Robotic Pancreaticoduodenectomy: Current Evidence and Future Perspectives
Abstract
1. Introduction
2. Methods
2.1. Search Strategy
- PubMed search string (last search 15 October 2025, via PubMed.gov):
- Embase search string (Ovid, last search 15 October 2025):
- Scopus search string (Elsevier, last search 15 October 2025):
2.2. Eligibility Criteria
- Reported clinical outcomes of RPD for pancreatic and periampullary benign or malignant disease;
- Comparative RPD vs. open or laparoscopic pancreaticoduodenectomy (OPD/LPD) studies;
- Systematic reviews, meta-analyses, or large retrospective/prospective series (> 20 patients);
- Peer-reviewed journal-published articles.
- Case reports or small case series (<10 patients);
- Experimental or pre-clinical studies with minimal clinical data;
- Non-English publications or conference abstracts with no full-text data.
2.3. Data Extraction and Synthesis
2.4. Quality Assessment and Limitations
- Complication definition and grading (preferably with ISGPS criteria);
- Completeness of outcome reporting (90-day morbidity/mortality, POPF);
- Presence of risk-adjusted or propensity-matched analyses.
3. Historical Development and Robotic Technology
3.1. Transition to Minimally Invasive Surgery
3.2. Emergence of Robotic Platforms
3.3. Expansion and Maturation of RPD
3.4. Technological Advances
3.5. Current Status
4. Technical Aspects of Robotic Pancreaticoduodenectomy
4.1. Patient Positioning and Setup
4.2. Dissection Phase
4.3. Specimen Extraction and Reconstruction
- Pancreaticojejunostomy (PJ);
- Hepaticojejunostomy (HJ);
- Gastrojejunostomy (GJ) or duodenojejunostomy, depending on pylorus preservation.
- The invagination (dunking) technique, suitable for soft glands or small ducts, in which the pancreatic stump is telescoped into the jejunal lumen and secured with a double-layer suture [27].
4.4. Vascular Resection and Reconstruction
4.5. Operative Time, Learning Curve, and Standardization
4.6. Innovations and Intraoperative Guidance
5. Perioperative and Oncologic Outcomes
5.1. Operative Time and Intraoperative Metrics
5.2. Conversion Rates
5.3. Postoperative Morbidity and Mortality
5.4. Postoperative Recovery and Hospital Stay
5.5. Oncologic Outcomes
5.6. Cost Analysis and Resource Utilization
6. Training and Learning Curve, and Future Perspectives
- Dry-lab simulation-based and virtual reality-based training to familiarize surgeons with robotic console ergonomics and instrument handling;
- Proctored dual-console procedures, enabling direct supervision by a skilled robotic surgeon while leaving the trainee to carry out discrete operative steps;
- Video-based testing and measurement of performance, enabling objective assessment of mastery of skills and identification of technical shortcomings [46].
- Operative efficiency (instrument exchange and time);
- Technical precision (vascular dissection and PJ);
- Clinical outcomes (POPF, DGE, LOS, morbidity).
- Completion of a high-volume HPB fellowship;
- Stepwise supervised robotic training;
- Minimum threshold cases for independent practice (usually ≥40–50 RPDs under supervision);
- Regular review with structured video review and objective metrics [17].
- Immersive VR and AR simulators that enable rehearsal of procedural steps in virtual environments and intraoperative scenario management;
- Artificial intelligence (AI) video-assisted reviews enabling an objective assessment of suture quality, dissection plane identification, and optimization of critical steps;
- 3D-printed models of the pancreas for anastomoses and vascular reconstruction practice.
- Technological advancement
- Next-generation robotic systems with haptic feedback, smaller footprints, and low-cost consumables are on the horizon.
- Augmented reality (AR) integration, indocyanine green (ICG) fluorescence, and AI-guided intraoperative assistance can improve safety and precision.
- Augmented training pathways
- Simulation-based training, two-console mentorship, and stepwise modular curricula can minimize learning curves and improve reproducibility.
- Centralization and volume-driven care
- High-volume center consolidation of RPD assures higher quality results, streamlines complex case management, and allows for systematic long-term oncologic efficacy assessment.
- Clinical research and data sharing
- Future large randomized trials and prospective multicenter registries ought to be conducted to determine the following:
- ○
- Long-term oncologic equivalence of OPD and RPD.
- ○
- Cost-effectiveness and resource utilization.
- ○
- Vascular reconstruction and outcomes of complex pancreatic resections.
- Tele-mentoring and remote surgery
- Tele-mentoring and remote supervision can enhance accessibility to robotic expertise in low-volume centers without jeopardizing safety standards.
- Longer operative times, particularly in early learning curve patients, encourage anesthesia exposure and operative fatigue.
- Poor tactile feedback, which can impair judgment during vascular dissection and manipulation of pancreatic parenchyma, leads to complete reliance on visual data and increases the imaging necessary.
- Rare vascular reconstruction, like portal vein or superior mesenteric vein resection, is challenging technically and ideally recommended in high-volume centers.
7. Limitations
8. Conclusions
- Equivalent oncologic results (R0 resection rates, lymph node yield, and survival) to open surgery;
- Less intraoperative blood loss and more rapid postoperative recovery, with shorter length of stay and earlier return of gastrointestinal function;
- Capacity for complex reconstructions, such as selected vascular resections, in skilled centers.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lefor, A.K. Robotic and laparoscopic surgery of the pancreas: An historical review. BMC Biomed. Eng. 2019, 1, 2. [Google Scholar] [CrossRef]
- Kornaropoulos, M.; Moris, D.; Beal, E.W.; Makris, M.C.; Mitrousias, A.; Petrou, A.; Felekouras, E.; Michalinos, A.; Vailas, M.; Schizas, D.; et al. Total robotic pancreaticoduodenectomy: A systematic review of the literature. Surg. Endosc. 2017, 31, 4382–4392. [Google Scholar] [CrossRef] [PubMed]
- Strijker, M.; van Santvoort, H.C.; Besselink, M.G.; van Hillegersberg, R.; Borel Rinkes, I.H.; Vriens, M.R.; Molenaar, I.Q. Robot-assisted pancreatic surgery: A systematic review of the literature. HPB 2013, 15, 1–10. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, M.; Cai, Y.; Li, Y.; Peng, B. Robotic Pancreaticoduodenectomy: Single-Surgeon Initial Experience. Indian J. Surg. 2018, 80, 42–47. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Napoli, N.; Kauffmann, E.F.; Vistoli, F.; Amorese, G.; Boggi, U. State of the art of robotic pancreatoduodenectomy. Updates Surg. 2021, 73, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Cirocchi, R.; Partelli, S.; Trastulli, S.; Coratti, A.; Parisi, A.; Falconi, M. A systematic review on robotic pancreaticoduodenectomy. Surg. Oncol. 2013, 22, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Baethge, C.; Goldbeck-Wood, S.; Mertens, S. SANRA—A scale for the quality assessment of narrative review articles. Res. Integr. Peer Rev. 2019, 4, 5. [Google Scholar] [CrossRef]
- Tang, G.; Chen, F.; Chen, R.; Zhou, R.; Zhang, J. Robotic versus laparoscopic pancreaticoduodenectomy for pancreatic and periampullary tumors: A meta-analysis. Front. Oncol. 2024, 14, 1486504. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Whipple, A.O.; Parsons, W.B.; Mullins, C.R. Treatment of carcinoma of the Ampulla of Vater. Ann. Surg. 1935, 102, 763–779. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cameron, J.L.; Riall, T.S.; Coleman, J.; Belcher, K.A. One thousand consecutive pancreaticoduodenectomies. Ann. Surg. 2006, 244, 10–15. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gagner, M.; Pomp, A. Laparoscopic pylorus-preserving pancreatoduodenectomy. Surg. Endosc. 1994, 8, 408–410. [Google Scholar] [CrossRef] [PubMed]
- Kendrick, M.L.; Cusati, D. Total laparoscopic pancreaticoduodenectomy: Feasibility and outcome in an early experience. Arch. Surg. 2010, 145, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Lanfranco, A.R.; Castellanos, A.E.; Desai, J.P.; Meyers, W.C. Robotic surgery: A current perspective. Ann. Surg. 2004, 239, 14–21. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Giulianotti, P.C.; Coratti, A.; Angelini, M.; Sbrana, F.; Cecconi, S.; Balestracci, T.; Caravaglios, G. Robotics in general surgery: Personal experience in a large community hospital. Arch. Surg. 2003, 138, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Zureikat, A.H.; Postlewait, L.M.; Liu, Y.; Gillespie, T.W.; Weber, S.M.; Abbott, D.E.; Ahmad, S.A.; Maithel, S.K.; Hogg, M.E.; Zenati, M.; et al. A Multi-institutional Comparison of Perioperative Outcomes of Robotic and Open Pancreaticoduodenectomy. Ann. Surg. 2016, 264, 640–649. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Xie, B.; Guo, D. Does pancreatic duct stent placement lead to decreased postoperative pancreatic fistula rates after pancreaticoduodenectomy? A meta-analysis. Int. J. Surg. 2022, 103, 106707. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Ali, M. Robotic pancreaticoduodenectomy: Defining learning curve and the importance of proficiency. HPB 2025, 27, S7. [Google Scholar] [CrossRef]
- Girgis, M.D.; Zenati, M.S.; King, J.C.; Hamad, A.; Zureikat, A.H.; Zeh, H.J.; Hogg, M.E. Oncologic outcomes after robotic pancreatic resections are not inferior to open surgery. Ann. Surg. 2019, 247, e262–e268. [Google Scholar] [CrossRef]
- Chen, K.; Pan, Y.; Liu, X.L.; Jiang, G.Y.; Wu, D.; Maher, H.; Cai, X.J. Minimally invasive pancreaticoduodenectomy for periampullary disease: A comprehensive review of literature and meta-analysis of outcomes compared with open surgery. BMC Gastroenterol. 2017, 17, 120. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wehrle, C.J.; Chang, J.H.; Gross, A.R.; Woo, K.; Naples, R.; Stackhouse, K.A.; Dahdaleh, F.; Augustin, T.; Joyce, D.; Simon, R.; et al. Comparing oncologic and surgical outcomes of robotic and laparoscopic pancreatoduodenectomy in patients with pancreatic cancer: A propensity-matched analysis. Surg. Endosc. 2024, 38, 2602–2610. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boggi, U.; Signori, S.; De Lio, N.; Perrone, V.G.; Vistoli, F.; Belluomini, M.; Cappelli, C.; Amorese, G.; Mosca, F. Feasibility of robotic pancreaticoduodenectomy. Br. J. Surg. 2013, 100, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Picozzi, P.; Nocco, U.; Labate, C.; Gambini, I.; Puleo, G.; Silvi, F.; Pezzillo, A.; Mantione, R.; Cimolin, V. Advances in Robotic Surgery: A Review of New Surgical Platforms. Electronics 2024, 13, 4675. [Google Scholar] [CrossRef]
- Giglio, M.C.; Campanile, S.; Rompianesi, G.; Loiaco, G.; Nasto, R.A.; Montalti, R.; Troisi, R.I. Robotic Versus Open Pancreaticoduodenectomy: A Single-Center Analysis of Safety and Efficacy Using Inverse Probability of Treatment Weighting. Cancers 2025, 17, 1916. [Google Scholar] [CrossRef]
- Delvecchio, A.; Caringi, S.; De Palma, C.; Brischetto, G.; Filippo, R.; Casella, A.; Ferraro, V.; Stasi, M.; Memeo, R.; Tedeschi, M. Step-by-Step Description of Standardized Technique for Robotic Pancreatoduodenectomy. Curr. Oncol. 2025, 32, 302. [Google Scholar] [CrossRef]
- Marino, M.; Gulotta, G.; Komorowski, A.L. Robotic Pancreaticoduodenectomy: Technical Considerations. Indian J. Surg. 2018, 80, 118–122, Erratum in Indian J. Surg. 2018, 80, 401. https://doi.org/10.1007/s12262-018-1785-5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qian, S.; Carrillo-Peña, J.; Domínguez-Prieto, V.; Villarejo-Campos, P.; Jiménez-Fuertes, M.; Pastor-Riquelme, P.; Jiménez-Galanes, S. A Step-By-Step Guide for Robotic Blumgart Pancreaticojejunostomy. J. Clin. Med. 2025, 14, 4471. [Google Scholar] [CrossRef] [PubMed]
- Giulianotti, P.C.; Mangano, A.; Bustos, R.E.; Gheza, F.; Fernandes, E.; Masrur, M.A.; Gangemi, A.; Bianco, F.M. Operative technique in robotic pancreaticoduodenectomy (RPD) at University of Illinois at Chicago (UIC): 17 steps standardized technique. Surg. Endosc. 2018, 32, 4329–4336. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yang, C.; Wang, S.; Chen, J.; Li, B. Does external pancreatic duct stent decrease pancreatic fistula rate after pancreatic resection: A meta-analysis. Pancreatology 2011, 11, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Tani, M.; Kawai, M.; Hirono, S.; Ina, S.; Miyazawa, M.; Shimizu, A.; Yamaue, H. A prospective randomized controlled trial of internal versus external drainage with pancreaticojejunostomy for pancreaticoduodenectomy. Am. J. Surg. 2010, 199, 759–764. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.Y.; Chang, Y.R.; Kim, S.W.; Choi, S.H.; Park, S.J.; Lee, S.E.; Lim, C.S.; Kang, M.J.; Lee, H.; Heo, J.S. Randomized multicentre trial comparing external and internal pancreatic stenting during pancreaticoduodenectomy. Br. J. Surg. 2016, 103, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Andrianello, S.; Marchegiani, G.; Malleo, G.; Masini, G.; Balduzzi, A.; Paiella, S.; Esposito, A.; Landoni, L.; Casetti, L.; Tuveri, M.; et al. Pancreaticojejunostomy With Externalized Stent vs Pancreaticogastrostomy with Externalized Stent for Patients with High-Risk Pancreatic Anastomosis: A Single-Center, Phase 3, Randomized Clinical Trial. JAMA Surg. 2020, 155, 313–321. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Napoli, N.; Kauffmann, E.F.; Ginesini, M.; Di Dato, A.; Viti, V.; Gianfaldoni, C.; Lami, L.; Cappelli, C.; Rotondo, M.I.; Campani, D.; et al. Robotic Versus Open Pancreatoduodenectomy With Vein Resection and Reconstruction: A Propensity Score-Matched Analysis. Ann. Surg. Open 2024, 5, e409. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Farrugia, A.; Muhammad, Q.R.; Ravichandran, N.T.; Ali, M.; Marangoni, G.; Ahmad, J. Proposed training pathway with initial experience to set up robotic hepatobiliary and pancreatic service. J. Robot Surg. 2022, 16, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Potharazu, A.V.; Gangemi, A. Indocyanine green (ICG) fluorescence in robotic hepatobiliary surgery: A systematic review. Int. J. Med. Robot. 2023, 19, e2485. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shanmugasundaram, G.; Maharajan, S.; Raja, K. Robotic Pancreaticoduodenectomy: A Review of the Literature. Int. J. Adv. Robot. Innov. Surg. 2024, 2, 18–23. [Google Scholar]
- Riad, A.; Hadid, M.; Elomri, A.; Al-Ansari, A.; Rejeb, M.A.; Qaraqe, M.; Dakua, S.P.; Jaber, A.R.; Al-Ansari, A.; Aboumarzouk, O.M.; et al. Advancements and challenges in robotic surgery: A holistic examination of operational dynamics and future directions. Surg. Pract. Sci. 2025, 22, 100294. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zwart, M.J.W.; van den Broek, B.; de Graaf, N.; Suurmeijer, J.A.; Augustinus, S.; Te Riele, W.W.; van Santvoort, H.C.; Hagendoorn, J.; Borel Rinkes, I.H.M.; van Dam, J.L.; et al. The Feasibility, Proficiency, and Mastery Learning Curves in 635 Robotic Pancreatoduodenectomies Following a Multicenter Training Program: “Standing on the Shoulders of Giants”. Ann Surg. 2023, 278, e1232–e1241. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- DeLaura, I.; Sharib, J.; Creasy, J.M.; Berchuck, S.I.; Blazer, D.G., 3rd; Lidsky, M.E.; Shah, K.N.; Zani, S., Jr. Defining the learning curve for robotic pancreaticoduodenectomy for a single surgeon following experience with laparoscopic pancreaticoduodenectomy. J. Robot Surg. 2024, 18, 126. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Qiu, J.; Yu, Y.; Wu, D.; Zhang, T. Meta-analysis of robotic versus open pancreaticoduodenectomy in all patients and pancreatic cancer patients. Front. Surg. 2022, 9, 989065. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kwon, J.; Kang, C.M.; Jang, J.Y.; Yoon, Y.S.; Kwon, H.J.; Choi, I.S.; Kim, H.J.; Shin, S.H.; Kang, S.H.; Moon, H.H.; et al. Perioperative textbook outcomes of minimally invasive pancreatoduodenectomy: A multicenter retrospective cohort analysis in a Korean minimally invasive pancreatic surgery registry. Int. J Surg. 2024, 110, 4249–4258. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moris, D.; Zani, S. The role of ERAS in robotic pancreaticoduodenectomy. Lancet Gastroenterol. Hepatol. 2024, 9, 594–595. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.R.; Zwart, M.J.W.; de Graaf, N.; Wei, K.; Qu, L.; Jiabin, J.; Ningzhen, F.; Wang, S.E.; Kim, H.; Kauffmann, E.F.; et al. Learning curve stratified outcomes after robotic pancreatoduodenectomy: International multicenter experience. Surgery 2024, 176, 1721–1729. [Google Scholar] [CrossRef] [PubMed]
- Nassour, I.; Choti, M.A.; Porembka, M.R.; Yopp, A.C.; Wang, S.C.; Polanco, P.M. Robotic-assisted versus laparoscopic pancreaticoduodenectomy: Oncological outcomes. Surg. Endosc. 2018, 32, 2907–2913. [Google Scholar] [CrossRef] [PubMed]
- Rosemurgy, A.; Ross, S.; Bourdeau, T.; Jacob, K.; Thomas, J.; Przetocki, V.; Luberice, K.; Sucandy, I. Cost analysis of pancreaticoduodenectomy at a high-volume robotic hepatopancreaticobiliary surgery program. J. Am. College Surg. 2021, 232, 461–469. [Google Scholar] [CrossRef]
- Aguayo, E.; Antonios, J.; Sanaiha, Y.; Dobaria, V.; Kwon, O.J.; Sareh, S.; Benharash, P.; King, J.C. Readmission and resource use after robotic-assisted versus open pancreaticoduodenectomy: 2010–2017. J. Surg Res. 2020, 255, 517–524. [Google Scholar] [CrossRef]
- Niemann, B.; Kenney, C.; Wallis Marsh, J.; Schmidt, C.; Boone, B.A. Implementing a Robotic Hepatopancreatobiliary Program for New Faculty: Safety, Feasibility and Lessons Learned. J. Robot. Surg. 2024, 18, 253. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Preukschas, A.A.; Cizmic, A.; Müller, P.C.; Kümmerli, C.; Uzunoglu, F.G.; Hackert, T.; Nickel, F. Training and learning curves in robotic pancreatic surgery. Clin. Surg. Oncol. 2025, 4, 100081. [Google Scholar] [CrossRef]

| Author (Year) | Study type | N° of Patients | Comparison | Main findings | Conclusion |
|---|---|---|---|---|---|
| Tang et al., 2024 [8] | Meta-analysis | >9000 | RPD vs. OPD | Lower morbidity, shorter LOS, similar R0 rate | RPD is safe and effective |
| Fu et al., 2022 [39] | Meta-analysis | ~6000 | RPD vs. OPD | Less blood loss, similar oncologic outcomes | RPD advantageous perioperatively |
| Zureikat et al., 2016 [15] | Multicenter study | 700 | RPD vs. OPD | Equivalent R0 and survival; shorter LOS | Learning curve crucial |
| Napoli et al., 2021 [5] | Propensity-matched analysis | 300 | RPD vs. OPD | Reduced LOS, equivalent mortality | RPD matures in expert centers |
| Girgis et al., 2019 [18] | Single-institution retrospective | 456 | RPD vs. OPD | Higher lymph node yield, similar R0 | Comparable oncologic outcomes |
| Jones et al., 2024 [42] | International multicenter | 635 | RPD vs. OPD | Improved efficiency after 60 cases | Supports structured training |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caringi, S.; Delvecchio, A.; Casella, A.; De Palma, C.; Ferraro, V.; Filippo, R.; Stasi, M.; Tralli, N.; Manzia, T.M.; Memeo, R.; et al. Robotic Pancreaticoduodenectomy: Current Evidence and Future Perspectives. J. Clin. Med. 2025, 14, 8372. https://doi.org/10.3390/jcm14238372
Caringi S, Delvecchio A, Casella A, De Palma C, Ferraro V, Filippo R, Stasi M, Tralli N, Manzia TM, Memeo R, et al. Robotic Pancreaticoduodenectomy: Current Evidence and Future Perspectives. Journal of Clinical Medicine. 2025; 14(23):8372. https://doi.org/10.3390/jcm14238372
Chicago/Turabian StyleCaringi, Silvio, Antonella Delvecchio, Annachiara Casella, Cataldo De Palma, Valentina Ferraro, Rosalinda Filippo, Matteo Stasi, Nunzio Tralli, Tommaso Maria Manzia, Riccardo Memeo, and et al. 2025. "Robotic Pancreaticoduodenectomy: Current Evidence and Future Perspectives" Journal of Clinical Medicine 14, no. 23: 8372. https://doi.org/10.3390/jcm14238372
APA StyleCaringi, S., Delvecchio, A., Casella, A., De Palma, C., Ferraro, V., Filippo, R., Stasi, M., Tralli, N., Manzia, T. M., Memeo, R., & Tedeschi, M. (2025). Robotic Pancreaticoduodenectomy: Current Evidence and Future Perspectives. Journal of Clinical Medicine, 14(23), 8372. https://doi.org/10.3390/jcm14238372

