Clinical Benefits of KRAS/GNAS Gene Mutation Analysis in Addition to Morphology and Conventional Cyst Fluid Testing in Differentiating Pancreatic Cysts
Abstract
1. Introduction
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Cross-Sectional Imaging
2.3. EUS
2.4. String Sign
2.5. Cytology
2.6. CEA and Glucose
2.7. Amylase
2.8. KRAS and GNAS Mutational Analysis
2.9. Follow-Up
2.10. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| PCL | Pancreatic cystic lesion |
| KRAS | Kirsten Rat Sarcoma Virus |
| GNAS | Guanine Nucleotide-binding protein, Alpha Stimulating protein activity |
| PCF | Pancreatic cystic fluid |
| EUS | Endoscopic ultrasound |
| FNA | Fine needle aspiration |
| CEA | Carcinoembryonic antigen |
| SCA | Serous cystadenoma |
| MCA | Mucinous cystadenoma |
| MCN | Mucinous cystic neoplasm |
| IPMN | Intraductal papillary mucinous neoplasm |
| MD-IPMN | Main duct intraductal papillary mucinous neoplasm |
| BD-IPMN | Branch duct intraductal papillary mucinous neoplasm |
| cAMP | Cyclic Adenosine Monophosphate |
| AGA | American Gastroenterological Association |
| CT | Computed Tomography |
| MRI | Magnetic resonance imaging |
| MRCP | Magnetic resonance cholangiopancreatography |
| NGS | Next-generation sequencing |
References
- Laffa, T.A.; Horton, K.M.; Klein, A.P.; Berlanstein, B.; Siegelman, S.S.; Kawamoto, S.; Johnson, P.T.; Fishman, E.K.; Hruban, R.H. Prevalence of unsuspected pancreatic cysts on MDCT. Am. J. Roentgenol. 2008, 191, 802–807. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.S.; Sekhar, A.; Rofsky, N.M.; Pedrosa, I. Prevalence of incidental pancreatic cysts in the adult population on MR Imaging. Am J. Gastroenterol. 2010, 105, 2079–2084. [Google Scholar] [CrossRef]
- De Oliviera, P.B.; Puchnick, A.; Szejnfeld, J.; Goldman, S.M. Prevalence of incidental pancreatic cysts on 3 tesla magnetic resonance [serial online]. PLoS ONE 2015, 10, e0121317. [Google Scholar]
- Lee, L.S. Updates in diagnosis and management of pancreatic cysts. World J. Gastroenterol. 2021, 27, 5700–5714. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Scheiman, J.M.; Hwang, J.H.; Moayyedi, P. American gastroenterological association technical review on the diagnosis and management of asymptomatic neoplastic pancreatic cysts. Gastroenterology 2015, 148, 824–848.e22. [Google Scholar] [CrossRef]
- Sakorafas, G.H.; Smyrniotis, V.; Reid-Lombardo, K.M.; Sarr, M.G. Primary pancreatic cystic neoplasms revisited: Part II. Mucinous cystic neoplasms. Surg. Oncol. 2011, 20, e93–e101. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.; Dawson, D.W.; Hines, O.J.; Reber, H.A.; Donahue, T.R. Mucinous cystic neoplasms of the pancreas: Are we overestimating malignant potential? Am. Surg. 2014, 80, 915–919. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Fernández-Del Castillo, C.; Kamisawa, T.; Jang, J.Y.; Levy, P.; Ohtsuka, T.; Salvia, R.; Shimizu, Y.; Tada, M.; Wolfgang, C.L. Revisions of international consensus Fukuoka guidelines for the management of IPMN of the pancreas. Pancreatology 2017, 17, 738–753. [Google Scholar] [CrossRef] [PubMed]
- The European Study Group on Cystic Tumors of the Pancreas: European evidence-based guidelines on pancreatic cystic neoplasms. Gut 2018, 67, 789–804. [CrossRef]
- Elta, G.H.; Enestvedt, B.K.; Sauer, B.G.; Lennon, A.M. ACG Clinical Guideline: Diagnosis and Management of Pancreatic Cysts. Am. J. Gastroenterol. 2018, 113, 464–479. [Google Scholar] [CrossRef]
- Brugge, W.R.; Lewandrowski, K.; Lee-Lewandrowski, E.; Centeno, B.A.; Szydlo, T.; Regan, S.; del Castillo, C.F.; Warshaw, A.L. Diagnosis of pancreatic cystic neoplasms: A report of the cooperative pancreatic cyst study. Gastroenterology 2004, 126, 1330–1336. [Google Scholar] [CrossRef]
- Bick, B.L.; Enders, F.T.; Levy, M.J.; Zhang, L.; Henry, M.R.; Abu Dayyeh, B.K.; Chari, S.T.; Clain, J.E.; Farnell, M.B.; Gleeson, F.C.; et al. The string sign for diagnosis of mucinous pancreatic cysts. Endoscopy 2015, 47, 626–631. [Google Scholar] [CrossRef]
- Li, S.-Y.; Wang, Z.-J.; Pan, C.-Y.; Wu, C.; Li, Z.-S.; Jin, Z.-D.; Wang, K.-X. Comparative performance of endoscopic ultrasound-based techniques in patients with pancreatic cystic lesions: A network meta-analysis. Am. J. Gastroenterol. 2023, 118, 243–255. [Google Scholar] [CrossRef]
- Khalid, A.; McGrath, K.M.; Zahid, M.; Wilson, M.; Brody, D.; Swalsky, P.; Moser, A.J.; Lee, K.K.; Slivka, A.; Whitcomb, D.C.; et al. The role of pancreatic cyst fluid molecular analysis in predicting cyst pathology. Clin. Gastroenterol. Hepatol. 2005, 3, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Gillson, J.; Ramaswamy, Y.; Singh, G.; Gorfe, A.A.; Pavlakis, N.; Samra, J.; Mittal, A.; Sahni, S. Small Molecule KRAS Inhibitors: The Future for Targeted Pancreatic Cancer Therapy? Cancers 2020, 12, 1341. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Landis, C.A.; Masters, S.B.; Spada, A.; Pace, A.M.; Bourne, H.R.; Vallar, L. GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 1989, 340, 692–696. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, L.S.; Liu, J.; Sakamoto, A.; Xie, T.; Chen, M. Minireview: GNAS: Normal and abnormal functions. Endocrinology 2004, 145, 5459–5464. [Google Scholar] [CrossRef] [PubMed]
- McCarty, T.R.; Paleti, S.; Rustagi, T. Molecular analysis of EUS-acquired pancreatic cyst fluid for KRAS and GNAS mutations for diagnosis of intraductal papillary mucinous neoplasia and mucinous cystic lesions: A systematic review and meta-analysis. Gastrointest. Endosc. 2021, 93, 1019–1033.e5. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Fernández-del Castillo, C.; Adsay, V.; Chari, S.; Falconi, M.; Jang, J.Y.; Kimura, W.; Levy, P.; Pitman, M.B.; Schmidt, C.M.; et al. International Association of Pancreatology. International consensus guidelines 2012 for the management of IPMN and MCN of the pancreas. Pancreatology 2012, 12, 183–197. [Google Scholar] [CrossRef] [PubMed]
- American Gastroenterological Association; AGA Section. Managing Pancreatic Cysts: A Patient Guide. Gastroenterology 2015, 149, 498–499. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gyimesi, G.; Keczer, B.; Rein, P.; Horváth, M.; Szűcs, Á.; Marjai, T.; Szijártó, A.; Hritz, I. Diagnostic performance of intracystic carcinoembryonic antigen (CEA) versus glucose in differentiation of mucinous and non-mucinous pancreatic cysts. Pathol. Oncol. Res. 2024, 30, 1611881. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zikos, T.; Pham, K.; Bowen, R.; Chen, A.M.; Banerjee, S.; Friedland, S.; Dua, M.M.; Norton, J.A.; Poultsides, G.A.; Visser, B.C.; et al. Cyst Fluid Glucose is Rapidly Feasible and Accurate in Diagnosing Mucinous Pancreatic Cysts. Am. J. Gastroenterol. 2015, 110, 909–914. [Google Scholar] [CrossRef]
- Carmicheal, J.; Patel, A.; Dalal, V.; Atri, P.; Dhaliwal, A.S.; Wittel, U.A.; Malafa, M.P.; Talmon, G.; Swanson, B.J.; Singh, S.; et al. Elevating pancreatic cystic lesion stratification: Current and future pancreatic cancer biomarker(s). Biochim. Biophys. Acta Rev. Cancer. 2020, 1873, 188318. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Faias, S.; Duarte, M.; Albuquerque, C.; da Silva, J.P.; Fonseca, R.; Roque, R.; Dias Pereira, A.; Chaves, P.; Cravo, M. Clinical Impact of KRAS and GNAS Analysis Added to CEA and Cytology in Pancreatic Cystic Fluid Obtained by EUS-FNA. Dig. Dis. Sci. 2018, 63, 2351–2361. [Google Scholar] [CrossRef] [PubMed]
- Herranz Pérez, R.; de la Morena López, F.; Majano Rodríguez, P.L.; Molina Jiménez, F.; Vega Piris, L.; Santander Vaquero, C. Molecular analysis of pancreatic cystic neoplasm in routine clinical practice. World J. Gastrointest. Endosc. 2021, 13, 56–71. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]

| All (n = 47, 100%) | Mucinous (n = 33, 70.2%) | Non-Mucinous (n = 14, 29.8%) | p-Value | |
|---|---|---|---|---|
| Patient demographics | ||||
| Gender | ||||
| Male | 15 (31.9%) | 13 (39.4%) | 2 (14.3%) | 0.17 |
| Female | 32 (68.1%) | 20 (60.6%) | 12 (85.7%) | |
| Age in years, median (IQR) | 65.8 (±14.8) | 68.7(±14.7) | 58.9 (±13.1) | 0.04 |
| Cyst characteristics | ||||
| Localization of the largest cyst, n, (%) | 0.85 | |||
| Uncinate process | 1 (2.1%) | 1 (3.0%) | 0 (0.0%) | |
| Head | 20 (42.6%) | 13 (39.4%) | 7 (50%) | |
| Genu of pancreas | 7 (14.9) | 4 (12.1%) | 3 (21.4%) | |
| Body | 14 (29.8%) | 11 (33.3%) | 3 (21.4%) | |
| Body–tail border | 2 (4.3%) | 2 (6.1%) | 0 (0.0%) | |
| Tail | 3 (6.4%) | 2 (6.1%) | 1 (7.1%) | |
| Largest cyst diameter in mm, median (IQR) | 35.5 (48.5−5.0) | 32.0 (41.0−25.0) | 47.5 (67.0−24.0) | 0.11 |
| Locularity | 0.46 | |||
| Unilocular cyst, n (%) | 26 (55.3%) | 18 (54.5%) | 8 (57.1%) | |
| Multilocular cyst, n (%) | 21 (44.7%) | 15 (45.5%) | 6 (42.9%) |
| Diagnosis | Mucinous | Non-Mucinous | All | p Value |
|---|---|---|---|---|
| SCN | 8 (17.0%) | 0 (0.0%) | 8 (57.1%) | <0.0001 |
| MCN | 5 (10.6%) | 5 (15.2%) | 0 (0.0%) | |
| IPMN | 24 (51.1%) | 24 (72.7%) | 0 (0.0%) | |
| Adenocarcinoma | 4 (8.5%) | 4 (12.1%) | 0 (0.0%) | |
| WON/Pseudocyst | 5 (10.6%) | 0 (0.0%) | 5 (35.7%) | |
| NET | 1 (2.1%) | 0 (0.0%) | 1 (7.1%) | |
| Biomarker characteristics | ||||
| CEA (>192 ng/mL), median (IQR) | 46.1 (215.5−1.6) | 55.5 (338.4−23.9) | 0.7 (113.0−0.5) | 0.02 |
| Amylase (250 IU/L), median (IQR) | 210 (32,360.0−123.5) | 3078 (30,900.0−601.8) | 99.0 (43,096.0−22.0) | 0.06 |
| Glucose (50 mg/dL), median (IQR) | 11.7 (90.0−11.7) | 11.7 (11.7−11.7) | 100.8 (108.0−71.2) | <0.0001 |
| Cyst Type | All | Mucinous | Non-Mucinous |
|---|---|---|---|
| KRAS | |||
| wild | 32 (68.1%) | 19 (57.6%) | 13 (92.9%) |
| mutant | 15 (31.9%) | 14 (42.4%) | 1 (7.1%) |
| GNAS | |||
| wild | 18 (38.3%) | 13 (39.4%) | 5 (35.7%) |
| mutant | 10 (21.3%) | 10 (30.3%) | 0 (0.0%) |
| not analyzed | 19 (40.4%) | 10 (30.3%) | 9 (64.3%) |
| K-Ras | Value | (95% CI) p0.02 |
|---|---|---|
| Sensitivity | 0.4242 | 0.2724 to 0.5919 |
| Specificity | 0.9286 | 0.6853 to 0.9963 |
| Positive Predictive Value | 0.9333 | 0.7018 to 0.9966 |
| Negative Predictive Value | 0.4063 | 0.2552 to 0.5774 |
| GNAS | Value | (95% CI) p0.13 |
| Sensitivity | 0.4348 | 0.2563 to 0.6319 |
| Specificity | 1.0 | 0.5655 to 1.000 |
| Positive Predictive Value | 1.0 | 0.7225 to 1.000 |
| Negative Predictive Value | 0.2778 | 0.1250 to 0.5087 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gyimesi, G.; Keczer, B.; Rein, P.; Horváth, M.; Gellért, B.; Marjai, T.; Tóth, E.; Szűcs, Á.; Szijártó, A.; Barbai, T.; et al. Clinical Benefits of KRAS/GNAS Gene Mutation Analysis in Addition to Morphology and Conventional Cyst Fluid Testing in Differentiating Pancreatic Cysts. J. Clin. Med. 2025, 14, 8671. https://doi.org/10.3390/jcm14248671
Gyimesi G, Keczer B, Rein P, Horváth M, Gellért B, Marjai T, Tóth E, Szűcs Á, Szijártó A, Barbai T, et al. Clinical Benefits of KRAS/GNAS Gene Mutation Analysis in Addition to Morphology and Conventional Cyst Fluid Testing in Differentiating Pancreatic Cysts. Journal of Clinical Medicine. 2025; 14(24):8671. https://doi.org/10.3390/jcm14248671
Chicago/Turabian StyleGyimesi, György, Bánk Keczer, Péter Rein, Miklós Horváth, Bálint Gellért, Tamás Marjai, Enikő Tóth, Ákos Szűcs, Attila Szijártó, Tamás Barbai, and et al. 2025. "Clinical Benefits of KRAS/GNAS Gene Mutation Analysis in Addition to Morphology and Conventional Cyst Fluid Testing in Differentiating Pancreatic Cysts" Journal of Clinical Medicine 14, no. 24: 8671. https://doi.org/10.3390/jcm14248671
APA StyleGyimesi, G., Keczer, B., Rein, P., Horváth, M., Gellért, B., Marjai, T., Tóth, E., Szűcs, Á., Szijártó, A., Barbai, T., Székely, E., & Hritz, I. (2025). Clinical Benefits of KRAS/GNAS Gene Mutation Analysis in Addition to Morphology and Conventional Cyst Fluid Testing in Differentiating Pancreatic Cysts. Journal of Clinical Medicine, 14(24), 8671. https://doi.org/10.3390/jcm14248671

