Plastic Pollution and Child Health: A Narrative Review of Micro- and Nanoplastics, Additives, and Developmental Risks
Abstract
1. Background
2. Methods
3. Pediatric Exposure to Plastics
3.1. During Fetal Life
3.2. After Birth
4. Toxicity Mechanisms of Plastic Particles and Plastic Additives
5. Toxic Effects of Plastic Exposure in Pediatrics
5.1. Impact on Reproductive System and Reduced Fertility
5.2. The Effects of Plastics on Children
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- British Plastic Federation. Plastic Applications. Available online: https://www.bpf.co.uk/plastipedia/applications/Default.aspx#:~:text=What%20sectors%20use%20plastic?,and%20electronics%20and%20industrial%20machinery (accessed on 22 September 2025).
- United Nations. Beat Plastic Pollution. Available online: https://www.un.org/pl/node/71013#:~:text=Beat%20plastic%20pollution,more%20if%20inhalation%20is%20considered (accessed on 22 September 2025).
- OECD Global Plastics Outlook. Available online: https://www.oecd.org/content/dam/oecd/en/publications/support-materials/2022/02/global-plastics-outlook_a653d1c9/Global%20Plastics%20Outlook%20I.pdf (accessed on 22 September 2025).
- Bucci, K.; Tulio, M.; Rochman, C.M. What is known and unknown about the effects of plastic pollution: A meta-analysis and systematic review. Ecol. Appl. 2020, 30, e02044. [Google Scholar] [CrossRef]
- Santos, R.G.; Machovsky-Capuska, G.E.; Andrades, R. Plastic ingestion as an evolutionary trap: Toward a holistic understanding. Science 2021, 373, 56–60. [Google Scholar] [CrossRef]
- Haney, J.; Rochman, C.M. Plastic pollution has the potential to alter ecological and evolutionary processes in aquatic ecosystems. Nat. Ecol. Evol. 2025, 9, 762–768. [Google Scholar] [CrossRef]
- Zhang, K.; Hamidian, A.H.; Tubić, A.; Zhang, Y.; Fang, J.K.H.; Wu, C.; Lam, P.K.S. Understanding plastic degradation and microplastic formation in the environment: A review. Environ. Pollut. 2021, 274, 116554. [Google Scholar] [CrossRef]
- Gigault, J.; Halle, A.T.; Baudrimont, M.; Pascal, P.Y.; Gauffre, F.; Phi, T.L.; El Hadri, H.; Grassl, B.; Reynaud, S. Current opinion: What is a nanoplastic? Environ. Pollut. 2018, 235, 1030–1034. [Google Scholar] [CrossRef]
- Kochanek, A.; Grąz, K.; Potok, H.; Gronba-Chyła, A.; Kwaśny, J.; Wiewiórska, I.; Ciuła, J.; Basta, E.; Łapiński, J. Micro- and Nanoplastics in the Environment: Current State of Research, Sources of Origin, Health Risks, and Regulations—A Comprehensive Review. Toxics 2025, 13, 564. [Google Scholar] [CrossRef] [PubMed]
- Sewwandi, M.; Wijesekara, H.; Rajapaksha, A.U.; Soysa, S.; Vithanage, M. Microplastics and plastics-associated contaminants in food and beverages; Global trends, concentrations, and human exposure. Environ. Pollut. 2022, 317, 120747. [Google Scholar] [CrossRef] [PubMed]
- Giustra, M.; Sinesi, G.; Spena, F.; De Santes, B.; Morelli, L.; Barbieri, L.; Garbujo, S.; Galli, P.; Prosperi, D.; Colombo, M. Microplastics in Cosmetics: Open Questions and Sustainable Opportunities. ChemSusChem 2024, 17, e202401065. [Google Scholar] [CrossRef] [PubMed]
- Maddela, N.R.; Kakarla, D.; Venkateswarlu, K.; Megharaj, M. Additives of plastics: Entry into the environment and potential risks to human and ecological health. J. Environ. Manag. 2023, 348, 119364. [Google Scholar] [CrossRef]
- Winiarska, E.; Jutel, M.; Zemelka-Wiacek, M. The potential impact of nano- and microplastics on human health: Understanding human health risks. Environ. Res. 2024, 251, 118535. [Google Scholar] [CrossRef]
- Zhao, B.; Rehati, P.; Yang, Z.; Cai, Z.; Guo, C.; Li, Y. The potential toxicity of microplastics on human health. Sci. Total. Environ. 2024, 912, 168946. [Google Scholar] [CrossRef]
- Mišľanová, C.; Valachovičová, M.; Slezáková, Z. An Overview of the Possible Exposure of Infants to Microplastics. Life 2024, 14, 371. [Google Scholar] [CrossRef]
- European Commission. EU Restrictions on Certain Single-Use Plastics. Available online: https://environment.ec.europa.eu/topics/plastics/single-use-plastics/eu-restrictions-certain-single-use-plastics_en (accessed on 1 October 2025).
- USEPA Plastics. Available online: https://environment.ec.europa.eu/topics/plastics_en (accessed on 1 October 2025).
- Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.C.A.; Baiocco, F.; Draghi, S.; et al. Plasticenta: First evidence of microplastics in human placenta. Environ. Int. 2021, 146, 106274. [Google Scholar] [CrossRef]
- Ragusa, A.; Matta, M.; Cristiano, L.; Matassa, R.; Battaglione, E.; Svelato, A.; De Luca, C.; D’Avino, S.; Gulotta, A.; Rongioletti, M.C.A.; et al. Deeply in Plasticenta: Presence of Microplastics in the Intracellular Compartment of Human Placentas. Int. J. Environ. Res. Public Health 2022, 19, 11593. [Google Scholar] [CrossRef]
- Haddadi, A.; Venditti, M.; Kessabi, K.; Messaoudi, I. Adverse effects of a realistic concentration of human exposure to microplastics on markers of placental barrier permeability in pregnant rats. Environ. Sci. Pollut. Res. 2025, 32, 14782–14795. [Google Scholar] [CrossRef]
- Weingrill, R.B.; Lee, M.J.; Benny, P.; Riel, J.; Saiki, K.; Garcia, J.; Oliveira, L.F.A.M.; Fonseca, E.J.D.S.; Souza, S.T.; D’Amato, F.O.S.; et al. Temporal trends in microplastic accumulation in placentas from pregnancies in Hawai’i. Environ. Int. 2023, 180, 108220. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhu, J.; Zuo, R.; Xu, Q.; Qian, Y.; An, L. Identification of microplastics in human placenta using laser direct infrared spectroscopy. Sci. Total Environ. 2023, 856, 159060. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Guo, J.; Liu, X.; Yang, R.; Wang, H.; Sun, Y.; Chen, B.; Dong, R. Detection of various microplastics in placentas, meconium, infant feces, breastmilk and infant formula: A pilot prospective study. Sci. Total Environ. 2023, 854, 158699. [Google Scholar] [CrossRef]
- Liu, S.; Liu, X.; Guo, J.; Yang, R.; Wang, H.; Sun, Y.; Chen, B.; Dong, R. The Association Between Microplastics and Microbiota in Placentas and Meconium: The First Evidence in Humans. Environ. Sci. Technol. 2023, 57, 17774–17785. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Li, X.; Lin, W.; Zeng, D.; Yang, P.; Ni, W.; Chen, Z.; Lin, B.; Lai, L.; Ouyang, Z.; et al. Microplastic Particles Detected in Fetal Cord Blood, Placenta, and Meconium: A Pilot Study of Nine Mother-Infant Pairs in South China. Toxics 2024, 12, 850. [Google Scholar] [CrossRef]
- Katsikantami, I.; Tzatzarakis, M.N.; Alegakis, A.K.; Karzi, V.; Hatzidaki, E.; Stavroulaki, A.; Vakonaki, E.; Xezonaki, P.; Sifakis, S.; Rizos, A.K.; et al. Phthalate metabolites concentrations in amniotic fluid and maternal urine: Cumulative exposure and risk assessment. Toxicol. Rep. 2020, 7, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Gély, C.A.; Lacroix, M.Z.; Morin, M.; Vayssière, C.; Gayrard, V.; Picard-Hagen, N. Comparison of the materno-fetal transfer of fifteen structurally related bisphenol analogues using an ex vivo human placental perfusion model. Chemosphere 2021, 276, 130213. [Google Scholar] [CrossRef] [PubMed]
- Yun, X.; Liang, L.; Tian, J.; Li, N.; Chen, Z.; Zheng, Y.; Duan, S.; Zhang, L. Raman-guided exploration of placental microplastic exposure: Unraveling the polymeric tapestry and assessing developmental implications. J. Hazard. Mater. 2024, 477, 135271. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, L.; Kannan, K. Microplastics in house dust from 12 countries and associated human exposure. Environ. Int. 2020, 134, 105314. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, L.; Trasande, L.; Kannan, K. Occurrence of polyethylene terephthalate and polycarbonate microplastics in infant and adult feces. Environ. Sci. Technol. Lett. 2021, 8, 989–994. [Google Scholar] [CrossRef]
- Ragusa, A.; Notarstefano, V.; Svelato, A.; Belloni, A.; Gioacchini, G.; Blondeel, C.; Zucchelli, E.; De Luca, C.; D’Avino, S.; Gulotta, A.; et al. Raman Microspectroscopy Detection and Characterisation of Microplastics in Human Breastmilk. Polymers 2022, 14, 2700. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X.; Jia, P.; He, S.; Dai, H.; Deng, S.; Han, J. Release of microplastics from breastmilk storage bags and assessment of intake by infants: A preliminary study. Environ. Pollut. 2023, 323, 121197. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, L.; Jiang, Y.; Zhang, Y.; Fan, Y.; Rao, W.; Qian, X. Microplastics in infant milk powder. Environ. Pollut. 2023, 323, 121225. [Google Scholar] [CrossRef]
- Chen, H.; Xu, L.; Yu, K.; Wei, F.; Zhang, M. Release of microplastics from disposable cups in daily use. Sci. Total Environ. 2023, 854, 158606. [Google Scholar] [CrossRef]
- Amran, N.H.; Zaid, S.S.M.; Mokhtar, M.H.; Manaf, L.A.; Othman, S. Exposure to Microplastics during Early Developmental Stage: Review of Current Evidence. Toxics 2022, 10, 597. [Google Scholar] [CrossRef]
- Fadare, O.O.; Wan, B.; Guo, L.H.; Zhao, L. Microplastics from consumer plastic food containers: Are we consuming it? Chemosphere 2020, 253, 126787. [Google Scholar] [CrossRef] [PubMed]
- Bai, C.L.; Liu, L.Y.; Guo, J.L.; Zeng, L.X.; Guo, Y. Microplastics in take-out food: Are we over taking it? Environ. Res. 2022, 215, 114390. [Google Scholar] [CrossRef]
- Torres-Agullo, A.; Karanasiou, A.; Charres, I.; Alves, C.; Lacorte, S. Airborne microplastics and plastic additives in a school environment: Identification, quantification, and associated inhalation risks. Environ. Int. 2025, 203, 109753. [Google Scholar] [CrossRef]
- Tang, K.H.D. Genotoxicity of Microplastics on Living Organisms: Effects on Chromosomes, DNA and Gene Expression. Environments 2025, 12, 10. [Google Scholar] [CrossRef]
- Kadac-Czapska, K.; Ośko, J.; Knez, E.; Grembecka, M. Microplastics and Oxidative Stress-Current Problems and Prospects. Antioxidants 2024, 13, 579. [Google Scholar] [CrossRef]
- Li, S.; Ma, Y.; Ye, S.; Tang, S.; Liang, N.; Liang, Y.; Xiao, F. Polystyrene microplastics trigger hepatocyte apoptosis and abnormal glycolytic flux via ROS-driven calcium overload. J. Hazard. Mater. 2021, 417, 12602. [Google Scholar] [CrossRef]
- Wang, S.; Han, Q.; Wei, Z.; Wang, Y.; Xie, J.; Chen, M. Polystyrene microplastics affect learning and memory in mice by inducing oxidative stress and decreasing acetylcholine levels. Food Chem. Toxicol. 2022, 162, 112904. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Chen, K.F.; Andrew Lin, K.Y.; Su, H.P.; Wu, D.N.; Lin, C.H. Evaluation of toxicity of polystyrene microplastics under realistic exposure levels in human vascular endothelial EA.hy926 cells. Chemosphere 2023, 313, 137582. [Google Scholar] [CrossRef]
- Palaniappan, S.; Sadacharan, C.M.; Rostama, B. Polystyrene and Polyethylene Microplastics Decrease Cell Viability and Dysregulate Inflammatory and Oxidative Stress Markers of MDCK and L929 Cells In Vitro. Expo. Health 2022, 14, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.; Jeong, J.; Song, K.S.; Sung, J.H.; Oh, S.M.; Choi, J. Inhalation toxicity of polystyrene micro(nano)plastics using modified OECD TG 412. Chemosphere 2021, 262, 128330. [Google Scholar] [CrossRef]
- Bishop, B.; Webber, W.S.; Atif, S.M.; Ley, A.; Pankratz, K.A.; Kostelecky, R.; Colgan, S.P.; Dinarello, C.A.; Zhang, W.; Li, S. Micro- and nano-plastics induce inflammation and cell death in human cells. Front. Immunol. 2025, 16, 1528502. [Google Scholar] [CrossRef]
- Shyanti, R.K.; Greggs, J.; Malik, S.; Mishra, M. Gut dysbiosis impacts the immune system and promotes prostate cancer. Immunol. Lett. 2024, 268, 106883. [Google Scholar] [CrossRef]
- Umamaheswari, S.; Priyadarshinee, S.; Kadirvelu, K.; Ramesh, M. Polystyrene microplastics induce apoptosis via ROS-mediated p53 signaling pathway in zebrafish. Chem. Biol. Interact. 2021, 345, 109550. [Google Scholar] [CrossRef]
- Kwon, W.; Kim, D.; Kim, H.Y.; Jeong, S.W.; Lee, S.G.; Kim, H.C.; Lee, Y.J.; Kwon, M.K.; Hwang, J.S.; Han, J.E.; et al. Microglial phagocytosis of polystyrene microplastics results in immune alteration and apoptosis in vitro and in vivo. Sci. Total Environ. 2022, 807, 150817. [Google Scholar] [CrossRef] [PubMed]
- Dimitriadi, A.; Papaefthimiou, C.; Genizegkini, E.; Sampsonidis, I.; Kalogiannis, S.; Feidantsis, K.; Bobori, D.C.; Kastrinaki, G.; Koumoundouros, G.; Lambropoulou, D.A.; et al. Adverse effects polystyrene microplastics exert on zebrafish heart—Molecular to individual level. J. Hazard. Mater. 2021, 416, 125969. [Google Scholar] [CrossRef] [PubMed]
- Cobanoglu, H.; Belivermis, M.; Sikdokur, E.; Kilic, O.; Cayir, A. Genotoxic and cytotoxic effects of polyethylene microplastics on human peripheral blood lymphocytes. Chemosphere 2012, 272, 129805. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Liang, H.; Zhang, X. Erythrocyte damage of crucian carp (Carassius auratus) caused by microcystin-LR: In vitro study. Fish Physiol. Biochem. 2012, 38, 849–858. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, H.; Li, L.; Li, Z.; Wang, D. Exposure to placental microplastic and placental and umbilical cord blood telomere length. Ecotoxicol. Environ. Saf. 2025, 302, 118536. [Google Scholar] [CrossRef]
- Ahmad, I.; Kaur, M.; Tyagi, D.; Singh, T.B.; Kaur, G.; Afzal, S.M.; Jauhar, M. Exploring novel insights into the molecular mechanisms underlying Bisphenol A-induced toxicity: A persistent threat to human health. Environ. Toxicol. Pharmacol. 2024, 108, 104467. [Google Scholar] [CrossRef]
- Sree, C.G.; Buddolla, V.; Lakshmi, B.A.; Kim, Y.J. Phthalate toxicity mechanisms: An update. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2023, 263, 109498. [Google Scholar] [CrossRef]
- Street, M.E.; Casadei, F.; Di Bari, E.R.; Ferraboschi, F.; Montani, A.G.; Mele, M.C.; Shulhai, A.M.; Esposito, S. ftalatiThe Role of Nutraceuticals and Probiotics in Addition to Lifestyle Intervention in the Management of Childhood Obesity-Part 2, Comorbidities. Nutrients 2025, 17, 1487. [Google Scholar] [CrossRef]
- An, R.; Wang, X.; Yang, L.; Zhang, J.; Wang, N.; Xu, F.; Hou, Y.; Zhang, H.; Zhang, L. Polystyrene microplastics cause granulosa cells apoptosis and fibrosis in ovary through oxidative stress in rats. Toxicology 2012, 449, 152665. [Google Scholar] [CrossRef] [PubMed]
- Jaikumar, G.; Brun, N.R.; Vijver, M.G.; Bosker, T. Reproductive toxicity of primary and secondary microplastics to three cladocerans during chronic exposure. Environ. Pollut. 2019, 249, 638–646. [Google Scholar] [CrossRef]
- Sussarellu, R.; Suquet, M.; Thomas, Y.; Lambert, C.; Fabioux, C.; Pernet, M.E.J.; Le Goïc, N.; Quillien, V.; Mingant, C.; Epelboin, Y.; et al. Oyster reproduction is affected by exposure to polystyrene microplastics. Proc. Natl. Acad. Sci. USA 2016, 113, 2430–2435. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, Y.; Wang, S.; Xie, J.; Han, Q.; Chen, M. Comparing the effects of polystyrene microplastics exposure on reproduction and fertility in male and female mice. Toxicology 2022, 465, 153059. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Lu, L.; Zheng, M.; Zhang, X.; Tian, H.; Wang, W.; Ru, S. Polystyrene microplastics cause tissue damages, sex-specific reproductive disruption and transgenerational effects in marine medaka (Oryzias melastigma). Environ. Pollut. 2019, 254, 113024. [Google Scholar] [CrossRef]
- Haddadi, A.; Kessabi, K.; Boughammoura, S.; Rhouma, M.B.; Mlouka, R.; Banni, M.; Messaoudi, I. Exposure to microplastics leads to a defective ovarian function and change in cytoskeleton protein expression in rat. Environ. Sci. Pollut. Res. 2022, 29, 34594–34606. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Zhao, Y.; Zhao, J.; Yu, T.; Yao, Y.; Zhao, R.; Yu, R.; Liu, J.; Su, J. Reproductive toxicity of microplastics in female mice and their offspring from induction of oxidative stress. Environ. Pollut. 2023, 327, 121482. [Google Scholar] [CrossRef]
- Jin, H.; Ma, T.; Sha, X.; Liu, Z.; Zhou, Y.; Meng, X.; Chen, Y.; Han, X.; Ding, J. Polystyrene microplastics induced male reproductive toxicity in mice. J. Hazard. Mater. 2021, 401, 123430. [Google Scholar] [CrossRef]
- Lv, J.; Liu, G.; Wang, Z.; Zhang, J.; Li, Y.; Wang, Y.; Liu, N.; Altyn, S.; Jiang, Z. Internalized polystyrene nanoplastic. s trigger testicular damage and promote ferroptosis via CISD1 downregulation in mouse spermatocyte. J. Nanobiotechnol. 2025, 23, 537. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, Y.; Zhu, N.; Liu, Q.; Cai, J.; Wen, Y.; Liu, T.; Han, F. Chronic exposure to polystyrene micro/nanoplastics triggers testicular dysfunction through PI3K/AKT/mTOR signaling-mediated spermatocyte senescence in mice. Food Chem. Toxicol. 2025, 205, 115703. [Google Scholar] [CrossRef]
- Sharpe, R.M. Pathways of endocrine disruption during male sexual differentiation and masculinization. Best Pract. Res. Clin. Endocrinol. Metab. 2006, 20, 91–110. [Google Scholar] [CrossRef]
- Montano, L.; Raimondo, S.; Piscopo, M.; Ricciardi, M.; Guglielmino, A.; Chamayou, S.; Gentile, R.; Gentile, M.; Rapisarda, P.; Oliveri Conti, G.; et al. First evidence of microplastics in human ovarian follicular fluid: An emerging threat to female fertility. Ecotoxicol. Environ. Saf. 2025, 291, 117868. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhu, L.; Weng, J.; Jin, Z.; Cao, Y.; Jiang, H.; Zhang, Z. Detection and characterization of microplastics in the human testis and semen. Sci. Total Environ. 2023, 877, 162713. [Google Scholar] [CrossRef]
- Montano, L.; Giorgini, E.; Notarstefano, V.; Notari, T.; Ricciardi, M.; Piscopo, M.; Motta, O. Raman Microspectroscopy evidence of microplastics in human semen. Sci. Total Environ. 2023, 901, 165922. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, G.; Sun, K.; Ren, J.; Zhou, J.; Liu, X.; Lin, F.; Yang, H.; Cao, J.; Nie, L.; et al. Association of mixed exposure to microplastics with sperm dysfunction: A multi-site study in China. eBioMedicine 2024, 108, 105369. [Google Scholar] [CrossRef] [PubMed]
- Watkins, D.J.; Téllez-Rojo, M.M.; Ferguson, K.K.; Lee, J.M.; Solano-Gonzalez, M.; Blank-Goldenberg, C.; Peterson, K.E.; Meeker, J.D. In utero and peripubertal exposure to phthalates and BPA in relation to female sexual maturation. Environ. Res. 2014, 134, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Blaauwendraad, S.M.; Jaddoe, V.W.; Santos, S.; Kannan, K.; Dohle, G.R.; Trasande, L.; Gaillard, R. Associations of maternal urinary bisphenol and phthalate concentrations with offspring reproductive development. Environ. Pollut. 2022, 309, 119745. [Google Scholar] [CrossRef]
- Skakkebaek, N.E.; Rajpert-De Meyts, E.; Buck Louis, G.M.; Toppari, J.; Andersson, A.M.; Eisenberg, M.L.; Jensen, T.K.; Jørgensen, N.; Swan, S.H.; Sapra, K.J.; et al. Male reproductive disorders and fertility trends: Influences of environment and genetic susceptibility. Physiol. Rev. 2016, 96, 55–97. [Google Scholar] [CrossRef]
- Bigambo, F.M.; Sun, H.; Yan, W.; Wu, D.; Xia, Y.; Wang, X.; Wang, X. Association between phenols exposure and earlier puberty in children: A systematic review and meta-analysis. Environ. Res. 2020, 190, 110056. [Google Scholar] [CrossRef]
- Golestanzadeh, M.; Riahi, R.; Kelishadi, R. Association of phthalate exposure with precocious and delayed pubertal timing in girls and boys: A systematic review and meta-analysis. Environ. Sci. Process Impacts 2020, 22, 873–894. [Google Scholar] [CrossRef]
- Wen, Y.; Liu, S.D.; Lei, X.; Ling, Y.S.; Luo, Y.; Liu, Q. Association of PAEs with precocious puberty in children: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2015, 12, 15254–15268. [Google Scholar] [CrossRef] [PubMed]
- Dorman, D.C.; Chiu, W.; Hales, B.F.; Hauser, R.; Johnson, K.J.; Mantus, E.; Martel, S.; Robinson, K.A.; Rooney, A.A.; Rudel, R.; et al. Systematic reviews and meta-analyses of human and animal evidence of prenatal diethylhexyl phthalate exposure and changes in male anogenital distance. J. Toxicol. Environ. Health Part B 2018, 21, 207–226. [Google Scholar] [CrossRef]
- Nelson, W.; Liu, D.Y.; Yang, Y.; Zhong, Z.H.; Wang, Y.X.; Ding, Y.B. In utero exposure to persistent and nonpersistent endocrine-disrupting chemicals and anogenital distance: A systematic review of epidemiological studies. Biol. Reprod. 2020, 102, 276–291. [Google Scholar] [CrossRef]
- Wu, Y.; Zhong, G.; Chen, S.; Zheng, C.; Liao, D.; Xie, M. Polycystic ovary syndrome is associated with anogenital distance, a marker of prenatal androgen exposure. Hum. Reprod. 2017, 32, 937–943. [Google Scholar] [CrossRef]
- Peters, H.E.; Laeven, C.H.C.; Trimbos, C.J.M.A.; van de Ven, P.M.; Verhoeven, M.O.; Schats, R.; Mijatovic, V.; Lambalk, C.B. Anthropometric biomarkers for abnormal prenatal reproductive hormone exposure in women with Mayer-Rokitanksy-Küster-Hauser syndrome, polycystic ovary syndrome, and endometriosis. Fertil. Steril. 2020, 114, 1297–1305. [Google Scholar] [CrossRef]
- Eisenberg, M.L.; Hsieh, M.H.; Walters, R.C.; Krasnow, R.; Lipshultz, L.I. The relationship between anogenital distance, fatherhood, and fertility in adult men. PLoS ONE 2011, 6, e18973. [Google Scholar] [CrossRef] [PubMed]
- Niederberger, C. Re: Anogenital Distance is Associated with Semen Quality but Not Reproductive Hormones in 1106 Young Men from the General Population. J Urol. 2019, 202, 646–647. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.C.; Kuo, P.L.; Chou, Y.Y.; Lin, S.J.; Lee, C.C. Association between prenatal exposure to phthalates and the health of newborns. Environ. Int. 2009, 35, 14–20. [Google Scholar] [CrossRef]
- Jensen, T.K.; Frederiksen, H.; Kyhl, H.B.; Lassen, T.H.; Swan, S.H.; Bornehag, C.G.; Skakkebaek, N.E.; Main, K.M.; Lind, D.V.; Husby, S.; et al. Prenatal exposure to phthalates and anogenital distance in male infants from a low-exposed Danish cohort (2010–2012). Environ. Health Perspect. 2016, 124, 1107–1113. [Google Scholar] [CrossRef]
- Swan, S.H.; Main, K.M.; Liu, F.; Stewart, S.L.; Kruse, R.L.; Calafat, A.M.; Mao, C.S.; Redmon, J.B.; Ternand, C.L.; Sullivan, S.; et al. Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environ. Health Perspect. 2005, 113, 1056–1061. [Google Scholar] [CrossRef] [PubMed]
- Swan, S.H.; Sathyanarayana, S.; Barrett, E.S.; Janssen, S.; Liu, F.; Nguyen, R.H.; Redmon, J.B.; TIDES Study Team. First trimester phthalate exposure and anogenital distance in newborns. Hum. Reprod. 2015, 30, 963–972. [Google Scholar] [CrossRef]
- Huang, B.; Wang, Z.; Kong, Y.; Jin, M.; Ma, L. Global, regional and national burden of male infertility in 204 countries and territories between 1990 and 2019, an analysis of global burden of disease study. BMC Public Health 2023, 23, 2195. [Google Scholar] [CrossRef] [PubMed]
- Amereh, F.; Amjadi, N.; Mohseni-Bandpei, A.; Isazadeh, S.; Mehrabi, Y.; Eslami, A.; Naeiji, Z.; Rafiee, M. Placental plastics in young women from general population correlate with reduced foetal growth in IUGR pregnancies. Environ. Pollut. 2022, 314, 120174. [Google Scholar] [CrossRef] [PubMed]
- Golestanzadeh, M.; Riahi, R.; Kelishadi, R. Association of exposure to phthalates with cardiometabolic risk factors in children and adolescents: A systematic review and meta-analysis. Environ. Sci. Pollut. Res. 2019, 26, 35670–35686. [Google Scholar] [CrossRef]
- Behnia, F.; Peltier, M.; Getahun, D.; Watson, C.; Saade, G.; Menon, R. High bisphenol A (BPA) concentration in the maternal, but not fetal, compartment increases the risk of spontaneous preterm delivery. J. Matern. Fetal Neonatal Med. 2016, 29, 3583–3589. [Google Scholar] [CrossRef]
- Snijder, C.A.; Heederik, D.; Pierik, F.H.; Hofman, A.; Jaddoe, V.W.; Koch, H.M.; Longnecker, M.P.; Burdorf, A. Fetal growth and prenatal exposure to bisphenol A: The generation R study. Environ. Health Perspect. 2013, 121, 393–398. [Google Scholar] [CrossRef]
- Sol, C.M.; van Zwol-Janssens, C.; Philips, E.M.; Asimakopoulos, A.G.; Martinez-Moral, M.P.; Kannan, K.; Jaddoe, V.W.V.; Trasande, L.; Santos, S. Maternal bisphenol urine concentrations, fetal growth and adverse birth outcomes: A population-based prospective cohort. Environ. Health 2021, 20, 60. [Google Scholar] [CrossRef]
- Trasande, L.; Nelson, M.E.; Alshawabkeh, A.; Barrett, E.S.; Buckley, J.P.; Dabelea, D.; Dunlop, A.L.; Herbstman, J.B.; Meeker, J.D.; Naidu, M.; et al. Prenatal phenol and paraben exposures and adverse birth outcomes: A prospective analysis of US births. Environ. Int. 2024, 183, 108378. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, F.; Ben, Y.; Su, Y. Association between phthalate exposure and risk of spontaneous pregnancy loss: A systematic review and meta-analysis. Environ. Pollut. 2020, 267, 115446. [Google Scholar] [CrossRef]
- Zou, H.; Lin, Y.; Yang, L.; Ou, C.; Geng, F.; Wang, Y.; Chen, W.; Niu, Y.; Liang, R.; Su, Q.; et al. Neonatal weight and prenatal exposure to polychlorinated biphenyls: A meta-analysis. Asian Pac. J. Cancer Prev. 2019, 20, 3251–3258. [Google Scholar] [CrossRef]
- Lien, Y.J.; Ku, H.Y.; Su, P.H.; Chen, S.J.; Chen, H.Y.; Liao, P.C.; Chen, W.J.; Wang, S.L. Prenatal exposure to phthalate esters and behavioral syndromes in children at 8 years of age: Taiwan Maternal and Infant Cohort Study. Environ. Health Perspect. 2015, 123, 95–100. [Google Scholar] [CrossRef]
- Ghassabian, A.; van den Dries, M.; Trasande, L.; Lamballais, S.; Spaan, S.; Martinez-Moral, M.P.; Kannan, K.; Jaddoe, V.W.V.; Engel, S.M.; Pronk, A.; et al. Prenatal exposure to common plasticizers: A longitudinal study on phthalates, brain volumetric measures, and IQ in youth. Mol. Psychiatry 2023, 28, 4814–4822. [Google Scholar] [CrossRef]
- Li, M.C.; Chen, C.H.; Guo, Y.L. Phthalate esters and childhood asthma: A systematic review and congener-specific meta-analysis. Environ. Pollut. 2017, 229, 655–660. [Google Scholar] [CrossRef]
- Navaranjan, G.; Diamond, M.L.; Harris, S.A.; Jantunen, L.M.; Bernstein, S.; Scott, J.A.; Takaro, T.K.; Dai, R.; Lefebvre, D.L.; Azad, M.B.; et al. Early life exposure to phthalates and the development of childhood asthma among Canadian children. Environ. Res. 2021, 197, 110981. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, M.; Luo, J.; Pan, J.; Luo, T.; Yang, W. Association of prenatal exposure to phthalates with risks of asthma, wheeze, and allergic diseases during childhood: A systematic review and meta-analysis. J. Environ. Health Sci. Eng. 2025, 23, 26. [Google Scholar] [CrossRef] [PubMed]
- Perez-Diaz, C.; Uriz-Martínez, M.; Ortega-Rico, C.; Leno-Duran, E.; Barrios-Rodríguez, R.; Salcedo-Bellido, I.; Arrebola, J.P.; Requena, P. Phthalate exposure and risk of metabolic syndrome components: A systematic review. Environ Pollut. 2024, 340 Pt 1, 122714. [Google Scholar] [CrossRef]
- van Zwol-Janssens, C.; Trasande, L.; Asimakopoulos, A.G.; Martinez-Moral, M.P.; Kannan, K.; Philips, E.M.; Rivadeneira, F.; Jaddoe, V.W.V.; Santos, S. Fetal exposure to bisphenols and phthalates and childhood bone mass: A population-based prospective cohort study. Environ. Res. 2020, 186, 109602. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wosu, A.C.; Fleisch, A.F.; Dunlop, A.L.; Starling, A.P.; Ferrara, A.; Dabelea, D.; Oken, E.; Buckley, J.P.; Chatzi, L.; et al. Associations of gestational perfluoroalkyl substances exposure with early childhood BMI Z-scores and risk of overweight/obesity: Results from the ECHO cohorts. Environ. Health Perspect. 2023, 131, 67001. [Google Scholar] [CrossRef] [PubMed]
- Fournier, S.B.; D’Errico, J.N.; Adler, D.S.; Kollontzi, S.; Goedken, M.J.; Fabris, L.; Yurkow, E.J.; Stapleton, P.A. Nanopolystyrene translocation and fetal deposition after acute lung exposure during late-stage pregnancy. Part. Fibre Toxicol. 2020, 17, 55. [Google Scholar] [CrossRef]
- Aghaei, Z.; Mercer, G.V.; Schneider, C.M.; Sled, J.G.; Macgowan, C.K.; Baschat, A.A.; Kingdom, J.C.; Helm, P.A.; Simpson, A.J.; Simpson, M.J.; et al. Maternal exposure to polystyrene microplastics alters placental metabolism in mice. Metabolomics 2022, 19, 1. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Xiong, S.; Jing, Q.; van Gestel, C.A.M.; van Straalen, N.M.; Roelofs, D.; Sun, L.; Qiu, H. Maternal exposure to polystyrene nanoparticles retarded fetal growth and triggered metabolic disorders of placenta and fetus in mice. Sci. Total Environ. 2023, 854, 158666. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Zhang, Y.; Wang, C.; Wang, X.; Zhou, J.; Shen, M.; Zhao, Y.; Fu, Z.; Jin, Y. Maternal exposure to different sizes of polystyrene microplastics during gestation causes metabolic disorders in their offspring. Environ. Pollut. 2019, 255, 113122. [Google Scholar] [CrossRef]
- Luo, T.; Wang, C.; Pan, Z.; Jin, C.; Fu, Z.; Jin, Y. Maternal polystyrene microplastic exposure during gestation and lactation altered metabolic homeostasis in the dams and their F1 and F2 offspring. Environ. Sci. Technol. 2019, 53, 10978–10992. [Google Scholar] [CrossRef]
- Hu, J.; Qin, X.; Zhang, J.; Zhu, Y.; Zeng, W.; Lin, Y.; Liu, X. Polystyrene microplastics disturb maternal-fetal immune balance and cause reproductive toxicity in pregnant mice. Reprod. Toxicol. 2012, 106, 42–50. [Google Scholar] [CrossRef]
- Mercer, G.V.; Harvey, N.E.; Steeves, K.L.; Schneider, C.M.; Sled, J.G.; Macgowan, C.K.; Baschat, A.A.; Kingdom, J.C.; Simpson, A.J.; Simpson, M.J.; et al. Maternal exposure to polystyrene nanoplastics alters fetal brain metabolism in mice. Metabolomics 2023, 19, 96. [Google Scholar] [CrossRef]
- Dibbon, K.C.; Mercer, G.V.; Maekawa, A.S.; Hanrahan, J.; Steeves, K.L.; Ringer, L.C.M.; Simpson, A.J.; Simpson, M.J.; Baschat, A.A.; Kingdom, J.C.; et al. Polystyrene micro- and nanoplastics cause placental dysfunction in mice. Biol. Reprod. 2024, 110, 211–218. [Google Scholar] [CrossRef]
- Vignon, A.N.; Dudon, G.; Oliva, G.; Thirard, S.; Alenda, U.G.; Brugoux, A.; Cazevieille, C.; Imbert, J.; Bellières, C.; Lehmann, S.; et al. Lifelong exposure to polystyrene-nanoplastics induces an attention-deficit hyperactivity disorder-like phenotype and impairs brain aging in mice. J. Hazard. Mater. 2025, 494, 138640. [Google Scholar] [CrossRef]
- Tian, L.; Zhang, Y.; Chen, J.; Liu, X.; Nie, H.; Li, K.; Liu, H.; Lai, W.; Shi, Y.; Xi, Z.; et al. Effects of nanoplastic exposure during pregnancy and lactation on neurodevelopment of rat offspring. J. Hazard. Mater. 2024, 474, 134800. [Google Scholar] [CrossRef]
- Wen, J.; Lin, Y. Invisible invaders: Unveiling the carcinogenic threat of microplastics and nanoplastics in colorectal cancer—A systematic review. Front. Public Health 2025, 13, 1653245. [Google Scholar] [CrossRef] [PubMed]
- Marfella, R.; Prattichizzo, F.; Sardu, C.; Fulgenzi, G.; Graciotti, L.; Spadoni, T.; D’Onofrio, N.; Scisciola, L.; La Grotta, R.; Frigé, C.; et al. Microplastics and Nanoplastics in Atheromas and Cardiovascular Events. N. Engl. J. Med. 2024, 390, 900–910. [Google Scholar] [CrossRef] [PubMed]
- Bao, Q.; Huang, Y.; Deng, M.; Zhang, C.; Zu, D.; He, H.; Hu, Y.; Zhong, Y.; Liang, C.; Liu, H.; et al. PVC Nanoplastics Exposure Exacerbates Asthma through R-Loop Accumulation and Subsequent STING Activation in Macrophages. Adv. Sci. 2025, e02223. [Google Scholar] [CrossRef]
- Tan, R.Y.; She, Q.Y.; Ma, Y.C.; Liu, M.H.; Li, L.J.; Huang, L.L.; Zhong, Y.W.; Bi, H.X. The threat of microplastics to human kidney health: Mechanisms of nephrotoxicity and future research directions. Environ. Res. 2025, 283, 122124. [Google Scholar] [CrossRef]
- Pang, L.; Chen, D.; Wei, H.; Lan, L.; Li, J.; Xu, Q.; Li, H.; Lu, C.; Tang, Q.; Hu, W.; et al. Effect of prenatal exposure to phthalates on birth weight of offspring: A meta-analysis. Reprod. Toxicol. 2024, 124, 108532. [Google Scholar] [CrossRef]
- Podlecka, D.; Gromadzińska, J.; Mikołajewska, K.; Fijałkowska, B.; Stelmach, I.; Jerzynska, J. Longitudinal effect of phthalates exposure on allergic diseases in children. Ann. Allergy Asthma Immunol. 2020, 125, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Frangione, B.; Birk, S.; Benzouak, T.; Rodriguez-Villamizar, L.A.; Karim, F.; Dugandzic, R.; Villeneuve, P.J. Exposure to perfluoroalkyl and polyfluoroalkyl substances and pediatric obesity: A systematic review and meta-analysis. Int. J. Obes. 2024, 48, 131–146. [Google Scholar] [CrossRef]
- Trasande, L.; Nelson, M.E.; Alshawabkeh, A.; Barrett, E.S.; Buckley, J.P.; Dabelea, D.; Dunlop, A.L.; Herbstman, J.B.; Meeker, J.D.; Naidu, M.; et al. Prenatal phthalate exposure and adverse birth outcomes in the USA: A prospective analysis of births and estimates of attributable burden and costs. Lancet Planet. Health 2024, 8, e74–e85. [Google Scholar] [CrossRef] [PubMed]
| Mechanism | Description of Biological Effects | Representative Evidence | References |
|---|---|---|---|
| Oxidative stress | MPs/NPs increase ROS (e.g., superoxide, H2O2) and reduce antioxidant defenses (SOD, CAT, GSH), leading to cellular injury | ROS overproduction, mitochondrial dysfunction, and reduced cell viability observed in exposed animal and human cell models | [42,43,44,45,46,47] |
| Inflammation | Activation of cytokines (IL-6, IL-8, IL-10, IL-1β) and NF-κB, with impaired macrophage clearance and dysbiosis-induced immune activation | Chronic inflammation and microbiota imbalance demonstrated in experimental models | [48,49] |
| Apoptosis | MPs/NPs activate intrinsic and extrinsic apoptotic pathways, increasing caspases and pro-apoptotic markers | Altered glycolysis, mitochondrial damage, and up-regulated TNF, p53, casp3b, gadd45ba, and ptgs2a | [50,51,52] |
| Genotoxicity | Direct DNA interaction or indirect ROS-mediated damage causing micronuclei, DNA strand breaks, and chromosomal instability | Increased comet-tail DNA, nuclear abnormalities, and structural DNA damage in exposed cells and animals | [53,54,55] |
| Telomere shortening | MPs/NPs accelerate telomere erosion, compromising chromosome stability | Shorter cord-blood and placental telomeres associated with PVC, PBS, and PP exposure | [56] |
| Endocrine disruption (Bisphenols, Phthalates) | Bisphenols mimic/block hormones via estrogen/nuclear receptors; phthalates disrupt endocrine signaling | Oxidative stress, mitochondrial dysfunction, and reproductive-system interference | [57,58,59] |
| System/Outcome | Main Health Effects in Children | Evidence Type | Key References |
|---|---|---|---|
| Fetal growth & birth outcomes | IUGR, reduced birth weight, prematurity | Human + Animal | [89,90,91,92,93,94] |
| Neurodevelopment | ↓ IQ, memory deficits, ADHD traits, autism-like behaviors | Human + Animal | [90,91,92,93,94,95,96,97,98,99,100,101] |
| Respiratory & allergy | Asthma, wheeze, rhinitis, eczema | Human | [99,100,101] |
| Metabolic effects | Obesity, ↑ triglycerides, glucose dysregulation | Human + Animal | [102,103,104] |
| Reproductive system | Cryptorchidism, altered AGD, fertility impairment | Human + Animal | [57,58,59,60,61,62,63,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83] |
| Systemic/Other | Inflammation, oxidative stress, multi-organ toxicity | Mostly animal | [89,95,96,105,106,107,108,109,110,111,112,113,114] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Principi, N.; Argentiero, A.; Campana, B.R.; Seferi, H.; Cinti, E.; Esposito, S. Plastic Pollution and Child Health: A Narrative Review of Micro- and Nanoplastics, Additives, and Developmental Risks. J. Clin. Med. 2025, 14, 8399. https://doi.org/10.3390/jcm14238399
Principi N, Argentiero A, Campana BR, Seferi H, Cinti E, Esposito S. Plastic Pollution and Child Health: A Narrative Review of Micro- and Nanoplastics, Additives, and Developmental Risks. Journal of Clinical Medicine. 2025; 14(23):8399. https://doi.org/10.3390/jcm14238399
Chicago/Turabian StylePrincipi, Nicola, Alberto Argentiero, Beatrice Rita Campana, Hajrie Seferi, Elena Cinti, and Susanna Esposito. 2025. "Plastic Pollution and Child Health: A Narrative Review of Micro- and Nanoplastics, Additives, and Developmental Risks" Journal of Clinical Medicine 14, no. 23: 8399. https://doi.org/10.3390/jcm14238399
APA StylePrincipi, N., Argentiero, A., Campana, B. R., Seferi, H., Cinti, E., & Esposito, S. (2025). Plastic Pollution and Child Health: A Narrative Review of Micro- and Nanoplastics, Additives, and Developmental Risks. Journal of Clinical Medicine, 14(23), 8399. https://doi.org/10.3390/jcm14238399

