Diabetes Mellitus and Chronic Kidney Disease: The Future Is Being Surpassed
Abstract
1. Introduction
2. Integrated Pharmacological Approach for the Management of Patients with DM and CKD
| Name of Study and Authors | Drug | Study Type | N Patients | Patient Type | Results |
|---|---|---|---|---|---|
| EMPA-REG, Zinman B et al. [13] | Empagliflozin vs. plac | Ph III RCT | 7028 (empa 10 mg, N = 2345, empa 25 mg (n = 2342, plac (n = 2333))) | T2D | Combined 1 EP decreased 12.1% vs. 10.5%, RR 0.86, p < 0.001 |
| EMPA REG OTCOME Wanner C et al. [14] | Empagliflozin vs. plac | Ph III RCT | 7028 (empa 10 mg, N = 2345, empa 25 mg (n = 2342, plac (n = 2333))) | T2D | Incident nephropathy 12.2% in empag group vs. 18.8% in plac group (HR 0.61, p < 0.001). x2 sCreat 1.5% vs. 2.6% (44% RRR). RRT was initiated in 0.3% (empa group) vs. 0.6% (plac group) (RRR 55%). No differences in incident Alb ª. |
| CREDENCE trial, Mahaffey et al. [15] | Canagliflozin vs. plac | Ph III RCT | 4431 T2D | T2D | MACE RR 0.80 (p = 0.01), 1 EP (composite of ESRD (dialysis, transplantation, or a sustained estimated GFR of < 15 mL per minute per 1.73 m2), a doubling of the s creatinine, or death from renal or cardiovascular causes. RR 0.68 (p = 0.01) Second EP RR 0.85 (p = 0.25)). |
| DECLARE, Wiviot SD et al. [16] | Dapagliflozin vs. plac | Ph III RCT | 17,160 T2D | T2D | MACE reduction HR 0.93, p = 0.17, HF reduction 4.9% vs. 5.8%, hospitalization HR 0.83, p = 0.005. Renal event reduction 4.3 vs. 5.6 HR 0.76. |
| DECLARE—TIMI, Mosenzon O et al. [17] | Dapagliflozin vs. plac. | Ph III RCT | 16,863 with albuminuria not CKD | T2D | Reduction of Alb ª and eGFR decline in all categories (p < 0.05). |
| Toyama et al. [18] | SGLT2 inh. vs. plac. | Meta-analysis 27 RCT | 7363 T2D + CKD | T2D | Composite 1 EP renal outcomes eGFR decline /dialysis/RTransplant decrease HR 0.71 (29%). |
| DAPA CKD, Heerspink HJL et al. [19] | Dapagliflozin vs. plac | Ph III RCT | DM + CKD n = 4304. DM = 1455 dapa, 1451 plac. | T2D | Composite 1 EP = or >50% decline eGFR/ESKD/death was 9.2% in dapagl, 14.5% in plac. RR 0.61, p < 0.001 |
| Zheng Y et al. [20] | Syst. Rev. and Meta-analysis (20 qualitative and 9 quantitative studies) | RCT | 22,313 treated with SGLT2 inh. vs. plac. | T2D with CKD | Strong evidence for protective renal health |
| Natale P et al. [21] | Syst Rev | 53 RCT | 65,241 SGLT2 inh. vs. plac. | T2D with CKD | Risk death (2 studies, RRR 0.85–0.94). Renal events: RRR 0.70–0.89 in 2 studies with 12,647 p; RRR 0.68–0.78 in 7 studies with 36,380 patients. |
3. New Emerging Molecules for the Management of Patients with CKD and/or DM and/or Obesity (See Table 6, Table 7, Table 8, Table 9 and Table 10)
| Name of Study and Authors | Drug | Study Type | N Patients | Patient Type | Results |
|---|---|---|---|---|---|
| MIRACLE, Lam CSP et al. [41] | Balcinrenone (10.50 or 150 mg/d) + Dapagliflozin 10 mg/d Vs. Dapag 10 g/d + plac. | Ph II RCT | 166 planned, not achieved | CKD + symptomatic HF | Stopped early because of low recruitment. No dose-dependent influence sK was observed No UACR decrease at 12 weeks. |
| Aldosterone-Synthase Inhibitors | |||||
|---|---|---|---|---|---|
| Name of Study and Authors | Drug | Type of Study | Number of Patients | Type of Patients | Results |
| Freeman MW et al. [42] | Baldrostat 10 mg/d by 7 days | Ph I pharmacokinetic study | N = 32 | CDK diverse stages | Renal impairment had no significant impact on systemic exposure or clearance of baxdrostat. Dose adjustment due to PK differences in patients with kidney disease is probably not necessary |
| EASi KIDNEY, Judge PK et al. [43] | Vicadrostat 10 mg/d (+RAAS inh + empagliflozin 10 mg/d) vs. plac | Ph III RCT Runnning st. | Stratum 1: 4800 p. Stratum 2; 6200 p. Follow-up 3 y. | CKD | 1070 outcomes are expected in 3 years in each group. 1 EP: composite kidney progression and 2 EP: composite CV death/HF hospitalization |
| GLP-1 R Agonists | |||||
|---|---|---|---|---|---|
| Name of Study and Authors | Drug | Type of Study | Number of Patients | Type of Patients | Results |
| Garg SK et al. [44] | Tirzepatide vs. controls | Retrospective Ph IV | T1D n = 84 Controls n = 38 | T1D + BMI = or >27 kbw/1.73 m2 | Reta had greater weight loss, better renal function, fewer proinflammatory cytokines in the kidneys, and better lipid profiles, as compared to Tirze and Lira. Tirze had better blood glucose lowering, weight loss, and lipids as compared to Lira |
| Le Roux et al. [45] | Survodutide Sc 0.6/2.4/3.6/4.8 mg/w, dose escalating vs. plac | Ph II | N = 387 | Overweight or obesity | In people with a BMI ≥ 27 kg/m2, survodutide significantly reduced body weight and waist circumference when compared with placebo in prespecified subgroups based on sex and baseline BMI and was tolerated at all doses tested. |
| Ma et al. [46] | 10 nmol/kbw intraperitoneal injection of Liraglutide vs. Tirzepatide vs. Retatrutide | Experimental T2D model | 10 Db/db mouse per group | Experimental db/db mouse | Reta was superior in reducing weight, improving renal function in db/db mice, and suppressed the expression of pro-inflammatory cytokines and pro-fibrotic factors in the kidneys of mice. Reta enhanced liver function, improved all lipidic parameters, and increased intestinal metabolite butyrate in db/db mice. Tirze exhibited better effects on lowering blood glucose, weight loss, lipid reduction, and improvement of DKD compared to liraglutide. |
| Endothelin A Receptor Antagonists | |||||
|---|---|---|---|---|---|
| Name of Study and Authors | Drug | Type of Study | Number of Patients | Type of Patient | Results |
| ZENITH-CKD Heerspink HJL et al. [47] | Zibozentan 1.5 mg/d + Dapagliflozin 10 mg/d; Zibot 0.25 mg/d + dapaglif 10 mg/d; Dapagliflozin 10 mg/d + plac. | Ph IIb RCT | CKD (n = 449 zibot 1.5 + dapa); (n = 91 zibot 0.25 + dapa) N = 177 dapa + plac | CKD | At 12 w: UACR decrease −33.7% (p < 0.001, in zibotentan 1.5 mg group); −27% (p = 0.0022) in zibot. 0.25 group, all groups vs. dapa + plac. Fluid retention: 18% in zibot. 1.5 mg; 9% in zibot 0.25 mg; 8% in dapa + plac. |
| Guanylate Cyclase Activators | |||||
|---|---|---|---|---|---|
| Name of Study and Authors | Drug | Type of Study | Number of Patients | Type of Patient | Results |
| Heerspink JHL et al. [48] | Avenciguat 1, 2 or 3 mg/TID vs. plac. | Ph III RCT, studies 1 and 2 Pooled analysis | 500 CKD patients, (DM = 243 in study 1 and 27 in study 2). | CKD or CKD + T2D. | UACR in 10 h urine: −15.5% (avenciguat 1 mg), −13.2% (avenciguat 2 mg) and −21.5% (avenciguat 3 mg)- UACR in first morning void urine: −19.4% (avenciguat 1 mg), −15.5% (avenciguat 2 mg) and −21.4% (avenciguat 3 mg) |
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes prevalence and treatment from 1990 to 2022: A pooled analysis of 1108 population-representative studies with 141 million participants. Lancet 2024, 404, 2077–2093. [Google Scholar] [CrossRef]
- International Diabetes Federation. IDF Diabetes Athlas 2023 Report. Available online: http://www.diabetesatlas.org (accessed on 16 August 2025).
- Available online: http://www.pmc.ncbi.nlm.gov (accessed on 16 August 2025).
- REDYT Registro Español de Diálisis y Trasplante. Sociedad Española de Nefrología (S.E.N) y Organización Nacional de Trasplante (ONT). Nefrología 2025. Available online: http://revistanefrologia.com (accessed on 16 August 2025).
- Boenink, R.; Bonthuis, M.; Boerstra, B.A.; Astley, M.E.; Montez de Sousa, I.R.; Helve, J.; Komissarov, K.S.; Comas, J.; Radunovic, D.; Buchwinkler, L. ERA Registry Annual Report 2022: Epidemiology of Kidney Replacement Therapy in Europe, with a focus on sex comparisons. Clin. Kidn. J. 2025, 18, sfae405. [Google Scholar] [CrossRef]
- Montero, N.; Oliveras, L.; Martínez-Castelao, A.; Gorriz, J.L.; Soler, M.J.; Fernández-Fernández, B.; Quero, M.; García-Carro, C.; Garcia-Sancho, P.; Goicoechea, M.; et al. Clinical Practice Guideline for detection and management of diabetic kidney disease: A consensus report by the Spanish Society of Nephrology. Nefrologia 2025, 45 (Suppl. 1), 1–26. [Google Scholar] [CrossRef]
- Sánchez-Álamo, B.; García-Iñigo, F.J.; Shabaka, A.; Acedo, J.M.; Cases-Corona, C.; Domínguez-Torres, P.; Diaz-Enamorado, Y.; Landaluce, E.; Navarro-González, J.F.; Gorriz, J.L.; et al. Urinary Dickkopf-3: A new biomarker for CKD progression and mortality. Nephrol. Dial. Transplant. 2021, 36, 2199–2207. [Google Scholar] [CrossRef]
- Martínez-Castelao, A.; Hasegawa, T.; Fernández-Fernández, B.; Górriz, J.L.; Quero, M.; Fernández-Fresnedo, G.; Zamora, J.I.; Soler, M.J.; Primo Alvarez, J.C.; Robles Pérez-Monteoliva, N.R.; et al. Inflammatory cytokines in chronic kidney disease. Analysis in the PROGRESER cohort. Clin. Kidn. J. 2025, in press.
- Lewis, E.J.; Hunsicker, L.G.; Bain, R.P.; Rohde, R.D. The effect of angiotensin converting enzime inhibition on diabetic nephropathy. N. Engl. J. Med. 1993, 329, 1456–1462. [Google Scholar] [CrossRef] [PubMed]
- Lewis, E.J.; Hunsicker, L.G.; Clarke, W.R.; Berl, T.; Pohl, M.A.; Lewis, J.B.; Ritz, E.; Atkins, R.C.; Rohde, R.; Raz, I.; et al. Rernoprotective effect of of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N. Engl. J. Med. 2001, 345, 851–860. [Google Scholar] [CrossRef]
- Parving, H.-H.; Lehnert, H.; Bröchner-Mortensen, J.; Gomis, R.; Andersen, S.; Arner, P. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N. Engl. J. Med. 2001, 345, 870–878. [Google Scholar] [CrossRef]
- Brenner, B.M.; Cooper, M.E.; De Zeeuw, D.; Keane, W.F.; Mitch, W.E.; Parving, H.-H.; Remuzzi, G.; Snapinn, S.M.; Zhang, Z.; Shahinfar, S. Effects of Losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 2001, 345, 861–869. [Google Scholar] [CrossRef]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef] [PubMed]
- Wanner, C.; Inzucchi, S.E.; Lachin, J.M.; Fitchett, D.; Von Eynatten, M.; Mattheus, M.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Zinman, B. Empagliflozin and progression of kidney disease in type 2 diabetes. N. Engl. J. Med. 2016, 375, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Mahaffey, K.W.; Jardine, M.J.; Bompoint, S.; Cannon, C.P.; Neal, B.; Heerspink, H.J.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; et al. Canagliflozin and Cardiovascular and Renal Outcomes in Type 2 Diabetes Mellitus and Chronic Kidney Disease in Primary and Secondary Cardiovascular Prevention Groups: Results From the Randomized CREDENCE Trial. Circulation 2019, 140, 739–750. [Google Scholar] [CrossRef] [PubMed]
- Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Zelniker, T.A.; Kuder, J.F.; Murphy, S.A.; et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2019, 380, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Mosenzon, O.; Wiviott, S.D.; Heerspink, H.J.; Dwyer, J.P.; Cahn, A.; Goodrich, E.L.; Rozenberg, A.; Schechter, M.; Yanuv, I.; Murphy, S.A.; et al. The Effect of Dapagliflozin on Albuminuria in DECLARE-TIMI 58. Diabetes Care 2021, 44, 1805–1815. [Google Scholar] [CrossRef]
- Toyama, T.; Neuen, B.L.; Jun, M.; Ohkuma, T.; Neal, B.; Jardine, M.J.; Heerspink, H.L.; Wong, M.G.; Ninomiya, T.; Wada, T.; et al. Effect of SGLT2 inhibitors on cardiovascular, renal and safety outcomes in patients with type 2 diabetes mellitus and chronic kidney disease: A systematic review and meta-analysis. Diabetes Obes. Metab. 2019, 21, 1237–1250. [Google Scholar] [CrossRef]
- Heerspink, H.J.L.; Stefánsson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.F.; Mann, J.F.E.; McMurray, J.J.V.; Lindberg, M.; Rossing, P. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef]
- Zheng, Y.; Sun, J. Long-term effect of sodium–glucose cotransporter 2 inhibitors in kidney functions: A systematic review and meta-analysis. Medicine 2025, 104, e41422. [Google Scholar] [CrossRef]
- Natale, P.; Tunnicliffe, D.J.; Toyama, T.; Palmer, S.C.; Saglimbene, V.M.; Ruospo, M.; Gargano, L.; Stallone, G.; Gesualdo, L.; Strippoli, G.F. Sodium-glucose co-transporter protein 2 (SGLT2) inhibitors for people with chronic kidney disease and diabetes. Cochrane Database Syst. Rev. 2024, 5, CD015588. [Google Scholar] [CrossRef]
- Bergman, N.C.; Davies, M.J.; Lingvay, I.; Knop, F.K. Semaglutide for the treatment of overweight and obesity: A review. Diabetes Obes. Metab. 2022, 25, 18–35. [Google Scholar] [CrossRef]
- Jastreboff, A.M.; le Roux, C.W.; Stefanski, A.; Aronne, L.J.; Halpern, B.; Wharton, S.; Wilding, J.P.; Perreault, L.; Zhang, S.; Battula, R.; et al. Tirzepatide for Obesity Treatment and Diabetes Prevention. N. Engl. J. Med. 2025, 392, 958–971. [Google Scholar] [CrossRef]
- Davies, M.J.; Bajaj, H.S.; Broholm, C.; Eliasen, A.; Garvey, W.T.; le Roux, C.W.; Lingvay, I.; Lyndgaard, C.B.; Rosenstock, J.; Pedersen, S.D. Cagrilintide–Semaglutide im adults wirh overweight or obesity and type 2 diabetes. N. Engl. J. Med. 2025, 393, 648–659. [Google Scholar] [CrossRef]
- Muskiet, M.H.A.; Tonneijck, L.; Huang, Y.; Liu, M.; Saremi, A.; Heerspink, H.J.L.; van Raalte, D.H. Lixisenatide and renal outcomes in patients with type 2 diabetes and acute coronary syndrome: An exploratory analysis of the ELIXA randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2018, 6, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Holman, R.R.; Bethel, M.A.; Mentz, R.J.; Thompson, V.P.; Lokhnygina, Y.; Buse, J.B.; Chan, J.C.; Choi, J.; Gustavson, S.M.; Iqbal, N.; et al. Effects of Once-Weekly Exenatide on Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 1228–1239. [Google Scholar] [CrossRef]
- Davies, M.J.; Bain, S.C.; Atkin, S.L.; Rossing, P.; Scott, D.; Shamkhalova, M.S.; Bosch-Traberg, H.; Syrén, A.; Umpierrez, G.E. Efficacy and Safety of Liraglutide Versus Placebo as Add-on to Glucose-Lowering Therapy in Patients with Type 2 Diabetes and Moderate Renal Impairment (LIRA-RENAL): A Randomized Clinical Trial. Diabetes Care 2015, 39, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jódar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. [Google Scholar] [CrossRef]
- Gerstein, H.C.; Colhoun, H.M.; Dagenais, G.R.; Diaz, R.; Lakshmanan, M.; Pais, P.; Probstfield, J.; Riesmeyer, J.S.; Riddle, M.C.; Rydén, L.; et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): A double-blind, randomised placebo-controlled trial. Lancet 2019, 394, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Tuttle, K.R.; Lakshmanan, M.C.; Rayner, B.; Busch, R.S.; Zimmermann, A.G.; Woodward, D.B.; Botros, F.T. Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): A multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol. 2018, 6, 605–617. [Google Scholar] [CrossRef]
- Mahaffey, K.W.; Tuttle, K.R.; Arici, M.; Baeres, F.M.M.; Bakris, G.; Charytan, D.M.; Cherney, D.Z.I.; Chernin, G.; Correa-Rotter, R.; Gumprecht, J.; et al. Cardiovascular outcomes with semaglutide by severity of chronic kidney disease in type 2 diabetes: The FLOW trial. Eur. Heart J. 2024, 46, 1096–1108. [Google Scholar] [CrossRef]
- Waijer, S.W.; Gansevoort, R.T.; Bakris, G.L.; Correa-Rotter, R.; Hou, F.F.; Kohan, D.E.; Kitzman, D.W.; Makino, H.; McMurray, J.J.V.; Perkovic, V.; et al. The Effect of Atrasentan on Kidney and Heart Failure Outcomes by Baseline Albuminuria and Kidney Function: A Post Hoc Analysis of the SONAR Randomized Trial. Clin. J. Am. Soc. Nephrol. 2021, 16, 1824–1832. [Google Scholar] [CrossRef]
- Bakris, G.L.; Agarwal, R.; Anker, S.D.; Pitt, B.; Ruilope, L.M.; Rossing, P.; Kolkhof, P.; Nowack, C.; Schloemer, P.; Joseph, A.; et al. Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2020, 383, 2219–2229. [Google Scholar] [CrossRef]
- Ruilope, L.M.; Pitt, B.; Anker, S.D.; Rossing, P.; Kovesdy, C.P.; Pecoits-Filho, R.; Pergola, P.; Joseph, A.; Lage, A.; Mentenich, N.; et al. Kidney outcomes with finerenone: An analysis from the FIGARO-DKD study. Nephrol. Dial. Transplant. 2023, 38, 372–383. [Google Scholar] [CrossRef]
- Agarwal, R.; Filippatos, G.; Pitt, B.; Anker, S.D.; Rossing, P.; Joseph, A.; Kolkhof, P.; Nowack, C.; Gebel, M.; Ruilope, L.M.; et al. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: The FIDELITY pooled analysis. Eur. Heart J. 2022, 43, 474–484. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Green, J.B.; Heerspink, H.J.; Mann, J.F.; McGill, J.B.; Mottl, A.K.; Rosenstock, J.; Rossing, P.; Vaduganathan, M.; Brinker, M.; et al. Finerenone with empagliflozin in chronic kidney disease and type 2 diabetes. N. Engl. J. Med. 2025, 393, 533–543. [Google Scholar] [CrossRef] [PubMed]
- de Boer, I.H.; Khunti, K.; Sadusky, T.; Tuttle, K.R.; Neumiller, J.J.; Rhee, C.M.; Rosas, S.E.; Rossing, P.; Bakris, G. Diabetes Management in Chronic Kidney Disease: A Consensus Report by the American Diabetes American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO). Diabetes Care 2022, 45, 3075–3090. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Standards of Medical Care in Diabetes—2022 Abridged for Primary Care Providers. Clin. Diabetes 2022, 40, 10–38. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. Summary of revisions: Standards of Care in Diabetes—2025. Diabetes Care 2025, 48 (Suppl. 1), S6–S13. [Google Scholar] [CrossRef]
- Martínez-Castelao, A. Diabetes Mellitus and Diabetic Kidney Disease: The Future Is Already Here. J. Clin. Med. 2023, 12, 2914. [Google Scholar] [CrossRef]
- Lam, C.S.; Køber, L.; Kuwahara, K.; Lund, L.H.; Mark, P.B.; Mellbin, L.G.; Schou, M.; Pizzato, P.E.; Gabrielsen, A.; Gasparyan, S.B.; et al. Balcinrenone plus dapagliflozin in patients with heart failure and chronic kidney disease: Results from the phase 2b MIRACLE trial. Eur. J. Heart Fail. 2024, 26, 1727–1735. [Google Scholar] [CrossRef]
- Freeman, M.W.; Halvorsen, Y.D.; Bond, M.; Murphy, B.; Isaacsohn, J. Results from a Phase 1 Study Assessing the Pharmacokinetics of the Aldosterone SynthaseInhibitor Baxdrostat in Participants with Varying Degrees of Renal Function. Clin. Pharmacol. Drug Dev. 2024, 13, 410–418. [Google Scholar] [CrossRef]
- Judge, P.K.; Tuttle, K.R.; Staplin, N.; Hauske, S.J.; Zhu, D.; Sardell, R.; Cronin, L.; Green, J.B.; Agrawal, N.; Arimoto, R.; et al. The potential for improving cardio-renal outcomes in chronic kidney disease with the aldosterone synthase inhibitor vicadrostat (BI 690517): A rationale for the EASi-KIDNEY trial. Nephrol. Dial. Transplant. 2025, 40, 1175–1186. [Google Scholar] [CrossRef]
- Garg, S.K.; Kaur, G.; Renner, D.; Lanning, M.S.; Mason, E.; Beatson, C.; Ciesco, K.; Snell-Bergeon, J. Cardiovascular and Renal Biomarkers in Overweightand Obese Adults with Type 1 Diabetes Treated with Tirzepatide for 21 Months. Diabetes Technol. Ther. 2025, 27, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Le Roux, C.W.; Steen, O.; Lucas, K.J.; Startseva, E.; Unseld, A.; Hussain, S.A.; Hennige, A.M. Subgroup analysis by sex and baseline BMI in peoplewith a BMI ≥27 kg/m in the phase 2 trial of survodutide, a glucagon/GLP-1 receptor dual agonist. Diabetes Obes. Metab. 2025, 27, 1773–1782. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Hu, X.; Zhang, W.; Tao, M.; Wang, M.; Lu, W. Comparison of the effects of Liraglutide, Tirzepatide, and Retatrutide on diabetic kidney disease in db/dbmice. Endocrine 2025, 87, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Heerspink, H.J.L.; Kiyosue, A.; Wheeler, D.C.; Lin, M.; Wijkmark, E.; Carlson, G.; Mercier, A.-K.; Åstrand, M.; Ueckert, S.; Greasley, P.J.; et al. Zibotentan in combination with dapagliflozin compared with dapagliflozin in patients with chronic kidney disease (ZENITH-CKD): A multicentre, randomised, active-controlled, phase 2b, clinical trial. Lancet 2023, 402, 2004–2017. [Google Scholar] [CrossRef]
- Heerspink, H.J.; Cherney, D.; Gafor, A.H.A.; Górriz, J.L.; Pergola, P.E.; Tang, S.C.; Desch, M.; Iliev, H.; Sun, Z.; Steubl, D.; et al. Effect of Avenciguat on Albuminuria in Patients with CKD: Two Randomized Placebo-Controlled Trials. J. Am. Soc. Nephrol. 2025, 35, 1227–1239. [Google Scholar] [CrossRef]
- van Raalte, D.H.; Bjornstad, P.; Cherney, D.Z.I.; de Boer, I.H.; Fioretto, P.; Gordin, D.; Persson, F.; Rosas, S.E.; Rossing, P.; Schaub, J.A.; et al. Combination therapy for kidney disease in people with diabetes mellitus. Nat. Rev. Nephrol. 2024, 20, 433–446. [Google Scholar] [CrossRef]
- Martínez-Castelao, A.; Soler, M.J.; Teruel, J.L.G.; Navarro-González, J.F.; Fernandez-Fernandez, B.; Moreno, F.d.A.; Ortiz, A. Optimizing the timing of nephrologhy referral for patients with diabetic kidney disease. Clin. Kidney J. 2020, 14, 5–8. [Google Scholar] [CrossRef]
| Name of Study and Authors | Drug | Study Type | N Patients | Patient Type | Results |
|---|---|---|---|---|---|
| RAAS Blockers | |||||
| Captopril trial, Lewis EJ et al. [9] | Captopril vs. placebo | Ph III RCT | 409 (207 capt, 202 plac) | T1D | 50% decrease combined 1 EP (x2 sCreat, dialysis, renal transpl) |
| IRMA II, Parving HH et al. [11] | Irbesartan vs. plac | Ph III RCT | 590 | T2D | 1 EP (doubling of the base-line serum creatinine concentration) (HR 0.30, p < 0.001) |
| IDNT, Lewis EJ et al. [10] | Irbesartan vs. amlodipin vs. plac | Ph III RCT | 1715 | T2D | x2 sCreat decrease 21% vs. 24% (vs. plac p < 0.03, vs. amlodi p < 0.05) |
| RENAAL, Brenner BM et al. [12] | Losartan vs. plac | Ph III RCT | 1513 | T2D | x2 sCreat decrease 16% (p = 0.006), decrease ESRD 28%/(p = 0.02), decrease prot ª 35% (p = 0.001) |
| Name of Study and Authors | Drug | Study Type | N Patients | Patient Type | Results |
|---|---|---|---|---|---|
| STEP 1 to 8 propramme. Bergman NC et al. [22] | Review | 8 RCT | Semaglutide 2.4 mg sc/week N = 1961 pat. | Obesity without DM | At week 68, 17.4% (semagl. group) vs. 14.9% (plac) weight loss. |
| SURMOUNT-1, Jastreboff et al. [23] | 2539 p | 2539 (1032 with Pre DM) | Obesity | At week 17, 1.3% in tirzepatide group vs. 13.3% in plac group developed T2D, HR 0.12, p < 0.001 | |
| Davies MJ et al. [24] | Cagrilintide—semaglutide vs. plac | 1206 | Cagrilintide +semag (n = 904), placebo (n = 342) | Obesity+T2D | At week 68, −13.7% (cagri + semagl) vs. −3.4% (plac) weight loss. |
| ELIXA Musquiet ME et al. [25] | Lixisenatide vs. plac | 6068 5978 microAlb ª available | Lixienatide 2250 lixisenatide vs. 2191 plac. | T2D | At week 108, % change in Alb ª: −1.69% in normoAlb ª (p = 0.73); −21.1% in microAlb ª (p0.05) and −39.18% in macroprot ª (p = 0.007) |
| EXSCEL Holman HH et al. [26] | Exenatide 2 mg/sc/w vs. plac | N = 14,752 (10,782 with previous CV disease) | T2D | 1 composite EP 11.4% in the exenatide group and 12.2% in the placebo (HR 0.91). Exenatide safety was noninferior (p < 0.001) but was not superior to efficacy (p = 0.06 for superiority). Death from CV causes, hospitalization for heart failure or acute coronary syndrome and serious adverse events did not differ significantly | |
| LIRA RENAL Davies MJ et al. [27] | Lixisenatide vs. plac | Ph III RCT | Lixisenatide sc n = 279 | T2D + CKD | Weight loss −2.41 kbw vs. −1.09 (p < 0.0052). No changes in renal function. |
| LEADER, Marso SP et al. [28] | Liraglutide vs. plac | Ph III RCT | N = 94,340, Liraglutide (4668) vs. plac (n = 4672) | T2D | Composite 1 EP 13% vs. 14.9%, RR 0.87, p < 0.001. Death from CV causes 4.7 vs. 6% (RR 0.78, p < 0.007); deaths from any cause 8.2 vs. 9.6%, RR 0.85, p = 0.02 |
| REWIND Gerstain HC et al. [29] | Ph III RCT | Dulaglutide 1.5 mg sc/w. Dukagl n) 4949 vs. plac (n = 4952) | T2D with previous CV risk factors | Composite 1 EP 12% vs. 13.4% HR 0.88, p = 0.026. No differences on mortality rate. | |
| AWARD Tuttle K et al. [30] | Dulaglutide vs. insulin glargine | Ph III RCT | Dulaglutide n = 577, 1.5 mg sc/w, dulag 0.75 mg sc/w vs. insulin glargine | T2D + CKD | At 52 w: eGFR dulaglutide groups: 34 mL/min/1.73 m2; eGFR in insulin glargine 31 mL/min/1.73 m2 (< 0.005). UACR and glucose control without differences between groups. |
| FLOW Mahaffy et al. [31] | Semaglutide 1 mg sc/week 52 w | Ph III RCT | N = 3533 KDIGO low risk (n = 242 p), high risk (n = 878 p), very high risk (n = 2412) | T2D + CKD | Decrease in CV death/myoc infart c/stroke 18% in semaglutide patients, regardless of baseline CKD severity. |
| Name of Study and Authors | Drug | Study Type | N Patients | Patient Type | Results |
|---|---|---|---|---|---|
| SONAR Waijer et al. [32] | Atrasentan 1 mg/d vs. plac | Ph III RCT | Initial phase n = 5117; enrichment phase n = 3668 p | T2D + CKD | 1 EP decrease HR 0.71, highest benefit in patients with higher UACR and lower eGFR. High risk of hospitalization for HF across all categories of UACR and eGFR.at baseline |
| Drug | Study Type | Number of Patients | Type of Patient | Results | |
|---|---|---|---|---|---|
| FIDELIO DKD, Bakris G et al. [33] | Finerenone vs. plac | Ph III RCT | N = 5734, 2833 finerenone, 2841 plac. | T2D + CKD | Combined 1 EP 17.8% vs. 21.1% HR 0.86, p = 0.001; 2 EP kidney failure/sustained decrease eGFR/death renal cause 13% vs. 14.8% HR 0.86, p = 0.03 |
| FIGARO Ruilope JM et al. [34] | Finernone vs. plac | RCT | 7352 | T2D + CKD | Higher effects on the eGFR decrease < 57% composite 1 EP HR 0.77, p = 0.041, RRR 36% for ESRD |
| FIDELITY Agarwal R et al. [35] | Finerenone vs. plac | Pool analysis 2 RCT | N = 6519 finerenone N = 6507 plac | T2D + CKD | Comp 1 EP CV outcome 12.7% vs. 14.4%, HR 0.86, p = 0.00018. Composite kidney outcomes: 5.5% vs. 7.1%, HR 0.77, p = 0.0002 |
| Agarwal R et al. [36] | Finerenone 10 mg/d, empagliflozin 10 mg/d, or combined finerenone + empagliflozin | Ph III RCT | Finerenone n = 258 p; empagliflozin n = 261 p, combined t n = 265 p | T2D + CKD | At day 180, there was a reduction in the UATC ratio with combination therapy (HR 0.71; p < 0.001) and also greater than with empagliflozin alone (0.68; p < 0.001) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Castelao, A.; Górriz, J.L.; Fernández-Fernández, B.; Soler, M.J.; Navarro-González, J.F. Diabetes Mellitus and Chronic Kidney Disease: The Future Is Being Surpassed. J. Clin. Med. 2025, 14, 8326. https://doi.org/10.3390/jcm14238326
Martínez-Castelao A, Górriz JL, Fernández-Fernández B, Soler MJ, Navarro-González JF. Diabetes Mellitus and Chronic Kidney Disease: The Future Is Being Surpassed. Journal of Clinical Medicine. 2025; 14(23):8326. https://doi.org/10.3390/jcm14238326
Chicago/Turabian StyleMartínez-Castelao, Alberto, José Luis Górriz, Beatriz Fernández-Fernández, María José Soler, and Juan F. Navarro-González. 2025. "Diabetes Mellitus and Chronic Kidney Disease: The Future Is Being Surpassed" Journal of Clinical Medicine 14, no. 23: 8326. https://doi.org/10.3390/jcm14238326
APA StyleMartínez-Castelao, A., Górriz, J. L., Fernández-Fernández, B., Soler, M. J., & Navarro-González, J. F. (2025). Diabetes Mellitus and Chronic Kidney Disease: The Future Is Being Surpassed. Journal of Clinical Medicine, 14(23), 8326. https://doi.org/10.3390/jcm14238326

