Assessing Liver Fibrosis in Chronic Hepatitis B: Liver Biopsy or Non-Invasive Fibrosis Markers?
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Exclusion Criteria
2.3. Definitions
2.4. Statistical Analysis
3. Results
3.1. Patient Baseline Characteristics
3.2. Prediction of Significant Fibrosis (≥F3)
3.3. Prediction of Advanced Fibrosis (≥F4)
3.4. Prediction of Cirrhosis
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AAR | AST-to-ALT Ratio |
| AAPRI | AAR-to-Platelet Ratio Index |
| ALT | Alanine Aminotransferase |
| APRI | AST-to-Platelet Ratio Index |
| API | Age-Platelet Index |
| AST | Aspartate Aminotransferase |
| AUC | Area Under the Curve |
| AUROC | Area Under the Receiver Operating Characteristic Curve |
| CHB | Chronic Hepatitis B |
| CHC | Chronic Hepatitis C |
| CI | Confidence Interval |
| FIB-4 | Fibrosis-4 Index |
| GGT | γ-Glutamyl Transpeptidase |
| GPR | γ-Glutamyl Transpeptidase-to-Platelet Ratio |
| HAI | Histology Activity Index |
| HBV | Hepatitis B Virus |
| HCV | Hepatitis C Virus |
| HDV | Hepatitis D Virus |
| HIV | Human Immunodeficiency Virus |
| IQR | Interquartile Range |
| PLT | Platelet Count |
| ROC | Receiver Operating Characteristic |
| S-Index | Serum Index (1000 × GGT)/(PLT × Albumin2) |
| SD | Standard Deviation |
References
- Lin, C.L.; Kao, J.H. Development of hepatocellular carcinoma in treated and untreated patients with chronic hepatitis B virus infection. Clin. Mol. Hepatol. 2023, 29, 605–622. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.N.; An, J.; Kim, E.H.; Kim, H.Y.; Lee, H.A.; Yu, J.H.; Jin, Y.-J.; Chon, Y.E.; Kim, S.U.; Jun, D.W.; et al. Vibration-controlled transient elastography for significant fibrosis in treatment-naïve chronic hepatitis B patients: A systematic review and meta-analysis. Clin. Mol. Hepatol. 2024, 30, S106–S116. [Google Scholar] [CrossRef] [PubMed]
- Chai, W.L.; Lu, D.L.; Sun, Z.X.; Cheng, C.; Deng, Z.; Jin, X.-Y.; Zhang, T.-L.; Gao, Q.; Pan, Y.-W.; Zhao, Q.-Y.; et al. Major complications after ultrasound-guided liver biopsy: An annual audit of a Chinese tertiary-care teaching hospital. World J. Gastrointest. Surg. 2023, 15, 1388–1396. [Google Scholar] [CrossRef]
- Seeff, L.B.; Everson, G.T.; Morgan, T.R.; Curto, T.M.; Lee, W.M.; Ghany, M.G.; Shiffman, M.L.; Fontana, R.J.; Di Bisceglie, A.M.; Bonkovsky, H.L.; et al. Complication rate of percutaneous liver biopsies among persons with advanced chronic liver disease in the HALT-C trial. Clin. Gastroenterol. Hepatol. 2010, 8, 877–883. [Google Scholar] [CrossRef]
- Thomaides-Brears, H.B.; Alkhouri, N.; Allende, D.; Harisinghani, M.; Noureddin, M.; Reau, N.S.; French, M.; Pantoja, C.; Mouchti, S.; Cryer, D.R.H. Incidence of complications from percutaneous biopsy in chronic liver disease: A systematic review and meta-analysis. Dig. Dis. Sci. 2022, 67, 3366–3374. [Google Scholar] [CrossRef]
- Parikh, P.; Ryan, J.D.; Tsochatzis, E.A. Fibrosis assessment in patients with chronic hepatitis B virus (HBV) infection. Ann. Transl. Med. 2017, 5, 40. [Google Scholar] [CrossRef]
- Özdemir, Y.E.; Salim Doğdaş, E.; Sevde Demir, A.; Borcak, D.; Ünlü, E.C.; Sezen, A.İ.; Bayramlar, O.F.; Yaşar, K.K. Relationships between liver histopathology with biochemical parameters, and hepatitis B virus-DNA in chronic hepatitis B infection. Viral Hepat. J. 2023, 29, 75–80. [Google Scholar] [CrossRef]
- Balık, R.; Demirdal, T.; Ural, S.; Nemli, S.A.; Özdemir, S.; Sarı, Ü.S. Comparison and value of non-invasive tests in chronic hepatitis B and C versus liver biopsy. Haydarpasa Numune Med. J. 2025, 65, 1–7. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for the Prevention, Care and Treatment of Persons with Chronic Hepatitis B Infection; WHO: Geneva, Switzerland, 2015; Available online: https://www.who.int/publications/i/item/9789241549059 (accessed on 2 September 2025).
- Liguori, A.; Zoncapè, M.; Casazza, G.; Easterbrook, P.; Tsochatzis, E.A. Staging liver fibrosis and cirrhosis using non-invasive tests in people with chronic hepatitis B to inform WHO 2024 guidelines: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2025, 10, 332–349. [Google Scholar] [CrossRef]
- Moosavy, S.H.; Eftekhar, E.; Davoodian, P.; Nejatizadeh, A.; Shadman, M.; Zare, S.; Nazarnezhad, M.A. AST/ALT ratio, APRI, and FIB-4 compared to FibroScan for the assessment of liver fibrosis in patients with chronic hepatitis B in Bandar Abbas, Hormozgan, Iran. BMC Gastroenterol. 2023, 23, 145. [Google Scholar] [CrossRef]
- Ozdemir, Y.E.; Ozdemir, M.S.; Bayramlar, O.F.; Kaya, S.Y.; Karaali, R.; Balkan, I.I.; Mete, B.; Aygun, G.; Saltoglu, N.; Tabak, F. Performance of noninvasive fibrosis indices in chronic hepatitis B during pretreatment and post-treatment periods. Biomark. Med. 2023, 17, 799–809. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines on the management of hepatitis B virus infection. J. Hepatol. 2025, 83, 502–583. [Google Scholar] [CrossRef] [PubMed]
- Ishak, K.; Baptista, A.; Bianchi, L.; Callea, F.; De Groote, J.; Gudat, F.; Denk, H.; Desmet, V.; Korb, G.; MacSween, R.N.; et al. Histological grading and staging of chronic hepatitis. J. Hepatol. 1995, 22, 696–699. [Google Scholar] [CrossRef]
- Poynard, T.; Bedossa, P.; METAVIR and CLINIVIR Cooperative Study Groups. Age and platelet count: A simple index for predicting the presence of histological lesions in patients with antibodies to hepatitis C virus. J. Viral Hepat. 1997, 4, 199–208. [Google Scholar] [CrossRef]
- Lemoine, M.; Shimakawa, Y.; Nayagam, S.; Khalil, M.; Suso, P.; Lloyd, J.; Goldin, R.; Njai, H.-F.; Ndow, G.; Taal, M.; et al. The gamma-glutamyl transpeptidase to platelet ratio (GPR) predicts significant liver fibrosis and cirrhosis in patients with chronic HBV infection in West Africa. Lancet Gastroenterol. Hepatol. 2016, 1, 226–236. [Google Scholar] [CrossRef]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef]
- Social Security Institution of Turkey. Communiqué on Amendment to the Health Implementation Communiqué; Official Gazette Republic of Turkey: Ankara, Turkey, 2024; p. 32710.
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines on non-invasive tests for evaluation of liver disease severity and prognosis—2021 update. J. Hepatol. 2021, 75, 659–689. [Google Scholar] [CrossRef]
- Sterling, R.K.; Patel, K.; Duarte-Rojo, A.; Asrani, S.K.; Alsawas, M.; Dranoff, J.A.; Fiel, M.I.; Murad, M.H.; Leung, D.H.; Levine, D.; et al. AASLD practice guideline on blood-based noninvasive liver disease assessment of hepatic fibrosis and steatosis. Hepatology 2025, 81, 321–357. [Google Scholar] [CrossRef]
- Shiha, G.; Ibrahim, A.; Helmy, A.; Sarin, S.K.; Omata, M.; Kumar, A.; Bernstien, D.; Maruyama, H.; Saraswat, V.; Chawla, Y.; et al. Asian-Pacific Association for the Study of the Liver (APASL) consensus guidelines on invasive and non-invasive assessment of hepatic fibrosis: A 2016 update. Hepatol. Int. 2017, 11, 1–30. [Google Scholar] [CrossRef]
- Ekin, N.; Ucmak, F.; Ebik, B.; Tuncel, E.T.; Kacmaz, H.; Arpa, M.; Atay, A.E. GPR, King’s Score and S-Index are superior to other non-invasive fibrosis markers in predicting liver fibrosis in chronic hepatitis B patients. Acta Gastroenterol. Belg. 2022, 85, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Lian, M.J.; Zhang, J.Q.; Chen, S.D.; Zhang, D.D.; Yang, Y.Y.; Hong, G.L. Diagnostic accuracy of γ-glutamyl transpeptidase-to-platelet ratio for predicting hepatitis B-related fibrosis: A meta-analysis. Eur. J. Gastroenterol. Hepatol. 2019, 31, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.P.; Lu, W.; Zhang, Z.Q.; Wang, Y.B.; Ding, R.R.; Zhou, X.L.; Huang, D.; Li, X.F. Comparative evaluation of GPR versus APRI and FIB-4 in predicting different levels of liver fibrosis of chronic hepatitis B. J. Viral Hepat. 2018, 25, 581–589. [Google Scholar] [CrossRef]
- Liao, M.J.; Li, J.; Dang, W.; Chen, D.-B.; Qin, W.-Y.; Chen, P.; Zhao, B.-G.; Ren, L.-Y.; Xu, T.-F.; Chen, H.-S.; et al. Novel index for the prediction of significant liver fibrosis and cirrhosis in chronic hepatitis B patients in China. World J. Gastroenterol. 2022, 28, 3503–3513. [Google Scholar] [CrossRef]
- Kang, N.L.; Ruan, Q.F.; Zhang, D.S.; Yu, X.P.; Hu, Z.T.; Lin, Z.M.; Wu, L.Y.; Lin, M.X.; Huang, Z.X.; Jiang, J.J.; et al. Advantages of a novel model for predicting hepatic fibrosis in chronic hepatitis B virus carriers compared with APRI and FIB-4 scores. J. Clin. Transl. Hepatol. 2022, 10, 412–419. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for the Prevention, Diagnosis, Care and Treatment for People with Chronic Hepatitis B Infection; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Doğan, A.; Gezer, Y. Follow-up, Treatment and Non-invasive Scoring Systems in Chronic Hepatitis B: A Retrospective Observational Study. Viral Hepat. J. 2023, 29, 22–29. [Google Scholar] [CrossRef]
- Kaya, A.; Barutcu, S.; Gulsen, M.T. Evaluation of fibrosis with noninvasive biochemical tests in chronic viral hepatitis B. Hepatol. Forum 2023, 4, 25–29. [Google Scholar] [CrossRef]
- Zhao, X.A.; Wang, J.; Wei, J.; Liu, J.; Chen, G.; Wang, L.; Wang, G.; Xia, J.; Wu, W.; Yin, S.; et al. Gamma-glutamyl transpeptidase to platelet ratio predicts liver injury in hepatitis B e antigen-negative chronic hepatitis B patients with normal alanine aminotransferase. J. Clin. Transl. Hepatol. 2022, 10, 247–253. [Google Scholar] [CrossRef]
- Tag-Adeen, M.; Omar, M.Z.; Abd-Elsalam, F.M.; Hasaneen, A.; Mohamed, M.A.; Elfeky, H.M.; Said, E.M.; Abdul-Aziz, B.; Osman, A.H.; Ahmed, E.S.; et al. Assessment of liver fibrosis in Egyptian chronic hepatitis B patients: A comparative study including five noninvasive indexes. Medicine 2018, 97, e9781. [Google Scholar] [CrossRef]
- Wang, J.; Sun, X.; Wei, S.; Chen, X.; Zhu, H.; Liantang, Y.; Bao, R.; Du, Y. Noninvasive models for the prediction of liver fibrosis in patients with chronic hepatitis B. BMC Gastroenterol. 2024, 24, 183. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, P.; Demirtürk, N.; Batırel, A.; Yardımcı, A.C.; Çağır, Ü.; Nemli, S.A.; Korkmaz, F.; Akcam, F.Z.; Barut, H.S.; Bayrak, B.; et al. Noninvasive models to predict liver fibrosis in patients with chronic hepatitis B: A study from Turkey. Hepat. Mon. 2017, 17, e60266. [Google Scholar] [CrossRef]
- Sayar, S.; Atalay, R.; Çakmak, Ş.; Ayrancı, G.; Kürbüz, K.; Kahraman, R.; Çalışkan, Z.; Öztürk, O.; Demirdağ, H.; Adalı, G.; et al. Diagnostic performance of non-invasive fibrosis indexes in hepatitis B related fibrosis. Viral Hepat. J. 2020, 26, 78–84. [Google Scholar] [CrossRef]
- Guo, S.; Gan, L.; Du, F.; Feng, Q.; Li, J.; Wan, Q.; Meng, Q.; Zhang, Y.; Ji, Y.; Liu, J. S index: A predictor comparable to ultrasound shear wave elastography in assessing liver fibrosis in patients with chronic hepatitis B. BMC Med. Imaging 2025, 25, 296. [Google Scholar] [CrossRef]
- Fazley, R.; Sha, M.U.; Abuelezz, N.Z.; Pervin, R.; Talukder, R.I.; Begum, M.; Rahman, M. Investigating the Efficiency of APRI, FIB-4, AAR and AARPRI as Noninvasive Markers for Predicting Hepatic Fibrosis in Chronic Hepatitis B Patients in Bangladesh. Open Microbiol. J. 2019, 13, 34–40. [Google Scholar] [CrossRef]
- Hu, Y.C.; Liu, H.; Liu, X.Y.; Ma, L.-N.; Guan, Y.-H.; Luo, X.; Ding, X.-C. Value of gamma-glutamyltranspeptidase-to-platelet ratio in diagnosis of hepatic fibrosis in patients with chronic hepatitis B. World J. Gastroenterol. 2017, 23, 7425–7432. [Google Scholar] [CrossRef]
- Ben Ayed, H.; Koubaa, M.; Yaich, S.; Rekik, K.; Ben Jemaa, T.; Maaloul, I.; Marrekchi, C.; Damak, J.; Ben Jemaa, M. A new combined predicting model using a non-invasive score for the assessment of liver fibrosis in patients presenting with chronic hepatitis B virus infection. Med. Mal. Infect. 2019, 49, 607–615. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Zhang, C.; Qiu, W.; Xie, Q. Diagnosis of liver fibrosis in patients with hepatitis B-related liver disease using ultrasound with wave-number domain attenuation coefficient. Turk. J. Gastroenterol. 2020, 31, 923–929. [Google Scholar] [CrossRef] [PubMed]

| Variables | F0 (n = 14) | F1 (n = 67) | F2 (n = 364) | F3 (n = 64) | F4 (n = 13) | F5 (n = 3) | F6 (n = 11) | p-Value |
|---|---|---|---|---|---|---|---|---|
| Gender (female/male) | 6/8 | 34/33 | 138/226 | 15/49 | 2/11 | 1/2 | 1/10 | 0.009 |
| HBeAg (−/+) | 12/2 | 52/15 | 257/96 | 51/13 | 7/6 | 1/2 | 9/2 | 0.224 |
| Age (years) | 42.2 ± 12.1 | 44.9 ± 13.8 | 42.8 ± 12.0 | 51.7 ± 11.2 | 54.0 ± 12.7 | 37.0 ± 12.5 | 61.0 ± 13.0 | <0.001 |
| AST (IU/L) | 46.2 ± 23.5 | 51.5 ± 52.0 | 42.4 ± 40.5 | 62 ± 58.1 | 63.7 ± 42.5 | 42.0 ± 32.7 | 81.7 ± 75.4 | 0.003 |
| ALT (IU/L) | 78.7 ± 64.6 | 72.5 ± 77.9 | 68.8 ± 86.8 | 95.8 ± 108 | 104.6 ± 80.7 | 63.7 ± 67.6 | 68.0 ± 46.1 | 0.320 |
| Albumin (g/L) | 43.2 ± 3.7 | 42.2 ± 4.0 | 43.4 ± 4.5 | 42.9 ± 4.6 | 42.7 ± 4.7 | 40.5 ± 2.1 | 32.5 ± 8.2 | <0.001 |
| Platelet counts (×103/µL) | 224 ± 52.5 | 243 ± 70.1 | 224 ± 55.1 | 198 ± 53.1 | 180 ± 49.1 | 244 ± 23.7 | 123 ± 52.3 | <0.001 |
| Non-Invasive Markers | Non-Significant Fibrosis (F0–2) Med (Min–Max) | Significant Fibrosis (F3–6) Med (Min–Max) | p-Value | Non-Cirrhotic (F0–4) Med (Min–Max) | Cirrhotic (F5–6) Med (Min–Max) | p-Value |
|---|---|---|---|---|---|---|
| AAPRI | 0.0033 (0.0009–0.204) | 0.0045 (0.0013–0.502) | <0.001 | 0.0034 (0.0009–0.0204) | 0.0065 (0.0025–0.0502) | <0.001 |
| AAR | 0.76 (0.29–2.67) | 0.78 (0.29–1.79) | 0.564 | 0.75 (0.29–2.67) | 1.07 (0.54–1.73) | 0.005 |
| API | 1 (0–12) | 2 (0–13) | <0.001 | 1 (0–12) | 3 (1–13) | <0.001 |
| APRI | 0.44 (0.12–5.92) | 0.83 (0.16–6.54) | <0.001 | 0.465 (0.12–6.54) | 1.15 (0.17–5.54) | 0.004 |
| FIB-4 | 0.94 (0.27–7.75) | 1.62 (0.54–21.32) | <0.001 | 1 (0.27–8.73) | 2.81 (0.54–21.32) | 0.001 |
| GPR | 0.29 (0.06–3.58) | 0.515 (0.08–4.98) | <0.001 | 0.3 (0.06–3.58) | 0.715 (0.11–4.98) | 0.001 |
| S-Index | 0.053 (0.011–1.906) | 0.094 (0.014–3.113) | <0.001 | 0.057 (0.011–1.906) | 0.264 (0.023–3.113) | <0.001 |
| AUC | 95% CI | p-Value | Cut-Off | Sensitivity | Specificity | Youden Index | |||
|---|---|---|---|---|---|---|---|---|---|
| AAPRI | Total | 0.590 | 0.48 | 0.69 | 0.067 | 0.004 | 57.1 | 59.2 | 16.3 |
| HBe Ag + | 0.588 | 0.34 | 0.82 | 0.407 | 0.003 | 55.6 | 56.8 | 12.4 | |
| HBe Ag − | 0.582 | 0.45 | 0.70 | 0.145 | 0.004 | 56.3 | 65.7 | 22 | |
| AAR | Total | 0.540 | 0.43 | 0.64 | 0.421 | 0.805 | 57.1 | 52.9 | 10 |
| HBe Ag + | 0.593 | 0.36 | 0.82 | 0.381 | 0.655 | 55.6 | 56.8 | 12.4 | |
| HBe Ag − | 0.513 | 0.39 | 0.63 | 0.814 | 0.885 | 50 | 58.7 | 8.7 | |
| API | Total | 0.661 | 0.56 | 0.75 | 0.001 | 1.5 | 69 | 57.6 | 26.6 |
| HBe Ag + | 0.674 | 0.50 | 0.84 | 0.102 | 1.5 | 88.9 | 45.5 | 34.4 | |
| HBe Ag − | 0.666 | 0.55 | 0.77 | 0.003 | 1.5 | 65.6 | 61.5 | 27.1 | |
| APRI | Total | 0.664 | 0.57 | 0.75 | 0.001 | 0.555 | 66.7 | 61.3 | 28 |
| HBe Ag + | 0.606 | 0.41 | 0.79 | 0.320 | 0.980 | 55.6 | 68.2 | 23.8 | |
| HBe Ag − | 0.676 | 0.56 | 0.78 | 0.002 | 0.575 | 62.5 | 66.4 | 28.9 | |
| FIB-4 | Total | 0.717 | 0.63 | 0.80 | <0.001 | 1.17 | 69 | 64.9 | 33.9 |
| HBe Ag + | 0.817 | 0.68 | 0.94 | 0.003 | 1.140 | 77.8 | 79.5 | 57.3 | |
| HBe Ag − | 0.679 | 0.57 | 0.78 | 0.002 | 1.205 | 65.6 | 62.9 | 28.5 | |
| GPR | Total | 0.719 | 0.63 | 0.80 | <0.001 | 0.445 | 69 | 74.3 | 43.3 |
| HBe Ag + | 0.799 | 0.68 | 0.91 | 0.005 | 0.475 | 77.8 | 75 | 52.8 | |
| HBe Ag − | 0.713 | 0.60 | 0.81 | <0.001 | 0.445 | 68.8 | 74.1 | 42.9 | |
| S-Index | Total | 0.712 | 0.62 | 0.80 | <0.001 | 0.075 | 66.7 | 67 | 33.7 |
| HBe Ag + | 0.803 | 0.68 | 0.92 | 0.004 | 0.093 | 77.8 | 75 | 52.8 | |
| HBe Ag − | 0.702 | 0.59 | 0.80 | <0.001 | 0.064 | 75 | 61.5 | 36.5 | |
| AUC | 95% CI | p-Value | Cut-Off | Sensitivity | Specificity | Youden Index | |||
|---|---|---|---|---|---|---|---|---|---|
| AAPRI | Total | 0.723 | 0.54 | 0.89 | 0.005 | 0.004 | 71.4 | 70.8 | 42.2 |
| HBe Ag + | 0.506 | 0.17 | 0.83 | 0.964 | 0.002 | 80 | 29.2 | 9.2 | |
| HBe Ag − | 0.861 | 0.74 | 0.98 | <0.001 | 0.005 | 77.8 | 75.3 | 53.1 | |
| AAR | Total | 0.540 | 0.43 | 0.64 | 0.421 | 0.805 | 57.1 | 52.9 | 10 |
| HBe Ag + | 0.481 | 0.21 | 0.74 | 0.891 | 0.625 | 60 | 50 | 10 | |
| HBe Ag − | 0.738 | 0.54 | 0.93 | 0.016 | 1.135 | 77.8 | 80 | 57.9 | |
| API | Total | 0.805 | 0.69 | 0.91 | <0.001 | 2.50 | 57.1 | 82.2 | 39.3 |
| HBe Ag + | 0.750 | 0.57 | 0.92 | 0.068 | 2.50 | 60 | 72.9 | 32.9 | |
| HBe Ag − | 0.809 | 0.65 | 0.96 | 0.002 | 2.50 | 55.6 | 84.3 | 39.9 | |
| APRI | Total | 0.797 | 0.65 | 0.94 | <0.001 | 0.835 | 78.6 | 75.8 | 54.4 |
| HBe Ag + | 0.654 | 0.39 | 0.91 | 0.260 | 0.980 | 80 | 68.8 | 48.8 | |
| HBe Ag − | 0.822 | 0.62 | 1.00 | 0.001 | 0.770 | 88.9 | 77.1 | 66 | |
| FIB-4 | Total | 0.800 | 0.65 | 0.94 | <0.001 | 1.445 | 78.6 | 75.3 | 53.9 |
| HBe Ag + | 0.754 | 0.54 | 0.96 | 0.063 | 1.380 | 60 | 81.3 | 41.3 | |
| HBe Ag − | 0.848 | 0.66 | 1.00 | <0.001 | 1.445 | 88.9 | 73.5 | 62.4 | |
| GPR | Total | 0.838 | 0.71 | 0.96 | <0.001 | 0.525 | 85.7 | 78.5 | 64.2 |
| HBe Ag + | 0.873 | 0.77 | 0.97 | 0.006 | 0.550 | 80 | 81.3 | 61.3 | |
| HBe Ag − | 0.816 | 0.63 | 0.99 | 0.001 | 0.575 | 77.8 | 82.5 | 60.3 | |
| S-Index | Total | 0.836 | 0.71 | 0.96 | <0.001 | 0.125 | 78.6 | 83.1 | 61.7 |
| HBe Ag + | 0.850 | 0.73 | 0.96 | 0.011 | 0.125 | 80 | 83 | 63.3 | |
| HBe Ag − | 0.826 | 0.63 | 1.00 | 0.001 | 0.136 | 77.8 | 85.5 | 63.3 | |
| AUC | 95% CI | p-Value | Cut-Off | Sensitivity | Specificity | Youden Index | |||
|---|---|---|---|---|---|---|---|---|---|
| AAPRI | Total | 0.850 | 0.70 | 0.99 | <0.001 | 0.005 | 80 | 78 | 58 |
| HBe Ag + | 0.618 | 0.17 | 1.00 | 0.575 | 0.006 | 50 | 92.2 | 42.2 | |
| HBe Ag − | 0.813 | 0.83 | 0.99 | <0.001 | 0.005 | 87.5 | 75.4 | 62.9 | |
| AAR | Total | 0.748 | 0.58 | 0.91 | 0.008 | 0.805 | 57.1 | 52.9 | 10 |
| HBe Ag + | 0.520 | 0.29 | 0.74 | 0.926 | 0.760 | 50. | 64.7 | 14.7 | |
| HBe Ag − | 0.820 | 0.68 | 0.95 | 0.002 | 1.135 | 87.5 | 80.2 | 67.7 | |
| API | Total | 0.800 | 0.65 | 0.94 | 0.001 | 2.50 | 60 | 81.6 | 41.6 |
| HBe Ag + | 0.667 | 0.45 | 0.87 | 0.427 | 2.50 | 50 | 70.6 | 20.6 | |
| HBe Ag − | 0.820 | 0.65 | 0.98 | 0.002 | 4.50 | 62.5 | 94.6 | 57.1 | |
| APRI | Total | 0.811 | 0.63 | 0.98 | 0.001 | 0.835 | 80 | 74.9 | 54.9 |
| HBe Ag + | 0.706 | 0.57 | 0.83 | 0.327 | 1.145 | 50 | 74.5 | 24.5 | |
| HBe Ag − | 0.815 | 0.59 | 1.00 | 0.003 | 0.770 | 87.5 | 76.6 | 64.1 | |
| FIB-4 | Total | 0.865 | 0.70 | 1.00 | <0.001 | 2.145 | 80 | 90.6 | 70.6 |
| HBe Ag + | 0.873 | 0.74 | 0.99 | 0.076 | 2.500 | 50 | 94.1 | 44.1 | |
| HBe Ag − | 0.862 | 0.65 | 1.00 | 0.001 | 2.145 | 87.5 | 89.8 | 77.3 | |
| GPR | Total | 0.826 | 0.66 | 0.99 | <0.001 | 0.575 | 80 | 82.1 | 62.1 |
| HBe Ag + | 0.779 | 0.65 | 0.90 | 0.183 | 0.645 | 50 | 82.4 | 32.4 | |
| HBe Ag − | 0.830 | 0.62 | 1.00 | 0.002 | 0.575 | 87.5 | 82.6 | 70.1 | |
| S-Index | Total | 0.852 | 0.69 | 1.00 | 0.000 | 0.129 | 80 | 85.2 | 65.2 |
| HBe Ag + | 0.828 | 0.72 | 0.93 | 0.118 | 0.129 | 50 | 84.3 | 34.5 | |
| HBe Ag − | 0.856 | 0.65 | 1.00 | 0.001 | 0.136 | 87.5 | 85.6 | 73.1 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borcak, D.; Yesilbag, Z.; Ozdemir, Y.E.; Demir, A.S.; Dogdas, E.S.; Sezen, A.I.; Unlu, E.C.; Senoglu, S.; Karaosmanoglu, H.K.; Yasar, K.K. Assessing Liver Fibrosis in Chronic Hepatitis B: Liver Biopsy or Non-Invasive Fibrosis Markers? J. Clin. Med. 2025, 14, 8164. https://doi.org/10.3390/jcm14228164
Borcak D, Yesilbag Z, Ozdemir YE, Demir AS, Dogdas ES, Sezen AI, Unlu EC, Senoglu S, Karaosmanoglu HK, Yasar KK. Assessing Liver Fibrosis in Chronic Hepatitis B: Liver Biopsy or Non-Invasive Fibrosis Markers? Journal of Clinical Medicine. 2025; 14(22):8164. https://doi.org/10.3390/jcm14228164
Chicago/Turabian StyleBorcak, Deniz, Zuhal Yesilbag, Yusuf Emre Ozdemir, Adile Sevde Demir, Esra Salim Dogdas, Aysegul Inci Sezen, Esra Canbolat Unlu, Sevtap Senoglu, Hayat Kumbasar Karaosmanoglu, and Kadriye Kart Yasar. 2025. "Assessing Liver Fibrosis in Chronic Hepatitis B: Liver Biopsy or Non-Invasive Fibrosis Markers?" Journal of Clinical Medicine 14, no. 22: 8164. https://doi.org/10.3390/jcm14228164
APA StyleBorcak, D., Yesilbag, Z., Ozdemir, Y. E., Demir, A. S., Dogdas, E. S., Sezen, A. I., Unlu, E. C., Senoglu, S., Karaosmanoglu, H. K., & Yasar, K. K. (2025). Assessing Liver Fibrosis in Chronic Hepatitis B: Liver Biopsy or Non-Invasive Fibrosis Markers? Journal of Clinical Medicine, 14(22), 8164. https://doi.org/10.3390/jcm14228164

