Next Decade Research in Asthma: Broad Omics-Based Exploration Versus Targeted Airway Epithelium Studies
Abstract
1. Introduction
2. Asthma Heterogeneity: Phenotypes and Endotypes
2.1. Asthma Phenotypes
2.2. Asthma Endotypes
2.2.1. Endotyping Asthma Using Sputum
2.2.2. Endotyping Asthma Using Bronchial Biopsies and Airway Brushing
2.2.3. Endotyping Asthma Using Blood
3. Multiomics
4. Are Multiomics the Future Asthma Research?
5. The Future of Asthma Research: Targeted Studies of Airways Epithelium
5.1. Basal Cells in Health and in Asthma
5.2. Club Cells in Health and in Asthma
5.3. Ciliated Cells in Health and in Asthma
5.4. Goblet Cells in Health and in Asthma
5.5. Pulmonary Neuroendocrine Cells in Health and in Asthma
5.6. Tuft Cells in Healh and in Asthma
5.7. Pulmonary Ionocytes in Health and in Asthma
5.8. Hillock Cells in Health and in Asthma
5.9. Airway Cell Adhesions in Health and in Asthma
5.9.1. Tight Junctions
5.9.2. Adherens Junctions
5.9.3. GAP Junctions
5.9.4. Desmosomes, Hemidesmosomes, and Focal Adhesions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| Adherens junctions | AJs |
| Airway epithelial cells | AECs |
| Alkaline phosphatase tissue-nonspecific isozyme | ALPL |
| Basal cell | BC |
| Body mass indexBMI | BMI |
| Bronchial epithelial cells | BEC |
| Bronchoalveolar lavage fluid | BALF |
| Calcitonin gene-related peptide | CGRP) |
| Carboxypeptidasa A3 | CPA3 |
| Chloride chanel regulator 1 | CLCA1 |
| Charcot-Leyden crystal protein | CLC |
| Chemokine C-X-C motif receptor 2 | CXCR2 |
| Ciliated cell | CLC |
| Clara cell 16 | CC16 |
| Club cell | CC |
| Chronic obstructive pulmonary disease | COPD |
| Chronic rhinosinusitis with nasal polyps | CRSwNP |
| Cystic fibrosis transmembrane conductance regulator | CFTR |
| Dendritic cells | DCs |
| Differentially expressed genes | DEGs |
| Extracellular matrix | ECM |
| Forced expiratory volume 1 s | FEV1 |
| Fractional exhaled nitric oxide | FeNO |
| Gap junctions | GJs |
| Goblet cell | GC |
| Inhaled corticosteroid | ICS |
| Innate lymphoid cells | ILCs |
| Interferon gamma | IFN-γ |
| Interleukin | IL |
| Junction adhesion molecule-A | JAM-A |
| Mucociliary clearance | MCC |
| Nucleotide-binding domain and leucine-rich repeats containing pyrin domain 3 | NLRP3 |
| Omics-associated clusters | OACs |
| Periostin | POSTN |
| Pregnancy-associated plasma protein | A PAPP-A |
| Prostaglandin | PG |
| Protocadherin 1 | PCDH1 |
| Pulmonary ionocyte | PI |
| Pulmonary neuroendocrine cell | PNEC |
| Reactive oxygen species | ROS |
| Serpin peptidase inhibitor clade B member 2 | SERPINB2 |
| Single-cell RNA sequencing | ScRNA-sep |
| Thymic stromal lymphopoietin | TSLP |
| Tight junctions | TJs |
| Toll-like receptor | TLR |
| Tuft cell | TC |
| Tumor necrosis alfa | TNF-α |
| Zona occludens | ZO |
References
- Porsbjerg, C.; Melen, E.; Lehtimaki, L.; Shaw, D. Asthma. Lancet 2023, 401, 858–873. [Google Scholar] [CrossRef]
- Varricchi, G.; Brightling, C.E.; Grainge, C.; Lambrecht, B.N.; Chanez, P. Airway remodelling in asthma and the epithelium: On the edge of a new era. Eur. Respir. J. 2024, 63, 2301619. [Google Scholar] [CrossRef]
- Rackemann, F.M. A working classification of asthma. Am. J. Med. 1947, 3, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Haldar, P.; Pavord, I.D.; Shaw, D.E.; Berry, M.A.; Thomas, M.; Brightling, C.E.; Wardlaw, A.J.; Green, R.H. Cluster analysis and clinical asthma phenotypes. Am. J. Respir. Crit. Care Med. 2008, 178, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Moore, W.C.; Meyers, D.A.; Wenzel, S.E.; Teague, W.G.; Li, H.; Li, X.; D’Agostino, R., Jr.; Castro, M.; Curran-Everett, D.; Fitzpatrick, A.M.; et al. Identification of asthma phenotypes using cluster analysis in the severe asthma research program. Am. J. Respir. Crit. Care Med. 2010, 18, 315–323. [Google Scholar] [CrossRef]
- Raherison-Semjen, C.; Parrat, E.; Nocent-Eijnani, C.; Mangiapan, G.; Prudhomme, A.; Oster, J.P.; Aperre de Vecchi, C.; Maurer, C.; Debieuvre, D.; Portel, L. FASE-CPHG Study: Identification of asthma phenotypes in the French Severe Asthma Study using cluster analysis. Respir. Res. 2021, 22, 136. [Google Scholar] [CrossRef] [PubMed]
- Zoratti, E.M.; Krouse, R.Z.; Babineau, D.C.; Pongracic, J.A.; O’Connor, G.T.; Wood, R.A.; Khurana Hershey, G.K.; Kercsmar, C.M.; Gruchalla, R.S.; Kattan, M.; et al. Asthma phenotypes in inner-city children. J. Allergy Clin. Immunol. 2016, 138, 1016–1029. [Google Scholar]
- Howrylak, J.A.; Fuhlbrigge, A.L.; Strunk, R.C.; Zeiger, R.S.; Weiss, S.T.; Raby, B.A. Classification of childhood asthma phenotypes and long-term clinical responses to inhaled anti-inflammatory medications. J. Allergy Clin. Immunol. 2014, 133, 1289–1300. [Google Scholar] [CrossRef]
- Global Initiative for Asthma. 2024. Available online: https://ginasthma.org/wp-content/uploads/2024/05/GINA-2024-Strategy-Report-24_05_22_WMS.pdf?utm_source=chatgpt.com (accessed on 1 November 2025).
- Sharma, S.; Gerber, A.N.; Kraft, M.; Wenzel, S.E. Asthma Pathogenesis: Phenotypes, Therapies, and Gaps: Summary of the Aspen Lung Conference 2023. Am. J. Respir. Cell Mol. Biol. 2024, 71, 154–168. [Google Scholar] [CrossRef]
- Ray ACamiolo, M.; Fitzpatrick, A.; Gauthier, M.; Wenzel, S.E. Are We Meeting the Promise of Endotypes and Precision Medicine in Asthma? Physiol. Rev. 2020, 100, 983–1017. [Google Scholar] [CrossRef]
- Gautam, Y.; Johansson, E.; Mersha, T.B. Multi-Omics Profiling Approach to Asthma: An Evolving Paradigm. J. Pers. Med. 2022, 12, 66. [Google Scholar] [CrossRef]
- Pizzichini, M.M.; Popov, T.A.; Efthimiadis, A.; Hussack, P.; Evans, S.; Pizzichini, E.; Dolovich, J.; Hargreave, F.E. Spontaneous and induced sputum to measure indices of airway inflammation in asthma. Am. J. Respir. Crit. Care Med. 1996, 154, 866–869. [Google Scholar] [CrossRef]
- Suárez-Cuartín, G.; Crespo, A.; Mateus, E.; Torrejón, M.; Giner, J.; Belda, A.; Ramos-Barbón, D.; Torrego, A.; Plaza, V. Variability in Asthma Inflammatory Phenotype in Induced Sputum. Frequency and Causes. Arch. Bronconeumol. 2016, 52, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Al-Samri, M.T.; Benedetti, A.; Préfontaine, D.; Olivenstein, R.; Lemière, C.; Nair, P.; Martin, J.G.; Hamid, Q. Variability of sputum inflammatory cells in asthmatic patients receiving corticosteroid therapy: A prospective study using multiple samples. J. Allergy Clin. Immunol. 2010, 125, 1161–1163. [Google Scholar] [CrossRef] [PubMed]
- Hancox, R.J.; Cowan, D.C.; Aldridge, R.E.; Cowan, J.O.; Palmay, R.; Williamson, A.; Town, G.I.; Taylor, D.R. Asthma phenotypes: Consistency of classification using induced sputum. Respirology 2012, 17, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Korevaar, D.A.; Westerhof, G.A.; Wang, J.; Cohen, J.F.; Spijker, R.; Sterk, P.J.; Bel, E.H.; Bossuyt, P.M. Diagnostic accuracy of minimally invasive markers for detection of airway eosinophilia in asthma: A systematic review and meta-analysis. Lancet Respir. Med. 2015, 3, 290–300. [Google Scholar] [CrossRef]
- Schleich, F.N.; Manise, M.; Sele, J.; Henket, M.; Seidel, L.; Louis, R. Distribution of sputum cellular phenotype in a large asthma cohort: Predicting factors for eosinophilic vs neutrophilic inflammation. BMC Pulm. Med. 2013, 13, 11. [Google Scholar] [CrossRef]
- Park, H.W.; Weiss, S.T. Understanding the Molecular Mechanisms of Asthma through transcriptomics. Allergy Asthma Immunol. Res. 2020, 12, 399–411. [Google Scholar] [CrossRef]
- Rijavec, M.; Krumpestar, T.; Škrgat, S.; Kern, I.; Korošec, P. T2-high Asthma, Classified by Sputum mRNA Expression of IL4, IL5, and IL13, is Characterized by Eosinophilia and Severe Phenotype. Life 2021, 11, 92. [Google Scholar] [CrossRef]
- Seys, S.F.; Scheers, H.; Van den Brande, P.; Marijsse, G.; Dilissen, E.; Van Den Bergh, A.; Goeminne, P.C.; Hellings, P.W.; Ceuppens, J.L.; Dupont, L.J.; et al. Cluster analysis of sputum cytokine-high profiles reveals diversity in T(h)2-high asthma patients. Respir. Res. 2017, 18, 39. [Google Scholar] [CrossRef]
- Baines, K.J.; Simpson, J.L.; Wood, L.G.; Scott, R.J.; Fibbens, N.L.; Powell, H.; Cowan, D.C.; Taylor, D.R.; Cowan, J.O.; Gibson, P.G. Sputum gene expression signature of 6 biomarkers discriminates asthma inflammatory phenotypes. J. Allergy Clin. Immunol. 2014, 133, 997–1007. [Google Scholar] [CrossRef]
- Simpson, J.L.; Phipps, S.; Baines, K.J.; Oreo, K.M.; Gunawardhana, L.; Gibson, P.G. Elevated expression of the NLRP3 inflammasome in neutrophilic asthma. Eur. Respir. J. 2014, 43, 1067–1076. [Google Scholar] [CrossRef] [PubMed]
- Baines, K.J.; Simpson, J.L.; Wood, L.G.; Scott, R.J.; Gibson, P.G. Transcriptional phenotypes of asthma defined by gene expression profiling of induced sputum samples. J. Allergy Clin. Immunol. 2011, 127, 153–160.e9. [Google Scholar] [CrossRef]
- Baines, K.J.; Fricker, M.; McDonald, V.M.; Simpson, J.L.; Wood, L.G.; Wark, P.A.B.; Macdonald, H.E.; Reid, A.; Gibson, P.G. Sputum transcriptomics implicates increased p38 signalling activity in severe asthma. Respirology 2020, 25, 709–718. [Google Scholar] [CrossRef]
- Peters, M.C.; Ringel, L.; Dyjack, N.; Herrin, R.; Woodruff, P.G.; Rios, C.; O’Connor, B.; Fahy, J.V.; Seibold, M.A. Transcriptomic Method to Determine Airway Immune Dysfunction in T2-High and T2-Low Asthma. Am. J. Respir. Crit. Care Med. 2019, 199, 465–477. [Google Scholar] [CrossRef]
- Kuo, C.S.; Pavlidis, S.; Loza, M.; Baribaud, F.; Rowe, A.; Pandis, I.; Sousa, A.; Corfield, J.; Djukanovic, R.; Lutter, R.; et al. T-helper cell type 2 (Th2) and non-Th2 molecular phenotypes of asthma using sputum transcriptomics in U-BIOPRED. Eur. Respir. J. 2017, 49, 1602135. [Google Scholar] [CrossRef] [PubMed]
- Kermani, N.Z.; Pavlidis, S.; Xie, J.; Sun, K.; Loza, M.; Baribaud, F.; Fowler, S.J.; Shaw, D.E.; Fleming, L.J.; Howarth, P.H.; et al. Instability of sputum molecular phenotypes in U-BIOPRED severe asthma. Eur. Respir. J. 2021, 57, 2001836. [Google Scholar] [CrossRef]
- Yan, X.; Chu, J.H.; Gomez, J.; Koenigs, M.; Holm, C.; He, X.; Perez, M.F.; Zhao, H.; Mane, S.; Martinez, F.D.; et al. Noninvasive analysis of the sputum transcriptome discriminates clinical phenotypes of asthma. Am. J. Respir. Crit. Care Med. 2015, 191, 1116–1125. [Google Scholar] [CrossRef]
- Schofield, J.P.R.; Burg, D.; Nicholas, B.; Strazzeri, F.; Brandsma, J.; Staykova, D.; Folisi, C.; Bansal, A.T.; Xian, Y.; Guo, Y.; et al. Stratification of asthma phenotypes by airway proteomic signatures. J. Allergy Clin. Immunol. 2019, 144, 70–82. [Google Scholar] [CrossRef]
- Asamoah, K.; Chung, K.F.; Zounemat Kermani, N.; Bodinier, B.; Dahlen, S.E.; Djukanovic, R.; Bhavsar, P.K.; Adcock, I.M.; Vuckovic, D.; Chadeau-Hyam, M. U-BIOPRED Study Group. Proteomic signatures of eosinophilic and neutrophilic asthma from serum and sputum. EBioMedicine 2024, 99, 104936. [Google Scholar] [CrossRef] [PubMed]
- Woodruff, P.G.; Boushey, H.A.; Dolganov, G.M.; Barker, C.S.; Yang, Y.H.; Donnelly, S.; Ellwanger, A.; Sidhu, S.S.; Dao-Pick, T.P.; Pantoja, C.; et al. Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Proc. Natl. Acad. Sci. USA 2007, 104, 15858–15863. [Google Scholar] [CrossRef]
- Woodruff, P.G.; Modrek, B.; Choy, D.F.; Jia, G.; Abbas, A.R.; Ellwanger, A.; Koth, L.L.; Arron, J.R.; Fahy, J.V. T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am. J. Respir. Crit. Care Med. 2009, 180, 388–395. [Google Scholar] [CrossRef]
- Lee, I.; Ganesan, A.; Kalesinskas, L.; Zheng, H.; Ahn, H.C.; Christenson, S.; Erzurum, S.C.; Zein, J.; Bleecker, E.R.; Meyers, D.A.; et al. Multicohort Analysis of Bronchial Epithelial Cell Expression in Healthy Subjects and Patients with Asthma Reveals Four Clinically Distinct Clusters. Am. J. Respir. Cell Mol. Biol. 2024, 73, 73–87. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.S.; Pavlidis, S.; Loza, M.; Baribaud, F.; Rowe, A.; Pandis, I.; Gibeon, D.; Hoda, U.; Sousa, A.; Wilson, S.J.; et al. A Transcriptome-driven Analysis of Epithelial Brushings and Bronchial Biopsies to Define Asthma Phenotypes in U-BIOPRED. Am. J. Respir. Crit. Care Med. 2017, 195, 443–455. [Google Scholar] [CrossRef]
- An, J.; Jeong, S.; Park, K.; Jin, H.; Park, J.; Shin, E.; Lee, J.H.; Song, W.J.; Kwon, H.S.; Cho, Y.S.; et al. Blood transcriptome differentiates clinical clusters for asthma. World Allergy Organ. J. 2024, 17, 100871. [Google Scholar] [CrossRef]
- Kere, M.; Klevebro, S.; Hernandez-Pacheco, N.; Ödling, M.; Ekström, S.; Mogensen, I.; Janson, C.; Palmberg, L.; van Hage, M.; Georgelis, A.; et al. Exploring proteomic plasma biomarkers in eosinophilic and neutrophilic asthma. Clin. Exp. Allergy 2023, 53, 186–197. [Google Scholar] [CrossRef]
- Yoon, Y.; Bunyavanich, S. Multiomic approaches for endotype discovery in allergy/immunology. J. Allergy Clin. Immunol. 2025, 156, 97–99. [Google Scholar] [CrossRef]
- Abdel-Aziz, M.I.; Brinkman, P.; Vijverberg, S.J.H.; Neerincx, A.H.; Riley, J.H.; Bates, S.; Hashimoto, S.; Kermani, N.Z.; Chung, K.F.; Djukanovic, R. U-BIOPRED Study Group; et al. Sputum microbiome profiles identify severe asthma phenotypes of relative stability at 12 to 18 months. J. Allergy Clin. Immunol. 2021, 147, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aziz, M.I.; Vijverberg, S.J.H.; Neerincx, A.H.; Brinkman, P.; Wagener, A.H.; Riley, J.H.; Sousa, A.R.; Bates, S.; Wagers, S.S.; De Meulder, B.; et al. A multi-omics approach to delineate sputum microbiome-associated asthma inflammatory phenotypes. Eur. Respir. J. 2022, 59, 2102603. [Google Scholar] [CrossRef] [PubMed]
- Kermani, N.Z.; Li, C.X.; Versi, A.; Badi, Y.; Sun, K.; Abdel-Aziz, M.I.; Maitland-van der Zee, A.H.; Djukanovic, R.; Wheelock, Å.; Dahlen, S.E.; et al. Endotypes of severe neutrophilic and eosinophilic asthma from multi-omics integration of U-BIOPRED sputum samples. Clin. Transl. Med. 2024, 14, e1771. [Google Scholar] [CrossRef]
- McDowell, P.J.; Busby, J.; Hanratty, C.E.; Djukanovic, R.; Woodcock, A.; Walker, S.; Hardman, T.C.; Arron, J.R.; Choy, D.F.; Bradding, P.; et al. Exacerbation Profile and Risk Factors in a Type-2-Low Enriched Severe Asthma Cohort: A Clinical Trial to Assess Asthma Exacerbation Phenotypes. Am. J. Respir. Crit. Care Med. 2022, 206, 545–553. [Google Scholar] [CrossRef]
- Zeng, X.; Qing, J.; Li, C.M.; Lu, J.; Yamawaki, T.; Hsu, Y.H.; Vander Lugt, B.; Hsu, H.; Busby, J.; McDowell, P.J.; et al. investigators for the UK MRC Refractory Asthma Stratification Program (RASP-UK). Blood transcriptomic signature in type-2 biomarker-low severe asthma and asthma control. J. Allergy Clin. Immunol. 2023, 152, 876–886. [Google Scholar] [CrossRef] [PubMed]
- Silkoff, P.E.; Laviolette, M.; Singh, D.; FitzGerald, J.M.; Kelsen, S.; Backer, V.; Porsbjerg, C.; Girodet, P.O.; Berger, P.; Kline, J.N.; et al. ADEPT Investigators. Longitudinal stability of asthma characteristics and biomarkers from the Airways Disease Endotyping for Personalized Therapeutics (ADEPT) study. Respir. Res. 2016, 17, 43. [Google Scholar] [CrossRef] [PubMed]
- Bantulà, M.; Arismendi, E.; Tubita, V.; Roca-Ferrer, J.; Mullol, J.; de Hollanda, A.; Sastre, J.; Valero, A.; Baos, S.; Cremades-Jimeno, L.; et al. Effect of Obesity on the Expression of Genes Associated with Severe Asthma-A Pilot Study. J. Clin. Med. 2023, 12, 4398. [Google Scholar] [CrossRef]
- Deliu, M.; Yavuz, T.S.; Sperrin, M.; Belgrave, D.; Sahiner, U.M.; Sackesen, C.; Kalayci, O.; Custovic, A. Features of asthma which provide meaningful insights for understanding the disease heterogeneity. Clin. Exp. Allergy 2018, 48, 39–47. [Google Scholar] [CrossRef]
- Kermani, N.; Versi, A.; Gay, A.; Vlasma, J.; Jayalatha, A.K.S.; Koppelman, G.H.; Nawijn, M.; Faiz, A.; van den Berge, M.; Adcock, I.M.; et al. Gene signatures in U-BIOPRED severe asthma for molecular phenotyping and precision medicine: Time for clinical use. Expert. Rev. Respir. Med. 2023, 17, 965–971. [Google Scholar] [CrossRef]
- Côté, A.; Beaulé, R.; Boulay, M.È.; Guertin, J.; Boulet, L.P.; Godbout, K.; Price, D. Poor agreement among asthma specialists on the choice and timing of initiation of a biologic treatment for severe asthma patients. J. Allergy Clin. Immunol. Pract. 2025, 13, 1358–1366. [Google Scholar] [CrossRef]
- Belgrave, D.; Henderson, J.; Simpson, A.; Buchan, I.; Bishop, C.; Custovic, A. Disaggregating asthma: Big investigation versus big data. J. Allergy Clin. Immunol. 2017, 139, 400–407. [Google Scholar] [CrossRef]
- Hellings, P.W.; Steelant, B. Epithelial barriers in allergy and asthma. J. Allergy Clin. Immunol. 2020, 145, 1499–1509. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, R.J.; Lloyd, C.M. Regulation of immune responses by the airway epithelial cell landscape. Nat. Rev. Immunol. 2021, 21, 347–362. [Google Scholar] [CrossRef]
- Hansi, R.K.; Ranjbar, M.; Whetstone, C.E.; Gauvreau, G.M. Regulation of Airway Epithelial-Derived Alarmins in Asthma: Perspectives for Therapeutic Targets. Biomedicines 2024, 12, 2312. [Google Scholar] [CrossRef]
- Brightling, C.E.; Marone, G.; Aegerter, H.; Chanez, P.; Heffler, E.; Pavord, I.D.; Rabe, K.F.; Uller, L.; Dorscheid, D.; Epithelial Science Expert Group. The epithelial era of asthma research: Knowledge gaps and future direction for patient care. Eur. Respir. Rev. 2024, 33, 240221. [Google Scholar] [CrossRef]
- Russell, R.J.; Boulet, L.P.; Brightling, C.E.; Pavord, I.D.; Porsbjerg, C.; Dorscheid, D.; Sverrild, A. The airway epithelium: An orchestrator of inflammation, a key structural barrier and a therapeutic target in severe asthma. Eur. Respir. J. 2024, 63, 2301397. [Google Scholar] [CrossRef] [PubMed]
- Montoro, D.T.; Haber, A.L.; Biton, M.; Vinarsky, V.; Lin, B.; Birket, S.E.; Yuan, F.; Chen, S.; Leung, H.M.; Villoria, J.; et al. Revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 2018, 560, 319–324. [Google Scholar] [CrossRef]
- Travaglini, K.J.; Nabhan, A.N.; Penland, L.; Sinha, R.; Gillich, A.; Sit, R.V.; Chang, S.; Conley, S.D.; Mori, Y.; Seita, J.; et al. A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature 2020, 587, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Montoro, D.T.; Haber, A.L.; Rood, J.E.; Regev, A.; Rajagopal, J. A Synthesis Concerning Conservation and Divergence of Cell Types across Epithelia. Cold Spring Harb. Perspect. Biol. 2020, 12, 035733. [Google Scholar] [CrossRef] [PubMed]
- Rock, J.R.; Randell, S.H.; Hogan, B.L.M. Airway basal stem cells: A perspective on their roles in epithelial homeostasis and remodeling. Dis. Models Mech. 2010, 3, 545–556. [Google Scholar] [CrossRef]
- Zepp, J.A.; Morrisey, E.E. Cellular crosstalk in the development and regeneration of the respiratory system. Nat. Rev. Mol. Cell Biol. 2019, 20, 551–566. [Google Scholar] [CrossRef]
- Watson, J.K.; Rulands, S.; Wilkinson, A.C.; Wuidart, A.; Ousset, M.; Van Keymeulen, A.; Göttgens, B.; Blanpain, C.; Simons, B.D.; Rawlins, E.L. Clonal Dynamics Reveal two distinct populations of basal cells in slow-turnover Airway Epithelium. Cell Rep. 2015, 12, 90–101. [Google Scholar] [CrossRef]
- Pardo-Saganta, A.; Law, B.M.; Tata, P.R.; Villoria, J.; Saez, B.; Mou, H.; Zhao, R.; Rajagopal, J. Injury induces direct lineage segregation of functionally distinct airway basal stem/progenitor cell subpopulations. Cell Stem Cell 2015, 16, 184–197. [Google Scholar] [CrossRef]
- Mori, M.; Mahoney, J.E.; Stupnikov, M.R.; Paez-Cortez, J.R.; Szymaniak, A.D.; Varelas, X.; Herrick, D.B.; Schwob, J.; Zhang, H.; Cardoso, W.V. Notch3-Jagged signaling controls the pool of undifferentiated airway progenitors. Development 2015, 142, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Shaykhiev, R. Multitasking basal cells: Combining stem cell and innate immune duties. Eur. Respir. J. 2015, 46, 894–897. [Google Scholar] [CrossRef]
- Lambrecht, B.N.; Hammad, H. Allergens and the airway epithelium response: Gateway to allergic sensitization. J. Allergy Clin. Immunol. 2014, 134, 499–507. [Google Scholar] [CrossRef]
- Naylor, B. The shedding of the mucosa of the bronchial tree in asthma. Thorax 1962, 17, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Hackett, T.L.; Singhera, G.K.; Shaheen, F.; Hayden, P.; Jackson, G.R.; Hegele, R.G.; Van Eeden, S.; Bai, T.R.; Dorscheid, D.R.; Knight, D.A. Intrinsic phenotypic differences of asthmatic epithelium and its inflammatory responses to respiratory syncytial virus and air pollution. Am. J. Respir. Cell Mol. Biol. 2011, 45, 1090–1100. [Google Scholar] [CrossRef]
- Dean, C.H.; Snelgrove, R.J. New rules for club development: New insights into human small airway epithelial club cell ontogeny and function. Am. J. Respir. Crit. Care Med. 2018, 198, 1355–1356. [Google Scholar] [CrossRef]
- Rawlins, E.L.; Okubo, T.; Xue, Y.; Brass, D.M.; Auten, R.L.; Hasegawa, H.; Wang, F.; Hogan, B.L. The role of Scgb1a1+ Clara cells in the long-term maintenance and repair of lung airway, but not alveolar, epithelium. Cell Stem Cell 2009, 4, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Du, Y.; Gokey, J.J.; Ray, S.; Bell, S.M.; Adam, M.; Sudha, P.; Perl, A.K.; Deshmukh, H.; Potter, S.S.; et al. Single-cell RNA analysis identifies cellular heterogeneity and adaptive responses of the lung at birth. Nat. Commun. 2019, 10, 37. [Google Scholar] [CrossRef]
- Martinu, T.; Todd, J.L.; Gelman, A.E.; Guerra, S.; Palmer, S.M. Club Cell Secretory Protein in Lung Disease: Emerging Concepts and Potential Therapeutics. Annu. Rev. Med. 2023, 74, 427–441. [Google Scholar] [CrossRef]
- Cowan, M.J.; Huang, X.; Yao, X.L.; Shelhamer, J.H. Tumor necrosis factor Alpha stimulation of human Clara cell secretory protein production by human airway epithelial cells. Ann. N. Y. Acad. Sci. 2000, 923, 193–201. [Google Scholar] [CrossRef]
- Voraphani, N.; Stern, D.A.; Ledford, J.G.; Spangenberg, A.L.; Zhai, J.; Wright, A.L.; Morgan, W.J.; Kraft, M.; Sherrill, D.L.; Curtin, J.A.; et al. Circulating CC16 and Asthma: A Population-based, Multicohort Study from Early Childhood through Adult Life. Am. J. Respir. Crit. Care Med. 2023, 208, 758–769. [Google Scholar] [CrossRef]
- Li, X.; Guerra, S.; Ledford, J.G.; Kraft, M.; Li, H.; Hastie, A.T.; Castro, M.; Denlinger, L.C.; Erzurum, S.C.; Fahy, J.V.; et al. Low CC16 mRNA Expression Levels in Bronchial Epithelial Cells Are Associated with Asthma Severity. Am. J. Respir. Crit. Care Med. 2023, 207, 438–451. [Google Scholar] [CrossRef] [PubMed]
- Goudarzi, H.; Kimura, H.; Kimura, H.; Makita, H.; Takimoto-Sato, M.; Abe, Y.; Abe, Y.; Oguma, A.; Matsumoto, M.; Takei, N.; et al. Association of serum CC16 levels with eosinophilic inflammation and respiratory dysfunction in severe asthma. Respir. Med. 2023, 206, 107089. [Google Scholar] [CrossRef]
- Wang, M.; Tang, K.; Gao, P.; Lu, Y.; Wang, S.; Wu, X.; Zhao, J.; Xie, J. Club 10-kDa protein (CC10) as a surrogate for identifying type 2 asthma phenotypes. J. Asthma 2023, 60, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Goudarzi, H.; Kimura, H.; Kimura, H.; Makita, H.; Matsumoto, M.; Takei, N.; Shimizu, K.; Suzuki, M.; Watanabe, T.; Kikuchi, E.; et al. Effects of obesity on CC16 and their potential role in overweight/obese asthma. Respir. Res. 2022, 23, 174. [Google Scholar] [CrossRef]
- Lin, J.; Chen, X.; Chen, Y.; Zeng, X.; Wang, F.; Luo, S.; Jiang, L.; Hu, W.; Liu, X.; Zhang, J.; et al. Club cell secretory protein 16 promotes cell proliferation and inhibits inflammation and pyroptosis in response to particulate matter 2.5-induced epithelial damage in asthmatic mice. J. Thorac. Dis. 2025, 17, 753–773. [Google Scholar] [CrossRef]
- Xu, Y.D.; Cheng, M.; Mao, J.X.; Zhang, X.; Shang, P.P.; Long, J.; Chen, Y.J.; Wang, Y.; Yin, L.M.; Yang, Y.Q. Clara cell 10 (CC10) protein attenuates allergic airway inflammation by modulating lung dendritic cell functions. Cell Mol. Life Sci. 2024, 81, 321. [Google Scholar] [CrossRef]
- Liu, M.; Lu, J.; Zhang, Q.; Zhang, Y.; Guo, Z. Clara cell 16 KDa protein mitigates house dust mite-induced airway inflammation and damage via regulating airway epithelial cell apoptosis in a manner dependent on HMGB1-mediated signaling inhibition. Mol. Med. 2021, 27, 11. [Google Scholar] [CrossRef] [PubMed]
- Murai, Y.; Koya, T.; Koda, H.; Uji, W.; Tanaka, M.; Endo, M.; Oshima, K.; Matsuda, T.; Ueno, H.; Aoki, A.; et al. Dupilumab efficacy in relation to changes in club cell secretory protein 16. Ann. Allergy Asthma Immunol. 2025, 134, 556–562.e2. [Google Scholar] [CrossRef]
- Petit, L.M.G.; Belgacemi, R.; Ancel, J.; Saber Cherif, L.; Polette, M.; Perotin, J.M.; Spassky, N.; Pilette, C.; Al Alam, D.; Deslée, G.; et al. Airway ciliated cells in adult lung homeostasis and COPD. Eur. Respir. Rev. 2023, 32, 230106. [Google Scholar] [CrossRef]
- Tsao, P.N.; Matsuoka, C.; Wei, S.C.; Sato, A.; Sato, S.; Hasegawa, K.; Chen, H.K.; Ling, T.Y.; Mori, M.; Cardoso, W.V.; et al. Epithelial Notch signaling regulates lung alveolar morphogenesis and airway epithelial integrity. Proc. Natl. Acad. Sci. USA 2016, 113, 8242–8247. [Google Scholar] [CrossRef]
- Morimoto, M.; Nishinakamura, R.; Saga, Y.; Kopan, R. Different assemblies of Notch receptors coordinate the distribution of the major bronchial Clara, ciliated and neuroendocrine cells. Development 2012, 139, 4365–4373. [Google Scholar] [CrossRef]
- Siebel, C.; Lendahl, U. Notch signaling in development, tissue homeostasis, and disease. Physiol. Rev. 2017, 97, 1235–1294. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Huang, T.; Richer, E.J.; Schmidt, J.E.; Zabner, J.; Borok, Z. Role of f-box factor foxj1 in differentiation of ciliated airway epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 2004, 286, 650–657. [Google Scholar] [CrossRef]
- Hannah, W.B.; Seifert, B.A.; Truty, R.; Zariwala, M.A.; Ameel, K.; Zhao, Y.; Nykamp, K.; Gaston, B. The global prevalence and ethnic heterogeneity of primary ciliary dyskinesia gene variants: A genetic database analysis. Lancet Respir. Med. 2022, 10, 459–468. [Google Scholar] [CrossRef]
- Cutz, E.; Levison, H.; Cooper, D.M. Ultrastructure of airways in children with asthma. Histopathology 1978, 2, 407–421. [Google Scholar] [CrossRef]
- Mezey, R.J.; Cohn, M.A.; Fernandez, R.J.; Januszkiewicz, A.J.; Wanner, A. Mucociliary transport in allergic patients with antigen-induced bronchospasm. Am. Rev. Respir. Dis. 1978, 18, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Bateman, J.R.; Pavia, D.; Sheahan, N.F.; Agnew, J.E.; Clarke, S.W. Impaired tracheobronchial clearance in patients with mild stable asthma. Thorax 1983, 38, 463–467. [Google Scholar] [CrossRef] [PubMed]
- Dulfano, M.J.; Luk, C.K. Sputum and ciliary inhibition in asthma. Thorax 1982, 37, 646–651. [Google Scholar] [CrossRef]
- Pelaia, C.; Heffler, E.; Crimi, C.; Maglio, A.; Vatrella, A.; Pelaia, G.; Canonica, G.W. Interleukins 4 and 13 in Asthma: Key Pathophysiologic Cytokines and Druggable Molecular Targets. Front. Pharmacol. 2022, 13, 851940. [Google Scholar] [CrossRef]
- Bonser, L.R.; Zlock, L.; Finkbeiner, W.; Erle, D.J. Epithelial tethering of MUC5AC-rich mucus impairs mucociliary transport in asthma. J. Clin. Investig. 2016, 126, 2367–2371. [Google Scholar] [CrossRef]
- Grosse-Onnebrink, J.; Werner, C.; Loges, N.T.; Hörmann, K.; Blum, A.; Schmidt, R.; Olbrich, H.; Omran, H. Effect of TH2 cytokines and interferon gamma on beat frequency of human respiratory cilia. Pediatr. Res. 2016, 79, 731–735. [Google Scholar] [CrossRef]
- Laoukili, J.; Perret, E.; Willems, T.; Minty, A.; Parthoens, E.; Houcine, O.; Coste, A.; Jorissen, M.; Marano, F.; Caput, D.; et al. IL-13 alters mucociliary differentiation and ciliary beating of human respiratory epithelial cells. J. Clin. Investig. 2001, 108, 1817–1824. [Google Scholar] [CrossRef] [PubMed]
- Gomperts, B.N.; Kim, L.J.; Flaherty, S.A.; Hackett, B.P. IL-13 regulates cilia loss and foxj1 expression in human airway epithelium. Am. J. Respir. Cell Mol. Biol. 2007, 37, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Boomer, J.; Choi, J.; Alsup, A.; McGregor, M.C.; Lieu, J.; Johnson, C.; Hall, C.; Shi, X.; Kim, T.; Goss, C.; et al. Increased Muc5AC and Decreased Ciliated Cells in Severe Asthma Partially Restored by Inhibition of IL-4Rα Receptor. Am. J. Respir. Crit. Care Med. 2024, 210, 1409–1420. [Google Scholar] [CrossRef]
- Gustafsson, J.K.; Hansson, G.C. Immune Regulation of Goblet Cell and Mucus Functions in Health and Disease. Annu. Rev. Immunol. 2025, 43, 169–189. [Google Scholar] [CrossRef]
- Whitsett, J.A. Airway epithelial differentiation and mucociliary clearance. Ann. Am. Thorac. Soc. 2018, 15, S143–S148. [Google Scholar] [CrossRef]
- Rajavelu, P.; Chen, G.; Xu, Y.; Kitzmiller, J.A.; Korfhagen, T.R.; Whitsett, J.A. Airway epithelial SPDEF integrates goblet cell differentiation and pulmonary Th2 inflammation. J. Clin. Investig. 2015, 125, 2021–2031. [Google Scholar] [CrossRef]
- Bergström, J.H.; Birchenough, G.M.; Katona, G.; Schroeder, B.O.; Schütte, A.; Ermund, A.; Johansson, M.E.; Hansson, G.C. Gram-positive bacteria are held at a distance in the colon mucus by the lectin-like protein ZG16. Proc. Natl. Acad. Sci. USA 2016, 113, 13833–13838. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; Opoku, G.; Orlov, M.; Jaramillo, A.M.; Holguin, F.; Vladar, E.K.; Janssen, W.J.; Evans, C.M. Mucins and Their Roles in Asthma. Immunol. Rev. 2025, 331, 70034. [Google Scholar] [CrossRef]
- Burgel, P.R.; Nadel, J.A. Roles of epidermal growth factor receptor activation in epithelial cell repair and mucin production in airway epithelium. Thorax 2004, 59, 992–996. [Google Scholar] [CrossRef]
- Martínez-Rivera, C.; Crespo, A.; Pinedo-Sierra, C.; García-Rivero, J.L.; Pallarés- Sanmartín, A.; Marina-Malanda, N.; Pascual-Erquicia, S.; Padilla, A.; Mayoralas-Alises, S.; Plaza, V.; et al. Mucus hypersecretion in asthma is associated with rhinosinusitis, polyps and exacerbations. Respir. Med. 2018, 135, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Thomson, N.C.; Chaudhuri, R.; Messow, C.M.; Spears, M.; MacNee, W.; Connell, M.; Murchison, J.T.; Sproule, M.; McSharry, C. Chronic cough and sputum production are associated with worse clinical outcomes in stable asthma. Respir. Med. 2013, 107, 1501–1508. [Google Scholar] [CrossRef]
- Turner, J.; Roger, J.; Fitau, J.; Combe, D.; Giddings, J.; Heeke, G.V.; Jones, C.E. Goblet cells are derived from a FOXJ1-expressing progenitor in a human airway epithelium. Am. J. Respir. Cell Mol. Biol. 2011, 44, 276–284. [Google Scholar] [CrossRef]
- Seibold, M.A. Interleukin-13 stimulation reveals the cellular and functional plasticity of the airway epithelium. Ann. Am. Thorac. Soc. 2018, 15 (Suppl. S2), S98–S102. [Google Scholar] [CrossRef]
- Lachowicz-Scroggins, M.E.; Yuan, S.; Kerr, S.C.; Dunican, E.M.; Yu, M.; Carrington, S.D.; Fahy, J.V. Abnormalities in MUC5AC and MUC5B Protein in Airway Mucus in Asthma. Am. J. Respir. Crit. Care Med. 2016, 194, 1296–1299. [Google Scholar] [CrossRef]
- Welsh, K.G.; Rousseau, K.; Fisher, G.; Bonser, L.R.; Bradding, P.; Brightling, C.E.; Thornton, D.J.; Gaillard, E.A. MUC5AC and a Glycosylated Variant of MUC5B Alter Mucin Composition in Children with Acute Asthma. Chest 2017, 152, 771–779. [Google Scholar] [CrossRef]
- Dabbagh, K.; Takeyama, K.; Lee, H.M.; Ueki, I.F.; Lausier, J.A.; Nadel, J.A. IL-4 induces mucin gene expression and goblet cell metaplasia in vitro and in vivo. J. Immunol. 1999, 162, 6233–6237. [Google Scholar] [CrossRef] [PubMed]
- Temann, U.A.; Prasad, B.; Gallup, M.W.; Basbaum, C.; Ho, S.B.; Flavell, R.A.; Rankin, J.A. A novel role for murine IL-4 in vivo: Induction of MUC5AC gene expression and mucin hypersecretion. Am. J. Respir. Cell Mol. Biol. 1997, 16, 471–478. [Google Scholar] [CrossRef]
- Damera, G.; Xia, B.; Sachdev, G.P. IL-4 induced MUC4 enhancement in respiratory epithelial cells in vitro is mediated through JAK-3 selective signaling. Respir. Res. 2006, 7, 39. [Google Scholar] [CrossRef] [PubMed]
- Tajiri, T.; Suzuki, M.; Nishiyama, H.; Ozawa, Y.; Kurokawa, R.; Takeda, N.; Fukumitsu, K.; Mori, Y.; Kanemitsu, Y.; Fukuda, S.; et al. Efficacy of dupilumab for airway hypersecretion and airway wall thickening in patients with moderate-to-severe asthma: A prospective, observational study. Allergol. Int. 2024, 73, 406–415. [Google Scholar] [CrossRef]
- Thakur, A.; Mei, S.; Zhang, N.; Zhang, K.; Taslakjian, B.; Lian, J.; Wu, S.; Chen, B.; Solway, J.; Chen, H.J. Pulmonary neuroendocrine cells: Crucial players in respiratory function and airway-nerve communication. Front. Neurosci. 2024, 18, 1438188. [Google Scholar] [CrossRef]
- Boers, J.E.; Brok, J.D.; Koudstaal, J.; Arends, J.W.; Thunnissen, F.B. Number and proliferation of neuroendocrine cells in normal human airway epithelium. Am. J. Respir. Crit. Care Med. 1996, 154, 758–763. [Google Scholar] [CrossRef]
- Ouadah, Y.; Rojas, E.R.; Riordan, D.P.; Capostagno, S.; Kuo, C.S.; Krasnow, M.A. Rare Pulmonary Neuroendocrine Cells Are Stem Cells Regulated by Rb, p53, and Notch. Cell 2019, 179, 403–416. [Google Scholar] [CrossRef]
- Gu, X.; Karp, P.H.; Brody, S.L.; Pierce, R.A.; Welsh, M.J.; Holtzman, M.J.; Ben-Shahar, Y. Chemosensory functions for pulmonary neuroendocrine cells. Am. J. Respir. Cell Mol. Biol. 2014, 50, 637–646. [Google Scholar] [CrossRef]
- Subramaniam, M.; Bausch, C.; Twomey, A.; Andreeva, S.; Yoder, B.A.; Chang, L.; Crapo, J.D.; Pierce, R.A.; Cuttitta, F.; Sunday, M.E. Bombesin-like peptides modulate alveolarization and angiogenesis in bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 2007, 176, 902–912. [Google Scholar] [CrossRef]
- Belvisi, M.G.; Stretton, C.D.; Barnes, P.J. Bombesin-induced bronchoconstriction in the guinea pig: Mode of action. J. Pharmacol. Exp. Ther. 1992, 258, 36–41. [Google Scholar] [CrossRef]
- Jankala, E.O.; Virtama, P. On the bronchoconstrictor effect of serotonin. Bronchographic studies on rabbits and guinea-pigs. J. Physiol. 1961, 159, 381–383. [Google Scholar] [CrossRef]
- Atanasova, K.R.; Reznikov, L.R. Neuropeptides in asthma, chronic obstructive pulmonary disease and cystic fibrosis. Respir. Res. 2018, 19, 149. [Google Scholar] [CrossRef] [PubMed]
- Kuo, H.P.; Rohde, J.A.; Tokuyama, K.; Barnes, P.J.; Rogers, D.F. Capsaicin and sensory neuropeptide stimulation of goblet cell secretion in guinea-pig trachea. J. Physiol. 1990, 431, 629–641. [Google Scholar] [CrossRef] [PubMed]
- Webber, S.E.; Lim, J.C.S.; Widdicombe, J.G. The effects of calcitonin gene-related peptide on submucosal gland secretion and epithelial albumin transport in the ferret trachea in vitro. Br. J. Pharmacol. 1991, 102, 79–84. [Google Scholar] [CrossRef]
- Kinnamon, S.C. Taste receptor signalling from tongues to lungs. Acta Physiol. 2012, 204, 158–168. [Google Scholar] [CrossRef]
- Finger, T.E.; Böttger, B.; Hansen, A.; Anderson, K.T.; Alimohammadi, H.; Silver, W.L. Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proc. Natl. Acad. Sci. USA 2003, 100, 8981–8986. [Google Scholar] [CrossRef] [PubMed]
- Saunders, C.J.; Reynolds, S.D.; Finger, T.E. Chemosensory brush cells of the trachea. A stable population in a dynamic epithelium. Am. J. Respir. Cell Mol. Biol. 2013, 49, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Moran, D.T.; Rowley, J.C., 3rd; Jafek, B.W. Electron microscopy of human olfactory epithelium reveals a new cell type: The microvillar cell. Brain Res. 1982, 253, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Howitt, M.R.; Lavoie, S.; Michaud, M.; Blum, A.M.; Tran, S.V.; Weinstock, J.V.; Gallini, C.A.; Redding, K.; Margolskee, R.F.; Osborne, L.C.; et al. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science 2016, 351, 1329–1333. [Google Scholar] [CrossRef]
- Gerbe, F.; Sidot, E.; Smyth, D.J.; Ohmoto, M.; Matsumoto, I.; Dardalhon, V.; Cesses, P.; Garnier, L.; Pouzolles, M.; Brulin, B.; et al. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 2016, 529, 226–230. [Google Scholar] [CrossRef]
- von Moltke, J.; Ji, M.; Liang, H.-E.; Locksley, R.M. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 2016, 529, 221–225. [Google Scholar] [CrossRef]
- Ualiyeva, S.; LemireAviles, E.C.; Aviles, E.C.; Wong, C.; Boyd, A.A.; Lai, J.; Liu, T.; Matsumoto, I.; Barrett, N.A.; Boyce, J.A.; et al. Tuft cell-produced cysteinyl leukotrienes and IL-25 synergistically initiate lung type 2 inflammation. Sci. Immunol. 2021, 6, eabj0474. [Google Scholar] [CrossRef]
- Lee, R.J.; Cohen, N.A. Taste receptors in innate immunity. Cell Mol. Life Sci. 2015, 72, 217–236. [Google Scholar] [CrossRef]
- Carey, R.M.; Lee, R.J. Taste Receptors in Upper Airway Innate Immunity. Nutrients 2019, 11, 2017. [Google Scholar] [CrossRef]
- Lee, R.J.; Kofonow, J.M.; Rosen, P.L.; Siebert, A.P.; Chen, B.; Doghramji, L.; Xiong, G.; Adappa, N.D.; Palmer, J.N.; Kennedy, D.W.; et al. Bitter and sweet taste receptors regulate human upper respiratory innate immunity. J. Clin. Investig. 2014, 124, 1393–1405. [Google Scholar] [CrossRef]
- Iqbal, S.; Rezaul Karim, M.; Yang, D.C.; Mathiyalagan, R.; Chan Kang, S. Tuft cells—The immunological interface and role in disease regulation. Int. Immunopharmacol. 2023, 118, 110018. [Google Scholar] [CrossRef] [PubMed]
- Ualiyeva, S.; Hallen, N.; Kanaoka, Y.; Ledderose, C.; Matsumoto, I.; Junger, W.G.; Barrett, N.A.; Bankova, L.G. Airway brush cells generate cysteinyl leukotrienes through the ATP sensor P2Y2. Sci. Immunol. 2020, 5, 7224. [Google Scholar] [CrossRef]
- Pan, J.; Zhang, L.; Shao, X.; Huang, J. Acetylcholine From Tuft Cells: The Updated Insights Beyond Its Immune and Chemosensory Functions. Front. Cell Dev. Biol. 2020, 8, 606. [Google Scholar] [CrossRef] [PubMed]
- Tizzano, M.; Gulbransen, B.D.; Vandenbeuch, A.; Clapp, T.R.; Herman, J.P.; Sibhatu, H.M.; Churchill, M.E.; Silver, W.L.; Kinnamon, S.C.; Finger, T.E. Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proc. Natl. Acad. Sci. USA 2010, 107, 3210–3215. [Google Scholar] [CrossRef]
- Proskocil, B.J.; Sekhon, H.S.; Jia, Y.; Savchenko, V.; Blakely, R.D.; Lindstrom, J.; Spindel, E.R. Acetylcholine is an autocrine or paracrine hormone synthesized and secreted by airway bronchial epithelial cells. Endocrinology 2004, 145, 2498–2506. [Google Scholar] [CrossRef]
- Perniss, A.; Liu, S.; Boonen, B.; Keshavarz, M.; Ruppert, A.L.; Timm, T.; Pfeil, U.; Soultanova, A.; Kusumakshi, S.; Delventhal, L.; et al. Chemosensory Cell-Derived Acetylcholine Drives Tracheal Mucociliary Clearance in Response to Virulence-Associated Formyl Peptides. Immunity 2020, 52, 683–699. [Google Scholar] [CrossRef] [PubMed]
- Kummer, W.; Krasteva-Christ, G. Non-neuronal cholinergic airway epithelium biology. Curr. Opin. Pharmacol. 2014, 16, 43–49. [Google Scholar] [CrossRef]
- Schneider, C.; O’Leary, C.E.; Locksley, R.M. Regulation of immune responses by tuft cells. Nat. Rev. Immunol. 2019, 19, 584–593. [Google Scholar] [CrossRef]
- Patel, N.N.; Kohanski, M.A.; Maina, I.W.; Triantafillou, V.; Workman, A.D.; Tong, C.C.L.; Kuan, E.C.; Bosso, J.V.; Adappa, N.D.; Palmer, J.N.; et al. Solitary chemosensory cells producing interleukin-25 and group-2 innate lymphoid cells are enriched in chronic rhinosinusitis with nasal polyps. Int. Forum Allergy Rhinol. 2018, 8, 900–906. [Google Scholar] [CrossRef]
- Hong, H.Y.; Chen, F.H.; Sun, Y.Q.; Hu, X.T.; Wei, Y.; Fan, Y.P.; Zhang, J.; Wang, D.H.; Xu, R.; Li, H.B.; et al. Local IL-25 contributes to Th2-biased inflammatory profiles in nasal polyps. Allergy 2018, 73, 459–469. [Google Scholar] [CrossRef]
- Beale, J.; Jayaraman, A.; Jackson, D.J.; Macintyre, J.D.R.; Edwards, M.R.; Walton, R.P.; Zhu, J.; Man Ching, Y.; Shamji, B.; Edwards, M.; et al. Rhinovirus-induced IL-25 in asthma exacerbation drives type 2 immunity and allergic pulmonary inflammation. Sci. Transl. Med. 2014, 6, 256ra134. [Google Scholar] [CrossRef]
- Peng, B.; Sun, L.; Zhang, M.; Yan, H.; Shi, G.; Xia, Z.; Dai, R.; Tang, W. Role of Il-25 on Eosinophils in the Initiation of Th2 Responses in Allergic Asthma. Front. Immunol. 2022, 13, 842500. [Google Scholar] [CrossRef]
- Paplińska-Goryca, M.; Grabczak, E.M.; Dąbrowska, M.; Hermanowicz-Salamon, J.; Proboszcz, M.; Nejman-Gryz, P.; Maskey-Warzęchowska, M.; Krenke, R. Sputum interleukin-25 correlates with asthma severity: A preliminary study. Postepy Dermatol. Alergol. 2018, 35, 462–469. [Google Scholar] [CrossRef]
- Waghray, A.; Monga, I.; Lin, B.; Shah, V.; Slyper, M.; Giotti, B.; Xu, J.; Waldman, J.; Dionne, D.; Nguyen, L.T.; et al. A deep lung cell atlas reveals cytokine-mediated lineage switching of a rare cell progenitor of the human airway epithelium. bioRxiv 2023, 29, 2023. [Google Scholar] [CrossRef]
- Plasschaert, L.W.; Žilionis, R.; Choo-Wing, R.; Savova, V.; Knehr, J.; Roma, G.; Klein, A.M.; Jaffe, A.B. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 2018, 560, 377–381. [Google Scholar] [CrossRef]
- Trouvé, P.; Saint Pierre, A.; Férec, C. Cystic Fibrosis: A Journey through Time and Hope. Int. J. Mol. Sci. 2024, 25, 9599. [Google Scholar] [CrossRef]
- Okuda, K.; Dang, H.; Kobayashi, Y.; Carraro, G.; Nakano, S.; Chen, G.; Kato, T.; Asakura, T.; Gilmore, R.C.; Morton, L.C.; et al. Secretory Cells Dominate Airway CFTR Expression and Function in Human Airway Superficial Epithelia. Am. J. Respir. Crit. Care Med. 2021, 203, 1275–1289. [Google Scholar] [CrossRef]
- Cai, Q.; Luo, M.; Tang, Y.; Yu, M.; Yuan, F.; Gasser, G.N.; Liu, X.; Engelhardt, J.F. Sonic Hedgehog Signaling Is Essential for Pulmonary Ionocyte Specification in Human and Ferret Airway Epithelia. Am. J. Respir. Cell Mol. Biol. 2023, 69, 295–309. [Google Scholar] [CrossRef]
- Ingham, P.W. Hedgehog signaling. Curr. Top. Dev. Biol. 2022, 149, 1–58. [Google Scholar]
- Deprez, M.; Zaragosi, L.E.; Truchi, M.; Becavin, C.; Ruiz García, S.; Arguel, M.J.; Plaisant, M.; Magnone, V.; Lebrigand, K.; Abelanet, S.; et al. A Single-Cell Atlas of the Human Healthy Airways. Am. J. Respir. Crit. Care Med. 2020, 202, 1636–1645. [Google Scholar] [CrossRef]
- Chen, L.; A Hoefel, G.; Pathinayake, P.S.; Reid, A.; Pillar, A.L.; Kelly, C.; Tan, H.; Ali, A.; Kim, R.Y.; Hansbro, P.M.; et al. Inflammation-induced loss of CFTR-expressing airway ionocytes in non-eosinophilic asthma. Respirology 2025, 30, 25–40. [Google Scholar] [CrossRef]
- Romano Ibarra, G.S.; Lei, L.; Yu, W.; Thurman, A.L.; Gansemer, N.D.; Meyerholz, D.K.; Pezzulo, A.A.; McCray, P.B.; Thornell, I.M.; Stoltz, D.A.; et al. IL-13 induces loss of CFTR in ionocytes and reduces airway epithelial fluid absorption. J. Clin. Investig. 2024, 134, 181995. [Google Scholar] [CrossRef]
- Lin, B.; Shah, V.S.; Chernoff, C.; Sun, J.; Shipkovenska, G.G.; Vinarsky, V.; Waghray, A.; Xu, J.; Leduc, A.D.; Hintschich, C.A.; et al. Airway hillocks are injury-resistant reservoirs of unique plastic stem cells. Nature 2024, 629, 869–877. [Google Scholar] [CrossRef]
- Georas, S.N.; Rezaee, F. Epithelial barrier function: At the front line of asthma immunology and allergic airway inflammation. J. Allergy Clin. Immunol. 2014, 134, 509–520. [Google Scholar] [CrossRef]
- Niessen, C.M. Tight junctions/adherens junctions: Basic structure and function. J. Investig. Dermatol. 2007, 127, 2525–2532. [Google Scholar] [CrossRef]
- Shen, L.; Weber, C.R.; Raleigh, D.R.; Yu, D.; Turner, J.R. Tight junction pore and leak pathways: A dynamic duo. Annu. Rev. Physiol. 2011, 73, 283–309. [Google Scholar] [CrossRef]
- Raleigh, D.R.; Marchiando, A.M.; Zhang, Y.; Shen, L.; Sasaki, H.; Wang, Y.; Long, M.; Turner, J.R. Tight junction-associated MARVEL proteins marveld3, tricellulin, and occludin have distinct but overlapping functions. Mol. Biol. Cell 2010, 21, 1200–1213. [Google Scholar] [CrossRef]
- Gunzel, D.; Fromm, M. Claudins and other tight junction proteins. Compr. Physiol. 2012, 2, 1819–1852. [Google Scholar] [CrossRef]
- Krause, G.; Winkler, L.; Mueller, S.L.; Haseloff, R.F.; Piontek, J.; Blasig, I.E. Structure and function of claudins. Biochim. Biophys. Acta 2008, 1778, 631–645. [Google Scholar] [CrossRef]
- Runkle, E.A.; Rice, S.J.; Qi, J.; Masser, D.; Antonetti, D.A.; Winslow, M.M.; Mu, D. Occludin is a direct target of thyroid transcription factor-1 (TTF-1/NKX2-1). J. Biol. Chem. 2012, 287, 28790–28801. [Google Scholar] [CrossRef] [PubMed]
- Cording, J.; Berg, J.; Kading, N.; Bellmann, C.; Tscheik, C.; Westphal, J.K.; Milatz, S.; Günzel, D.; Wolburg, H.; Piontek, J.; et al. In tight junctions, claudins regulate the interactions between occludin, tricellulin and marvelD3, which, inversely modulate claudin oligomerization. J. Cell Sci. 2013, 126, 554–564. [Google Scholar] [CrossRef]
- Mrsny, R.J.; Brown, G.T.; Gerner-Smidt, K.; Buret, A.G.; Meddings, J.B.; Quan, C.; Koval, M.; Nusrat, A. A key claudin extracellular loop domain is critical for epithelial barrier integrity. Am. J. Pathol. 2008, 172, 905–915. [Google Scholar] [CrossRef]
- You, K.; Xu, X.; Fu, J.; Xu, S.; Yue, X.; Yu, Z.; Xue, X. Hyperoxia disrupts pulmonary epithelial barrier in newborn rats via the deterioration of occludin and ZO-1. Respir. Res. 2012, 13, 36. [Google Scholar] [CrossRef] [PubMed]
- Caraballo, J.C.; Yshii, C.; Westphal, W.; Moninger, T.; Comellas, A.P. Ambient particulate matter affects occludin distribution and increases alveolar transepithelial electrical conductance. Respirology 2011, 16, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Traweger, A.; Toepfer, S.; Wagner, R.N.; Zweimueller-Mayer, J.; Gehwolf, R.; Lehner, C.; Tempfer, H.; Krizbai, I.; Wilhelm, I.; Bauer, H.C.; et al. Beyond cell-cell adhesion: Emerging roles of the tight junction scaffold ZO-2. Tissue Barriers 2013, 1, 25039. [Google Scholar] [CrossRef]
- Bauer, H.; Zweimueller-Mayer, J.; Steinbacher, P.; Lametschwandtner, A.; Bauer, H.C. The dual role of zonula occludens (ZO) proteins. J. Biomed. Biotechnol. 2010, 2010, 402593. [Google Scholar] [CrossRef]
- Wawrzyniak, P.; Wawrzyniak, M.; Wanke, K.; Sokolowska, M.; Bendelja, K.; Ruckert, B.; Globinska, A.; Jakiela, B.; Kast, J.I.; Idzko, M.; et al. Regulation of bronchial epithelial barrier integrity by type 2 cytokines and histone deacetylases in asthmatic patients. J. Allergy Clin. Immunol. 2017, 139, 93–103. [Google Scholar] [CrossRef]
- Saatian, B.; Rezaee, F.; Desando, S.; Emo, J.; Chapman, T.; Knowlden, S.; Georas, S.N. Interleukin-4 and interleukin-13 cause barrier dysfunction in human airway epithelial cells. Tissue Barriers 2013, 1, e24333. [Google Scholar] [CrossRef]
- Sweerus, K.; Lachowicz-Scroggins, M.; Gordon, E.; LaFemina, M.; Huang, X.; Parikh, M.; Kanegai, C.; Fahy, J.V.; Frank, J.A. Claudin-18 deficiency is associated with airway epithelial barrier dysfunction and asthma. J. Allergy Clin. Immunol. 2017, 139, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.T.; Hagner, S.; Ruchti, F.; Radzikowska, U.; Tan, G.; Altunbulakli, C.; Eljaszewicz, A.; Moniuszko, M.; Akdis, M.; Akdis, C.A.; et al. Tight junction, mucin, and inflammasome-related molecules are differentially expressed in eosinophilic, mixed, and neutrophilic experimental asthma in mice. Allergy 2019, 74, 294–307. [Google Scholar] [CrossRef]
- Tharabenjasin, P.; Moonwiriyakit, A.; Sontikun, J.; Timpratueang, K.; Kuno, S.; Aiebchun, T.; Jongkon, N.; Mongkolrob, R.; Pabalan, N.; Choowongkomon, K.; et al. The barrier-protective effect of β-eudesmol against type 2-inflammatory cytokine-induced tight junction disassembly in airway epithelial cells. PLoS ONE 2024, 19, 0302851. [Google Scholar] [CrossRef]
- Doulaptsi, M.; Wils, T.; Hellings, P.W.; Martens, K.; Farré, R.; Vicario, M.; Fokkens, W.; Prokopakis, E.; Steelant, B. Mometasone furoate and fluticasone furoate are equally effective in restoring nasal epithelial barrier dysfunction in allergic rhinitis. World Allergy Organ. J. 2021, 14, 100585. [Google Scholar] [CrossRef]
- An, M.H.; Lee, P.H.; Choi, S.M.; Hwang, D.; Kim, J.H.; Park, M.C.; Park, S.; Baek, A.R.; Jang, A.S. Impact of the Junction Adhesion Molecule-A on Asthma. Yonsei Med. J. 2023, 64, 375–383. [Google Scholar] [CrossRef]
- Niessen, C.M.; Gottardi, C.J. Molecular components of the adherens junction. Biochim. Biophys. Acta 2008, 1778, 562–571. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Goswami, S.; Dash, S.; Samanta, D. Structural basis of molecular recognition among classical cadherins mediating cell adhesion. Biochem. Soc. Trans. 2023, 51, 2103–2115. [Google Scholar] [CrossRef]
- Yuksel, H.; Ocalan, M.; Yilmaz, O. E-cadherin: An important functional molecule at respiratory barrier between defence and dysfunction. Front. Physiol. 2021, 12, 720227. [Google Scholar] [CrossRef]
- Post, S.; Heijink, I.H.; Hesse, L.; Koo, H.K.; Shaheen, F.; Fouadi, M.; Kuchibhotla, V.N.S.; Lambrecht, B.N.; Van Oosterhout, A.J.M.; Hackett, T.L.; et al. Characterization of a lung epithelium specific E-cadherin knock-out model: Implications for obstructive lung pathology. Sci. Rep. 2018, 8, 13275. [Google Scholar] [CrossRef]
- Kozu, Y.; Gon, Y.; Maruoka, S.; Kazumichi, K.; Sekiyama, A.; Kishi, H.; Nomura, Y.; Ikeda, M.; Hashimoto, S. Protocadherin-1 is a glucocorticoid-responsive critical regulator of airway epithelial barrier function. BMC Pulm. Med. 2015, 15, 80. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.H.; Choi, S.M.; An, M.H.; Hwang, D.Y.; Park, S.; Baek, A.R.; Jang, A.S. Nectin4 is a potential therapeutic target for asthma. Front. Immunol. 2022, 13, 1049900. [Google Scholar] [CrossRef] [PubMed]
- Homma, T.; Tanaka, K.; Takeda, N.; Okada, Y.; Torii, S.; Esaki, H.; Sakakibara, T.; Takimoto, N. Two Cases of Exacerbation of Asthma during Treatment with Enfortumab Vedotin. Case Rep. Oncol. 2023, 16, 1217–1222. [Google Scholar] [CrossRef]
- Meşe, G.; Richard, G.; White, T.W. Gap junctions: Basic structure and function. J. Investig. Dermatol. 2007, 127, 2516–2524. [Google Scholar] [CrossRef]
- Mikalsen, S.O.; Kongsstovu, S.; Tausen, M. Connexins during 500 Million Years—From Cyclostomes to Mammals. Int. J. Mol. Sci. 2021, 22, 1584. [Google Scholar] [CrossRef] [PubMed]
- Beyer, E.C.; Berthoud, V.M. Gap junction gene and protein families: Connexins, innexins, and pannexins. Biochim. Biophys. Acta Biomembr. 2018, 1860, 5–8. [Google Scholar] [CrossRef]
- Lampe, P.D.; Laird, D.W. Recent advances in connexin gap junction biology. Fac. Rev. 2022, 11, 14. [Google Scholar] [CrossRef]
- Bou Saab, J.; Losa, D.; Chanson, M.; Ruez, R. Connexins in respiratory and gastrointestinal mucosal immunity. FEBS Lett. 2014, 588, 1288–1296. [Google Scholar] [CrossRef]
- Kojima, T.; Murata, M.; Go, M.; Spray, D.C.; Sawada, N. Connexins Induce and Maintain Tight Junctions in Epithelial Cells. J. Membr. Biol. 2007, 217, 13–19. [Google Scholar] [CrossRef]
- Boyce, A.K.J.; Epp, A.L.; Nagarajan, A.; Swayne, L.A. Transcriptional and post translational regulation of pannexins. Biochim. Biophys. Acta 2018, 1860, 72–82. [Google Scholar] [CrossRef]
- Ransford, G.A.; Fregien, N.; Qiu, F.; Dahl, G.; Conner, G.E.; Salathe, M. Pannexin 1 contributes to ATP release in airway epithelia. Am. J. Respir. Cell Mol. Biol. 2009, 41, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Lucas, C.D.; Medina, C.B.; Bruton, F.A.; Dorward, D.A.; Raymond, M.H.; Tufan, T.; Etchegaray, J.I.; Barron, B.; Oremek, M.E.; Arandjelovic, S.; et al. Pannexin 1 drives efficient epithelial repair after tissue injury. Sci. Immunol. 2022, 7, eabm4032. [Google Scholar] [CrossRef]
- Huang, J.Q.; Chen, X.Y.; Huang, F.; Fan, J.M.; Shi, X.W.; Ju, Y.K. Effects of Connexin 43 Inhibition in an Ovalbumin-induced Mouse Model of Asthma. Iran. J. Allergy Asthma Immunol. 2018, 17, 29–38. [Google Scholar] [PubMed]
- Vliagoftis, H.; Hutson, A.M.; Mahmudi-Azer, S.; Kim, H.; Rumsaeng, V.; Oh, C.K.; Moqbel, R.; Metcalfe, D.D. Mast Cells Express Connexins on Their Cytoplasmic Membrane. J. Allergy Clin. Immunol. 1999, 103, 656–662. [Google Scholar] [CrossRef]
- Swartzendruber, J.A.; Nicholson, B.J.; Murthy, A.K. The Role of Connexin 43 in Lung Disease. Life 2020, 10, 363. [Google Scholar] [CrossRef] [PubMed]
- Arzola-Martinez, L.; Benavente, R.; Vega, G.; Rios, M.; Fonseca, W.; Rasky, A.J.; Morris, S.; Lukacs, N.W.; Villalón, M.J. Blocking ATP-releasing channels prevents high extracellular ATP levels and airway hyperreactivity in an asthmatic mouse model. Am. J. Physiol. Lung Cell Mol. Physiol. 2021, 321, L466–L476. [Google Scholar] [CrossRef] [PubMed]
- Martins-Marques, T.; Vasconcelos-Cardoso, M.; Geli, M.I.; Aasen, T.; Kwak, B.R.; Girao, H. The ins and outs of connexins and pannexins beyond the cell surface. Trends Biochem. Sci. 2025, 50, 622–635. [Google Scholar] [CrossRef]
- Medina, C.B.; Chiu, Y.H.; Stremska, M.E.; Lucas, C.D.; Poon, I.; Tung, K.S.; Tung, K.S.; Elliott, M.R.; Desai, B.; Lorenz, U.M.; et al. Pannexin 1 channels facilitate communication between T cells to restrict the severity of airway inflammation. Immunity 2021, 54, 1715–1727. [Google Scholar] [CrossRef]
- Bharathan, N.K.; Mattheyses, A.L.; Kowalczyk, A.P. The desmosome comes into focus. J. Cell Biol. 2024, 223, 202404120. [Google Scholar] [CrossRef]
- Perl, A.L.; Pokorny, J.L.; Green, K.J. Desmosomes at a glance. J. Cell Sci. 2024, 137, 261899. [Google Scholar] [CrossRef]
- Walko, G.; Castanon, M.J.; Wiche, G. Molecular Architecture and Function of the Hemidesmosome. Cell Tissue Res. 2015, 360, 363–378. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zuidema, A.; Te Molder, L.; Nahidiazar, L.; Hoekman, L.; Schmidt, T.; Coppola, S.; Sonnenberg, A. Hemidesmosomes Modulate Force Generation Via Focal Adhesions. J. Cell Biol. 2020, 219, e201904137. [Google Scholar] [CrossRef]
- Mishra, Y.G.; Manavathi, B. Focal adhesion dynamics in cellular function and disease. Cell. Signal. 2021, 85, 110046. [Google Scholar] [CrossRef]
- Samanta, D.; Almo, S.C. Nectin family of cell-adhesion molecules: Structural and molecular aspects of function and specificity. Cell. Mol. Life Sci. 2015, 72, 645–658. [Google Scholar]
- Shahana, S.; Björnsson, E.; Lúdvíksdóttir, D.; Janson, C.; Nettelbladt, O.; Venge, P.; Roomans, G.M.; BHR-Group. Ultrastructure of bronchial biopsies from patients with allergic and non-allergic asthma. Respir. Med. 2005, 99, 429–443. [Google Scholar] [CrossRef] [PubMed]
- Holgate, S.T. The airway epithelium is central to the pathogenesis of asthma. Allergol. Int. 2008, 57, 1–10. [Google Scholar] [CrossRef]
- Goldie, R.G.; Fernandes, L.B.; Rigby, P.J.; Paterson, J.W. Epithelial dysfunction and airway hyperreactivity in asthma. Prog. Clin. Biol. Res. 1988, 263, 317–329. [Google Scholar]
- Morrison, K.J.; Vanhoutte, P.M. Airway epithelial cells in the pathophysiology of asthma. Ann. N. Y. Acad. Sci. 1991, 629, 82–88. [Google Scholar] [CrossRef]
- Davies, R.J.; Devalia, J.L. Asthma. Epithelial cells. Br. Med. Bull. 1992, 48, 85–96. [Google Scholar] [CrossRef]
- Baglivo, I.; Colantuono, S.; Lumaca, A.; Papa, A.; Gasbarrini, A.; Caruso, C. The last step to achieve barrier damage control. Front. Immunol. 2024, 15, 1354556. [Google Scholar] [CrossRef] [PubMed]
- Shackleford, A.; Heaney, L.G.; Redmond, C.; McDowell, P.J.; Busby, J. Clinical remission attainment, definitions, and correlates among patients with severe asthma treated with biologics: A systematic review and meta-analysis. Lancet. Respir. Med. 2025, 13, 23–34. [Google Scholar] [PubMed]
- Perez-de-Llano, L.; Scelo, G.; Tran, T.N.; Le, T.T.; Fagerås, M.; Cosio, B.G.; Peters, M.; Pfeffer, P.E.; Al-Ahmad, M.; Al-Lehebi, R.O.; et al. Exploring Definitions and Predictors of Severe Asthma Clinical Remission after Biologic Treatment in Adults. Am. J. Respir. Crit. Care Med. 2024, 210, 869–880. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Picado, C.; Garcia de la Fuente, A.; Arismendi, E.; Roca-Ferrer, J. Next Decade Research in Asthma: Broad Omics-Based Exploration Versus Targeted Airway Epithelium Studies. J. Clin. Med. 2025, 14, 8186. https://doi.org/10.3390/jcm14228186
Picado C, Garcia de la Fuente A, Arismendi E, Roca-Ferrer J. Next Decade Research in Asthma: Broad Omics-Based Exploration Versus Targeted Airway Epithelium Studies. Journal of Clinical Medicine. 2025; 14(22):8186. https://doi.org/10.3390/jcm14228186
Chicago/Turabian StylePicado, César, Alberto Garcia de la Fuente, Ebymar Arismendi, and Jordi Roca-Ferrer. 2025. "Next Decade Research in Asthma: Broad Omics-Based Exploration Versus Targeted Airway Epithelium Studies" Journal of Clinical Medicine 14, no. 22: 8186. https://doi.org/10.3390/jcm14228186
APA StylePicado, C., Garcia de la Fuente, A., Arismendi, E., & Roca-Ferrer, J. (2025). Next Decade Research in Asthma: Broad Omics-Based Exploration Versus Targeted Airway Epithelium Studies. Journal of Clinical Medicine, 14(22), 8186. https://doi.org/10.3390/jcm14228186

