a Management Framework for Implementation
Abstract
1. Introduction
2. Unlocking the Potential of Electronic Health Records (EHR)
2.1. Establishing a Common Ground for Health Data
- Terminologies (Systematized Nomenclature of Medicine—Clinical Terms (SNOMED CT) [12], Logical Observation Identifiers Names and Codes (LOINC) [13], Orphanet Rare Disease Ontology (ORPHA) [14], etc.) act as the “universal medical dictionary”. They give every medical concept—like “Charcot foot” or a “neuropathy test”—a unique code. This ensures that when different systems use the word “Charcot foot,” they are all referring to the exact same condition.
- OpenEHR [15] is like the “architect’s detailed blueprint”. It focuses on how to design the optimal, future-proof digital patient record itself. It allows clinicians to define precisely what information should be captured and stored in a way that computers can understand unambiguously.
- Fast Healthcare Interoperability Resources (FHIR) [16] (pronounced “fire”) is designed for the “secure delivery service”. Once the data is stored (using the blueprint), FHIR provides a modern, standard way to quickly and securely package and send that information between different systems, like from a hospital’s computer to a patient’s phone app.
- The Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) [17] is the “standardized research frame”. Its job is to help us learn from diverse types of health information. It takes data from all sorts of different systems and translates it into a common format, allowing researchers to run large-scale analyses to find better treatments and understand diseases. Additionally, the OHDSI community provides associated tools for preparing data and conducting research.
2.2. Technological Ability Is Not Enough
2.3. Bridging the Clinician-IT Designer Divide
3. Collaborative Care in the Digital Age
A Conceptual Case Study: Reimagining Diabetic Foot Care Through Digital Integration
4. Prediction Models and AI
5. Systemic Approach to Better Insights and Quality Improvement
5.1. Support for Local Insights and FAIR Quality Measures
5.2. Utilizing Real World Data
6. Limitations
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AI | Artificial Intelligence |
| CDM | Common Data Model |
| CPG | Clinical Practice Guidelines |
| EEHRxF | European Electronic Health Record Exchange Format |
| EHDS | European Health Data Space |
| EHR | Electronic Health Record |
| EUBIROD | European Best Information Through Regional Outcomes in Diabetes |
| FAIR | Findable, Accessible, Interoperable, and Reusable |
| FHIR | Fast Healthcare Interoperability Resources |
| HCP | Healthcare Professionals |
| ICHOM | International Consortium for Health Outcomes Measurement |
| IDF | International Diabetes Federation |
| IT | Information Technology |
| IWGDF | International Working Group on the Diabetic Foot |
| LLM | Large Language Model |
| LOINC | Logical Observation Identifiers, Names, and Codes |
| OECD | Organization for Economic Co-operation and Development |
| OHDSI | Observational Health Data Sciences and Informatics |
| OMOP | Observational Medical Outcomes Partnership |
| ORPHA | Orphanet Rare Disease Ontology |
| OpenEHR | Open Electronic Health Record |
| RWD | Real World Data |
| RWE | Real World Evidence |
| SNOMED CT | Systematized Nomenclature of Medicine—Clinical Terms |
| WHO | World Health Organization |
References
- Jossen, S. The World’s Most Valuable Resource Is No Longer Oil, but Data. The Economist. 6 May 2017. Available online: https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data (accessed on 25 August 2025).
- Edmonds, M.; Manu, C.; Vas, P. The current burden of diabetic foot disease. J. Clin. Orthop. Trauma 2021, 17, 88–93. [Google Scholar] [CrossRef] [PubMed]
- The Saint Vincent Declaration on Diabetes Care and Research in Europe. Available online: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1600-0420.1997.tb00440.x (accessed on 3 December 2025).
- Administrative Tasks Take Up More Time than Patient Care for Many PCPs|College of Medicine Peoria|University of Illinois College of Medicine. Available online: https://peoria.medicine.uic.edu/administrative-tasks-take-up-more-time-than-patient-care-for-many-pcps/ (accessed on 27 August 2025).
- Budd, J. Burnout Related to Electronic Health Record Use in Primary Care. J. Prim. Care Community Health 2023, 14, 21501319231166921. [Google Scholar] [CrossRef] [PubMed]
- Lohmann-Lafrenz, S.; Gismervik, S.Ø.; Ose, S.O.; Aasdahl, L.; Lauritzen, H.B.; Faxvaag, A.; Bardal, E.M.; Skarpsno, E.S. Usability of an electronic health record 6 months post go-live and its association with burnout, insomnia and turnover intention: A cross-sectional study in a hospital setting. BMJ Health Care Inform. 2025, 32, e101200. [Google Scholar] [CrossRef] [PubMed]
- Sæthre, E.; Ose, S.O.; Krokstad, S.; Gismervik, S.Ø. “Terrible Stuff We’ve been had”: Hospital staff reactions to a new electronic health record implications for employee well-being—A qualitative study. Int. J. Med. Inf. 2025, 204, 106039. [Google Scholar] [CrossRef]
- Standing Committee of European Doctors (CPME). Electronic Health Record Systems need to be Feasible, Functional and Findable. CPME.eu. 2024. Available online: https://www.cpme.eu/news/electronic-health-record-systems-need-to-be-feasible-functional-and-findable (accessed on 27 August 2025).
- Tsafnat, G.; Dunscombe, R.; Gabriel, D.; Grieve, G.; Reich, C. Converge or Collide? Making Sense of a Plethora of Open Data Standards in Health Care. J. Med. Internet Res. 2024, 26, e55779. [Google Scholar] [CrossRef] [PubMed]
- Pedrera-Jiménez, M.; García-Barrio, N.; Frid, S.; Moner, D.; Boscá-Tomás, D.; Lozano-Rubí, R.; Kalra, D.; Beale, T.; Muñoz-Carrero, A.; Serrano-Balazote, P. Can OpenEHR, ISO 13606, and HL7 FHIR Work Together? An Agnostic Approach for the Selection and Application of Electronic Health Record Standards to the Next-Generation Health Data Spaces. J. Med. Internet Res. 2023, 25, e48702. [Google Scholar] [CrossRef]
- Øvrelid, E. Exploring adaptive mirroring in healthcare IT architectures. Health Syst. 2023, 13, 109–120. [Google Scholar] [CrossRef]
- Vuokko, R.; Vakkuri, A.; Palojoki, S. Systematized Nomenclature of Medicine–Clinical Terminology (SNOMED CT) Clinical Use Cases in the Context of Electronic Health Record Systems: Systematic Literature Review. JMIR Med. Inform. 2023, 11, e43750. [Google Scholar] [CrossRef]
- McDonald, C.J.; Huff, S.M.; Suico, J.G.; Hill, G.; Leavelle, D.; Aller, R.; Forrey, A.; Mercer, K.; DeMoor, G.; Hook, J.; et al. LOINC, a Universal Standard for Identifying Laboratory Observations: A 5-Year Update. Clin. Chem. 2003, 49, 624–633. [Google Scholar] [CrossRef]
- Orphadata—Orphanet Datasets. Available online: https://www.orphadata.com/ (accessed on 30 August 2025).
- Kalra, D.; Beale, T.; Heard, S. The openEHR Foundation. Stud. Health Technol. Inform. 2005, 115, 153–173. [Google Scholar]
- Benson, T.; Grieve, G. Principles of Health Interoperability; Springer Nature: Durham, NC, USA, 2021; ISBN 9783030568825. [Google Scholar]
- Hripcsak, G.; Duke, J.D.; Shah, N.H.; Reich, C.G.; Huser, V.; Schuemie, M.J.; Suchard, M.A.; Park, R.W.; Wong, I.C.K.; Rijnbeek, P.R.; et al. Observational Health Data Sciences and Informatics (OHDSI): Opportunities for Observational Researchers. Stud. Health Technol. Inform. 2015, 216, 574–578. [Google Scholar]
- Informatics OHDS and The Book of OHDSI. Available online: https://ohdsi.github.io/TheBookOfOhdsi/ (accessed on 30 August 2025).
- Systems SG Ocean Health. Clinical Knowledge Manager. Available online: https://ckm.openehr.org/ckm/ (accessed on 30 August 2025).
- Developer Ecosystem—openehr.org. Available online: https://openehr.org/developer-ecosystem/ (accessed on 30 August 2025).
- Li, Y.; Wang, H.; Yerebakan, H.Z.; Shinagawa, Y.; Luo, Y. FHIR-GPT Enhances Health Interoperability with Large Language Models. NEJM AI 2024, 1, AIcs2300301. [Google Scholar] [CrossRef]
- Belcak, P.; Heinrich, G.; Diao, S.; Fu, Y.; Dong, X.; Muralidharan, S.; Lin, Y.C.; Molchanov, P. Small Language Models are the Future of Agentic AI. arXiv 2025, arXiv:2506.02153. [Google Scholar] [CrossRef]
- Brat, G.A.; Mandel, J.C.; McDermott, M.B. Do We Need Data Standards in the Era of Large Language Models? NEJM AI 2024, 1, AIe2400548. [Google Scholar] [CrossRef]
- Tang, U.H.; Tranberg, R.; Sundberg, L.; Scandurra, I. How do patients and healthcare professionals experience foot examinations in diabetes care?—A randomised controlled study of digital foot examinations versus traditional foot examinations. BMC Health Serv. Res. 2024, 24, 1387. [Google Scholar]
- Brunner, J.; Cannedy, S.; McCoy, M.; Hamilton, A.B.; Shelton, J. Software is Policy: Electronic Health Record Governance and the Implications of Clinical Standardization. J. Gen. Intern. Med. 2023, 38, 949–955. [Google Scholar] [CrossRef] [PubMed]
- European Health Data Space Regulation (EHDS)—European Commission. 2025. Available online: https://health.ec.europa.eu/ehealth-digital-health-and-care/european-health-data-space-regulation-ehds_en (accessed on 3 September 2025).
- Solvang, Ø.S.; Cassidy, S.; Granja, C.; Solvoll, T. Healthcare professionals’ cross-organizational access to electronic health records: A scoping review. Int. J. Med. Inform. 2024, 193, 105688. [Google Scholar] [CrossRef] [PubMed]
- Kissel, A.M.; Maddox, K.; Francis, J.K.; Diaz, M.I.; Sanghavi, R.; Rao, D.; Menzies, C.; Lehmann, C.U. Effects of the electronic health record on job satisfaction of academic pediatric faculty. Int. J. Med. Inform. 2022, 168, 104881. [Google Scholar] [CrossRef]
- Ball, S.L.; Rucci, J.M.; Molloy-Paolillo, B.K.; Cutrona, S.L.; Brunner, J.; Mohr, D.C.; Kim, B.; Moldestad, M.; Zepeda, E.D.; Orlander, J.D.; et al. “For the first time…I am seriously fighting burnout”: Clinician experiences with a challenging electronic health record transition. JAMIA Open 2024, 7, ooae067. [Google Scholar] [CrossRef]
- Goodchild, L. Clinician of the Future 2025. Elsevier. Available online: https://www.elsevier.com/insights/clinician-of-the-future/2025 (accessed on 29 August 2025).
- Bansler, J.P. Challenges in user-driven optimization of EHR: A case study of a large Epic implementation in Denmark. Int. J. Med. Inform. 2021, 148, 104394. [Google Scholar] [CrossRef]
- Hertzum, M.; Ellingsen, G.; Cajander, Å. Implementing Large-Scale Electronic Health Records: Experiences from implementations of Epic in Denmark Finland. Int. J. Med. Inform. 2022, 167, 104868. [Google Scholar] [CrossRef]
- Sand, A.; Hertzum, M.; Ellingsen, G.; Dahl, Y. Implementing EHR Suites: Lessons from a Norwegian Configuration Process. In Context Sensitive Health Informatics: AI for Social Good; IOS Press: Amsterdam, The Netherlands, 2025; pp. 34–38. Available online: https://ebooks.iospress.nl/doi/10.3233/SHTI250232 (accessed on 20 August 2025).
- Vial, G.; Motulsky, A.; Ringeval, M.; Raymond, L.; Paré, G. Tensions in large-scale electronic health record implementations: Insights from a meta-synthesis. J. Am. Med. Inform. Assoc. 2025, 32, 1241–1253. [Google Scholar] [CrossRef]
- Guse, R.; Warsinsky, S.; Thiebes, S.; Sunyaev, A. Employee-Driven Digital Innovation in Healthcare—A Scoping Review. 2025. Available online: https://hdl.handle.net/10125/109267 (accessed on 29 August 2025).
- Raymond, L.; Motulsky, A.; Vial, G.; Ringeval, M.; Paré, G. Navigating large-scale EHR implementations in public health systems: Lessons learned and recommendations from a rapid review. Health Inform. J. 2025, 31, 14604582251347120. [Google Scholar] [CrossRef]
- Molloy-Paolillo, B.; Mohr, D.; Levy, D.R.; Cutrona, S.L.; Anderson, E.; Rucci, J.; Helfrich, C.; Sayre, G.; Rinne, S.T. Assessing Electronic Health Record (EHR) Use during a Major EHR Transition: An Innovative Mixed Methods Approach. J. Gen. Intern. Med. 2023, 38, 999–1006. [Google Scholar] [CrossRef]
- CPME.eu. Implementing a User-Friendly and Intuitive Electronic Health Record Is the Only Way Forward. Available online: https://www.cpme.eu/news/implementing-a-user-friendly-and-intuitive-electronic-health-record-is-the-only-way-forward (accessed on 30 August 2025).
- Busse, T.S.; Jux, C.; Laser, J.; Rasche, P.; Vollmar, H.C.; Ehlers, J.P.; Kernebeck, S. Involving Health Care Professionals in the Development of Electronic Health Records: Scoping Review. JMIR Hum. Factors 2023, 10, e45598. [Google Scholar] [CrossRef]
- Frauenberger, C.; Good, J.; Fitzpatrick, G.; Iversen, O.S. In pursuit of rigour and accountability in participatory design. Int. J. Hum. Comput. Stud. 2015, 74, 93–106. [Google Scholar] [CrossRef]
- Pizzuti, C.; Palmieri, C.; Shaw, T. The role of medical regulations and medical regulators in fostering the use of eHealth data for strengthened continuing professional development (CPD): A document analysis with key informants’ interviews. BMC Med. Educ. 2025, 25, 871. [Google Scholar] [CrossRef] [PubMed]
- Pizzuti, C. Integrating eHealth data analytics into Continuing Professional Development for medical practitioners: An ecosystemic perspective. Front. Med. 2025, 12, 1553479. [Google Scholar] [CrossRef] [PubMed]
- Barba, T.; Robert, M.; Hot, A. IA en Santé: Guide Pour L’interniste Averti. Rev. Méd. Interne 2025, 46, 594–600. [Google Scholar] [CrossRef]
- Golburean, O.; Pedersen, R.; Melby, L.; Faxvaag, A. Exploring Physicians’ Dual Perspectives on the Transition from Free Text to Structured and Standardized Documentation Practices: Interview and Participant Observational Study. JMIR Form. Res. 2025, 9, e63902. [Google Scholar] [CrossRef] [PubMed]
- Naumann, L.; Babitsch, B.; Hübner, U.H. eHealth policy processes from the stakeholders’ viewpoint: A qualitative comparison between Austria, Switzerland and Germany. Health Policy Technol. 2021, 10, 100505. [Google Scholar] [CrossRef]
- XiA—Xpanding Innovative Alliance. Available online: https://xia-project.iscte-iul.pt/ (accessed on 30 August 2025).
- Olakotan, O.; Samuriwo, R.; Ismaila, H.; Atiku, S. Usability Challenges in Electronic Health Records: Impact on Documentation Burden and Clinical Workflow: A Scoping Review. J. Eval. Clin. Pract. 2025, 31, e70189. [Google Scholar] [CrossRef]
- Gandhi, T.K.; Classen, D.; Sinsky, C.A.; Rhew, D.C.; Garde, N.V.; Roberts, A.; Federico, F. How can artificial intelligence decrease cognitive and work burden for front line practitioners? JAMIA Open 2023, 6, ooad079. [Google Scholar] [CrossRef]
- Ebbers, T.; Takes, R.P.; Smeele, L.E.; Kool, R.B.; Broek, G.B.v.D.; Dirven, R. The implementation of a multidisciplinary, electronic health record embedded care pathway to improve structured data recording and decrease electronic health record burden. Int. J. Med. Inform. 2024, 184, 105344. [Google Scholar] [CrossRef]
- Ceriello, A.; Colagiuri, S. IDF global clinical practice recommendations for managing type 2 diabetes—2025. Diabetes Res. Clin. Pract. 2025, 222, 112152. [Google Scholar] [CrossRef] [PubMed]
- van Netten, J.J.; Apelqvist, J.; Bus, S.A.; Fitridge, R.; Game, F.; Monteiro-Soares, M.; Senneville, E.; Schaper, N.C. The International Working Group on the Diabetic Foot: Stories and Numbers Behind Three Decades of Evidence-Based Guidelines for the Management of Diabetes-Related Foot Disease. Diabetes Ther. 2023, 15, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Guideline Definition Language v2 (GDL2). Available online: https://specifications.openehr.org/releases/CDS/latest/GDL2.html (accessed on 30 August 2025).
- Michaels, M.M. Adapting Clinical Guidelines for the Digital Age: Summary of a Holistic and Multidisciplinary Approach. Am. J. Med. Qual. 2023, 38, S3–S11. [Google Scholar] [CrossRef] [PubMed]
- Boxwala, A.A.; Rocha, B.H.; Maviglia, S.; Kashyap, V.; Meltzer, S.; Kim, J.; Tsurikova, R.; Wright, A.; Paterno, M.D.; Fairbanks, A.; et al. A multi-layered framework for disseminating knowledge for computer-based decision support. J. Am. Med. Inform. Assoc. 2011, 18 (Suppl. S1), i132–i139. [Google Scholar] [CrossRef]
- Malm-Nicolaisen, K.; Ellingsen, G.; Hertzum, M.; Silsand, L.; Severinsen, G.-H. Evolution of Information Infrastructures in Healthcare as Convergence of Digital Trajectories. Comput. Support. Coop. Work 2024, 33, 1373–1400. [Google Scholar] [CrossRef]
- Golburean, O.; Nordheim, E.S.; Faxvaag, A.; Pedersen, R.; Lintvedt, O.; Marco-Ruiz, L. A systematic review and proposed framework for sustainable learning healthcare systems. Int. J. Med. Inform. 2024, 192, 105652. [Google Scholar] [CrossRef]
- Kumbhar, S.; Bhatia, M. Advancements and best practices in diabetic foot Care: A comprehensive review of global progress. Diabetes Res. Clin. Pract. 2024, 217, 111845. [Google Scholar] [CrossRef]
- Qi, H.; Zhang, T.; Hou, L.; Li, Q.; Huang, R.; Ma, L. Research progress on risk prediction models for the diabetic foot. Acta Diabetol. 2025; online ahead of print. [Google Scholar] [CrossRef]
- Giorgino, F.; Alzaid, F.; Stoian, A.P.; Chan, J.C.N.; Ji, L.; Lumu, W.; Manrique, H.; Mauricio, D.; Saboo, B.; Senior, P.A.; et al. Global challenges in diabetes research and care: Which way forward? An appraisal from the EASD Global Council. Diabetologia 2025, 68, 2479–2498. [Google Scholar] [CrossRef] [PubMed]
- Štotl, I.; Blagus, R.; Urbančič-Rovan, V. Individualised screening of diabetic foot: Creation of a prediction model based on penalised regression and assessment of theoretical efficacy. Diabetologia 2021, 65, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.-C.; Li, T.-C.; Huang, T.-H.; Hsu, Y.-L.; Ho, W.-C.; Xu, J.-L.; Hsieh, C.-L.; Jhang, Z.-E. Machine learning for diabetic foot care: Accuracy trends and emerging directions in healthcare AI. Front. Public Health 2025, 13, 1613946. [Google Scholar] [CrossRef] [PubMed]
- Ardelean, A.; Balta, D.-F.; Neamtu, C.; Neamtu, A.A.; Rosu, M.; Totolici, B. Personalized and predictive strategies for diabetic foot ulcer prevention and therapeutic management: Potential improvements through introducing Artificial Intelligence and wearable technology. Med. Pharm. Rep. 2024, 97, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Humphries, M.D. Social and Structural Determinants of Lower Extremity Amputations in Diabetes. Curr. Diabetes Rep. 2025, 25, 40. [Google Scholar] [CrossRef]
- Sarp, S.; Kuzlu, M.; Zhao, Y.; Gueler, O. Digital Twin in Healthcare: A Study for Chronic Wound Management. IEEE J. Biomed. Health Inform. 2023, 27, 5634–5643. [Google Scholar] [CrossRef]
- Wang, S.; An, M.; Lin, S.; Kuy, S.; Li, D. Artificial intelligence and digital twins: Revolutionizing diabetes care for tomorrow. Intell. Med. 2025, 5, 173–177. [Google Scholar] [CrossRef]
- Alizadeh, J.M.; Patel, M.K.; Wu, H. DT4PCP: A Digital Twin Framework for Personalized Care Planning Applied to Type 2 Diabetes Management. 2025. Available online: http://arxiv.org/abs/2507.07809 (accessed on 5 September 2025).
- Roth, L.; Wagner, C.J.; Riesner, P.; Krage, B.; Steckhan, N.; Schwarz, P.E.H. Evaluation of a Digital Health Application for Diabetics Under Real-World Conditions: Superior Outcomes Compared to Standard Care in an Observational Matched Case–Control Study. Diabetology 2025, 6, 85. [Google Scholar] [CrossRef]
- Shilo, S.; Rossman, H.; Segal, E. Axes of a revolution: Challenges and promises of big data in healthcare. Nat. Med. 2020, 26, 29–38. [Google Scholar] [CrossRef]
- Klingelhöfer, D.; Braun, M.; Dröge, J.; Groneberg, D.A.; Brüggmann, D. Research on artificial intelligence, machine and deep learning in medicine: Global characteristics, readiness, and equity. Glob. Health 2025, 21, 36. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhai, Y.; Lu, G. Evolution of artificial intelligence in healthcare: A 30-year bibliometric study. Front. Med. 2025, 11, 1505692. [Google Scholar] [CrossRef]
- Rafiq, S.; Majeed, T.; Din, N.M.U.; Sabha, S.U.; Assad, A. Artificial Intelligence in Obesity and Diabetes. In Artificial Intelligence in Human Health and Diseases; Macha, M.A., Assad, A., Bhat, M.R., Eds.; Springer Nature: Singapore, 2025; pp. 205–219. [Google Scholar] [CrossRef]
- Pahune, S.; Akhtar, Z.; Mandapati, V.; Siddique, K. The Importance of AI Data Governance in Large Language Models. Big Data Cogn. Comput. 2025, 9, 147. [Google Scholar] [CrossRef]
- Misir, A. Artificial Intelligence and Machine Learning in Diabetic Foot Ulcer Care: Advances in Diagnosis, Treatment, Prognosis, and Novel Therapeutic Strategies. J. Diabetes Sci. Technol. 2025, 19322968251363632. [Google Scholar] [CrossRef]
- Directorate-General for Health and Food Safety (European Commission); EEIG; Open Evidence; PwC. Study on the Deployment of AI in Healthcare: Final Report. Publications Office of the European Union. 2025. Available online: https://data.europa.eu/doi/10.2875/2169577 (accessed on 31 August 2025).
- American Medical Association. How to Develop AI Policies that Work for your Organization’s Needs. 2025. Available online: https://www.ama-assn.org/practice-management/digital-health/how-develop-ai-policies-work-your-organization-s-needs (accessed on 31 August 2025).
- The Swedish National Diabetes Register. 20 Years of Successful Improvements; The Swedish National Diabetes Register: Gothenburg, Sweden, 2016. [Google Scholar]
- Siddiqui, M.K.; Hall, C.; Cunningham, S.G.; McCrimmon, R.; Morris, A.; Leese, G.P.; Pearson, E.R. Using Data to Improve the Management of Diabetes: The Tayside Experience. Diabetes Care 2022, 45, 2828–2837. [Google Scholar] [CrossRef] [PubMed]
- Carinci, F.; Štotl, I.; Cunningham, S.G.; Poljicanin, T.; Pristas, I.; Traynor, V.; Olympios, G.; Scoutellas, V.; Azzopardi, J.; Doggen, K.; et al. Making Use of Comparable Health Data to Improve Quality of Care and Outcomes in Diabetes: The EUBIROD Review of Diabetes Registries and Data Sources in Europe. Front. Clin. Diabetes Health 2021, 2, 744516. [Google Scholar] [CrossRef]
- International Diabetes Federation. IDF Diabetes Atlas Tenth Edition. Available online: https://diabetesatlas.org/ (accessed on 12 September 2021).
- OECD. Health at a Glance 2023. 2023. Available online: https://www.oecd.org/en/publications/health-at-a-glance-2023_7a7afb35-en.html (accessed on 7 September 2025).
- ICHOM. ICHOM’s Mission: Putting Patients at the Heart of Healthcare. Available online: https://www.ichom.org/about-us/ (accessed on 7 September 2025).
- Rasooly, A.; Manor, O.; Shao, R.; Ellen, M.E.; Davidovitch, N. Towards Equitable Diabetes Care: A Global Perspective on Quality Measurement Exchange. Health Syst. Reform 2025, 11, 2435076. [Google Scholar] [CrossRef] [PubMed]
- Amato, E.; Giangreco, F.; Iacopi, E.; Piaggesi, A. Patient-Reported Experience (PREMs) and Outcome (PROMs) Measures in Diabetic Foot Disease Management—A Scoping Review. J. Clin. Med. 2025, 14, 6116. [Google Scholar] [CrossRef]
- Kolossváry, E.; Ferenci, T.; Kováts, T. Potentials, challenges, and limitations of the analysis of administrative data on vascular limb amputations in health care. Vasa 2020, 49, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.; Ibrahim, S.; Bielecki, J.; Stanimirovic, A.; Mathew, S.; Hooey, R.; Bowen, J.M.; Rac, V.E. Integrating artificial intelligence in community-based diabetes care programmes: Enhancing inclusiveness, diversity, equity and accessibility a realist review protocol. BMJ Open 2025, 15, e100512. [Google Scholar] [CrossRef] [PubMed]
- Egwudo, A.E.; Jegede, A.O.; Oyeniyi, T.A.; Ezekwelu, N.J.; Abdu-Aguye, S.N.; Okwuraiwe, A.P.; Onyeaghala, C.A.; Ozoude, T.O.; Suleiman, M.O.; Aziken, G.O.; et al. Integrating digital health technologies into the healthcare system: Challenges and opportunities in Nigeria. PLOS Digit. Health 2025, 4, e0000928. [Google Scholar] [CrossRef]
- SCORE2-Diabetes Working Group the ESC Cardiovascular Risk Collaboration. SCORE2-Diabetes: 10-year cardiovascular risk estimation in type 2 diabetes in Europe. Eur. Heart J. 2023, 44, 2544–2556. [Google Scholar] [CrossRef]
- Software Tools—OHDSI. Available online: https://www.ohdsi.org/software-tools/ (accessed on 5 September 2025).
- Nicholson, N.; Štotl, I. A generic framework for the semantic contextualization of indicators. Front. Comput. Sci. 2024, 6, 1463989. [Google Scholar] [CrossRef]
- Nicholson, N.; Carvalho, R.N.; Štotl, I. A FAIR Perspective on Data Quality Frameworks. Data 2025, 10, 136. [Google Scholar] [CrossRef]
- Kim, J.-W.; Kim, C.; Kim, K.-H.; Lee, Y.; Yu, D.H.; Yun, J.; Baek, H.; Park, R.W.; You, S.C. Scalable Infrastructure Supporting Reproducible Nationwide Healthcare Data Analysis toward FAIR Stewardship. Sci. Data 2023, 10, 674. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Panagiotakos, D. Real-world data: A brief review of the methods, applications, challenges and opportunities. BMC Med. Res. Methodol. 2022, 22, 287. [Google Scholar] [CrossRef] [PubMed]
- Zou, K.H.; Berger, M.L. Real-World Data and Real-World Evidence in Healthcare in the United States and Europe Union. Bioengineering 2024, 11, 784. [Google Scholar] [CrossRef]
- Arffman, M.; Metso, S.; Sund, R.; Winell, K.; Kurkela, O.; Lindström, J.; Keskimäki, I. Diabetes in Finland (FinDM): Monitoring Diabetes, Related Complications and Costs. Finnish Institute for Health and Welfare = Terveyden ja Hyvinvoinnin Laitos THL. 2025. Available online: https://www.julkari.fi/handle/10024/151994 (accessed on 29 August 2025).
- Zharima, C.; Griffiths, F.; Goudge, J. Exploring the barriers and facilitators to implementing electronic health records in a middle-income country: A qualitative study from South Africa. Front. Digit. Health 2023, 5, 1207602. [Google Scholar] [CrossRef]
- Bostan, S.; AJohnson, O.; Jaspersen, L.J.; Randell, R. Contextual Barriers to Implementing Open-Source Electronic Health Record Systems for Low- and Lower-Middle-Income Countries: Scoping Review. J. Med. Internet Res. 2024, 26, e45242. [Google Scholar] [CrossRef]
- Jayathissa, P.; Hewapathirana, R. Enhancing Interoperability Among Health Information Systems in Low and Middle-Income Countries: A Review of Challenges and Strategies; Social Science Research Network: Rochester, NY, USA, 2023; Available online: https://papers.ssrn.com/abstract=4538571 (accessed on 3 December 2025).
- Fitridge, R.; Chuter, V.; Mills, J.; Hinchliffe, R.; Azuma, N.; Behrendt, C.A.; Boyko, E.J.; Conte, M.S.; Humphries, M.; Kirksey, L.; et al. The intersocietal IWGDF, ESVS, SVS guidelines on peripheral artery disease in people with diabetes mellitus and a foot ulcer. J. Vasc. Surg. 2023, 78, 1101–11031. [Google Scholar] [CrossRef]


| Layer | Narrative(L1) | Semi- Structured(L2) | Structured(L3) | Executable(L4) |
|---|---|---|---|---|
| Format | Narrative text | Organized text | Coded and interpretable by computer | Coded and interpretable by CDS systems; variety of formats |
| Shareability of Knowledge | Broad | Broad | Broad | Very limited |
| CDS Modality and Tool Independent | Yes | Yes | Yes | No |
| Site Independent | Yes | Yes | Yes | No |
| Author | Guideline developer | Clinical domain expert | Knowledge engineer | CDS implementer |
| Purpose | Communication of policy; synthesis of evidence | Recommendations for implementation in CDS | Precise communication; validation | Implementation for a particular site |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Štotl, I. Data in Diabetic Foot Care: From Current State to a Management Framework for Implementation. J. Clin. Med. 2025, 14, 8674. https://doi.org/10.3390/jcm14248674
Štotl I. Data in Diabetic Foot Care: From Current State to a Management Framework for Implementation. Journal of Clinical Medicine. 2025; 14(24):8674. https://doi.org/10.3390/jcm14248674
Chicago/Turabian StyleŠtotl, Iztok. 2025. "Data in Diabetic Foot Care: From Current State to a Management Framework for Implementation" Journal of Clinical Medicine 14, no. 24: 8674. https://doi.org/10.3390/jcm14248674
APA StyleŠtotl, I. (2025). Data in Diabetic Foot Care: From Current State to a Management Framework for Implementation. Journal of Clinical Medicine, 14(24), 8674. https://doi.org/10.3390/jcm14248674
