Research Progress on the Association Between Sarcopenic Obesity and Atherosclerosis: Current Status and Challenges
Abstract
1. Introduction
2. Literature Search Strategy
3. Obesity Paradox Highlights the Importance of Comprehensively Evaluating Body Composition and Physical Function
4. Independence and Health Implications of Sarcopenic Obesity
5. Diagnosis of Sarcopenic Obesity
5.1. ESPEN/EASO Consensus
5.2. JWGSO Consensus
| Organizations [Reference] | Proposed Consensus Time | Screening Indicators | Diagnostic Criteria | ||
|---|---|---|---|---|---|
| Sarcopenia | Obesity | Sarcopenia | Obesity | ||
| ESPEN/EASO [1] | 2022 | Clinical symptoms or Clinical suspicion or SARC-F > 4 | BMI (≥30 kg/m2 for CP, ≥27.5 kg/m2 for AP) or WC (M ≥ 102 cm for CP, F ≥ 88 cm for CP; M ≥ 78 cm for AP; F ≥ 72 cm for AP) | Muscle strength: Hand Grip (M < 27 kg for CP; F < 16 kg for CP; M < 28 kg for AP; F < 18 kg for AP); Physical performance: 5-Times Sit-to Stand Test ≥ 17 s; Muscle mass measurement: ALM/W by DXA (M < 25.7%; F < 19.4%) or SMM/W by BIA (M < 37.0%, F < 27.6%) | BFP(M > 31% for CP, F > 43% for CP; M > 29% for AP, F > 41% for AP) |
| JWGSO [56] | 2024 | Calf circumference (M < 34 cm, F < 33 cm) or SARC-F > 4, SARC-CalF > 11 or Finger ring test or Clinical symptoms or Clinical suspicion | WC (M > 85 cm, F > 90 cm) or BMI > 25 kg/m2 | Muscle strength: Hand Grip (M < 28 kg, F < 18 kg); Physical performance: 5-Times Sit-to Stand Test > 12 s; Muscle mass measurement: ASM/BMI (M < 0.789 kg/BMI; F < 0.512 kg/BMI) by DXA or BIA | VFA > 100 cm2 or BFP (M ≥ 20%, F ≥ 30%) |
| AOASO/IAGG-AOR [52] | 2025 | Calf circumference (M < 34 cm, F < 33 cm) or SARC-F > 4, SARC-CalF > 11 or Finger Ring test or Clinical suspicion | BMI * OR WC * | Muscle strength: Hand Grip (M < 28 kg, F < 18 kg); Physical performance: 6-Meter Walk < 1.0 m/s or 5-Times Sit-to Stand Test > 12 s or SPPB ≤ 9; Muscle mass measurement: ASMI by DXA (M < 7.0 kg/m2, F < 5.4 kg/m2) or BIA (M < 7.0 kg/m2, F < 5.7 kg/m2) | VFA * by DXA/CT/MRI or BFP * by BIA/DXA If the above measurements are not feasible, consider Waist Circumference, Waist/Hip ratio or BMI |
5.3. AOASO/IAGG-AOR Consensus
5.4. Regional Applicability of Diagnostic Criteria
5.5. Advantages and Disadvantages of Muscle Mass Measurement Devices
6. Association Between Sarcopenic Obesity and Atherosclerosis
6.1. Sarcopenic Obesity and Carotid Atherosclerosis
6.2. Sarcopenic Obesity and Coronary Artery Atherosclerosis
6.3. Sarcopenic Obesity and Arterial Stiffness
6.4. Sarcopenic Obesity and 10-Year ASCVD Risk
| First Author (Year) Origin [Reference] | Study Type | Characteristics of Individuals (n) | Diagnosis of Sarcopenic Obesity | Atherosclerosis Assessment | Main Findings | |
|---|---|---|---|---|---|---|
| Sarcopenia | Obesity | |||||
| Shi et al. (2024) China [34] | Cross-sectional | Hospitalized patients ≥ 45 years (469) | ASMI; VFA; Grip strength; SVR (ASMI/VFA) | The 10-year ASCVD risk assessment model from China-PAR | In elderly women, low ASMI, low grip strength, and low SVR significantly increase 10-year ASCVD risk. In elderly men, only decreased grip strength increases 10-year ASCVD risk. | |
| Bak et al. (2024) Korea [47] | Cross-sectional | Adults ≥ 40 years old undergoing health examination (20,601) | BIA: ASMI (M < 7.0 kg/m2, F < 5.7 kg/m2) | BMI ≥ 25 kg/m2; WC (M ≥ 90 cm, F ≥ 85 cm) | baPWV > 1800 cm/s | SO is associated with arterial stiffness risk, with muscle mass reduction potentially playing a greater role. |
| Milic et al. (2023) Italy [71] | Retrospective cohort (follow-up: 8 years) | HIV-infected patients (2379) | Grip strength below U.S. population thresholds or DXA: ASMI (M < 7.26 kg/m2, F < 5.45 kg/m2) or SPPB < 11 | BMI ≥ 30 kg/m2 or DXA/CT: VFA ≥ 160 cm2 | US: cIMT ≥ 1 mm or presence of carotid plaque. CT: Coronary artery calcification score calculated by the Agatston method > 10 | Low grip strength combined with high VFA significantly increased the risk of carotid atherosclerosis, higher than sarcopenia or obesity alone. Low ASMI combined with high VFA significantly increased the risk of coronary artery calcification. |
| Luo et al.(2025) China [72] | Cross-sectional | Adults ≥ 50 years old undergoing health examination (1010) | BIA: Skeletal muscle mass to body weight ratio (M < 39.3%, F < 33.9%) | BIA: VFA ≥ 100 cm2 | US: cIMT ≥ 1.5 mm or localized carotid thickening ≥ 50%; Arterial stiffness: baPWV > 1800 cm/s; Endothelial dysfunction: FMD < 10%) | SO is significantly associated with endothelial dysfunction, carotid atherosclerosis, and arterial stiffness. |
| Shin et al. (2021) Korea [73] | Cross-sectional | T2DM patients > 30 years old (1185) | DXA: ASM/BMI, Grip strength/BMI | US: High cIMT (M ≥ 0.970 mm, F ≥ 0.895 mm); Plaque score ≥ 3 | Decrease in ASM/BMI and grip strength/BMI is associated with high cIMT and high plaque score. | |
| Bouchi et al. (2016) Japan [74] | Cross-sectional | T2DM patients (259) | DXA: SMI (M < 7.0 kg/m2, F < 5.4 kg/m2); | DXA: android fat/gynoid fat ratio (A/G ratio) | US: cIMT | Elevated A/G ratio combined with low SMI is associated with carotid atherosclerosis. |
| Oh et al.(2011) Korea [75] | Cross-sectional | Newly diagnosed T2DM males (68); Healthy males (15) | US: Abdominal visceral thickness; CT: Thigh muscle thickness | US: cIMT | Thigh muscle thickness is correlated with cIMT thickening. | |
| Nakano et al.(2017) Japan [76] | Cross-sectional | T2DM patients with obesity aged ≥ 65 years (55) | CT: Cross-sectional area of the psoas muscle at the L3 vertebral level, normalized as TPA < 500 mm2/m2 | CT: VFA > 100 cm2 | US: cIMTmax | SO exhibits more severe carotid atherosclerosis compared to obesity alone, and cIMTmax may be associated with the development of SO. |
| Sato et al. (2024) Japan [77] | Cross-sectional | Hospitalized patients ≥ 75 years old, 94.9% had T2DM (118) | BIA: SMI (M < 7.0 kg/m2, F < 5.7 kg/m2); Grip strength (M < 28 kg, F < 18 kg) | BIA: BFP (M ≥ 29%, F ≥ 38.4%); CT: VFA ≥ 100 cm2. | US: IMTmax; Pulse Wave Analyzer: ABImin | SO is a significant influencing factor for carotid atherosclerosis in elderly T2DM patients (VFA was superior to BFP). The positive correlation between VFA and IMTmax was only significant in the sarcopenia subgroup. |
| Lu et al. (2023) China [78] | Cross-sectional | Postmenopausal women aged 40–88 years (2048) | BIA: ASMI ≤ 5.7 kg/m2 | BMI ≥ 24 kg/m2 | US: cIMT ≥ 1.0 mm or localized carotid thickening ≥ 50% | Decreased ASMI significantly increased carotid plaque risk in postmenopausal women, independent of BMI categories. |
| Cao et al.(2020) China [79] | Cross-sectional | Aged 24–85 years, MetS (1950), non-MetS (184) | Derived by anthropometric formula: ASM, ASM/Wt × 100% (< −1 SD) | WHTR ≥ 0.5 | US: cIMT ≥ 1.0 mm | Decreased muscle mass is a significant influencing factor for carotid atherosclerosis in MetS patients (with WHTR ≥ 0.5). Muscle mass exerts a protective effect against atherosclerosis. |
| Kang et al. (2021) Korea [80] | Cross-sectional | NAFLD patients (683) | BIA: ASM/BMI (M < 0.789, F < 0.512) | BMI ≥ 25 kg/m2 | US: cIMT ≥ 1.0 mm or localized carotid thickening ≥ 50% | ASM/BMI is a significant influencing factor for subclinical atherosclerosis in NAFLD patients, and obesity may exert a stronger effect than decreased muscle mass. |
| Xia et al. (2021) China [81] | Cross-sectional | Community-dwelling adults ≥ 45 years old (2432) | DXA: ASMI (M < 7.0 kg/m2, F < 5.4 kg/m2) | BMI ≥ 24 kg/m2 | US: cIMT ≥ 1.1 mm | SO showed no significant association with carotid atherosclerosis. |
| Heo et al. (2018) Korea [82] | Cross-sectional | Community-dwelling adults aged 30–64 years (1869) | BIA: ASM/Wt | BMI ≥ 25 kg/m2 | US: High cIMT (M ≥ 0.755 mm, F ≥ 0.724 mm); cIMT ≥ 1.0 mm or localized carotid thickening ≥ 50% | The association between reduced ASM/Wt and carotid atherosclerosis was observed only in nonobese males. |
| Cho et al. (2023) Korea [83] | Prospective cohort (follow-up: 6–8 years) | Patients with T2DM aged ≥ 19 years (852) | BIA: SMI (< −2SD) or ASMI (M < 7.0 kg/m2, F < 5.7 kg/m2) | BMI ≥ 25 kg/m2 or WC (M ≥ 90 cm, F ≥ 85 cm) | US: Carotid plaque progression (cIMT ≥ 1.5 mm or plaque protruding ≥ 50% into the lumen or a distinct hyperechoic area). | NAFLD combined with sarcopenia significantly increased the risk of carotid plaque progression in T2DM patients. The risk of plaque progression was even higher in women and in those with normal BMI and WC who also had sarcopenia. |
| Kim et al. (2019) Korea [84] | Cross-sectional | Newly diagnosed, drug-naive T2DM patients (233) | DXA: ASMI (M < 7 kg/m2, F < 5.4 kg/m2) | WC (M ≥ 90 cm, F ≥ 85 cm) | US: cIMT > 0.9 mm or presence of plaque; baPWV > 1800 cm/s | SO showed no association with cIMT or baPWV. |
| Jun et al. (2021) Korea [86] | Cross-sectional & Retrospective cohort (follow-up: 8 years) | Adults ≥ 20 years old undergoing health examination (Cross-sectional:19,728, Prospective cohort:5401) | BIA: SMI ≤ −1.0 SD | WC (M ≥ 90 cm, F ≥ 85 cm | CT: Coronary artery calcification (CAC score > 0); CAC progression (The square root of the difference in CAC scores between follow-up and baseline periods was greater than 2.5) | SO increases the risk of CAC incidence and progression, with higher risk than sarcopenia or isolated abdominal obesity alone. |
| Ren (2025) China [87] | Meta-analysis | Community-dwelling older adults from multiple countries (42,683) | DXA/BIA/CT: Muscle mass; Grip strength; Physical function | BMI; WC; BFP | Clinically diagnosed CHD | SO is a significant risk factor for coronary artery disease. |
| Wang (2023) China [88] | Cross-sectional | CHD patients ≥ 60 years (127) | BIA: SMI (M < 7.0 kg/m2, F < 5.7 kg/m2; Grip strength (M < 26 kg, F < 18 kg); Gait speed < 0.8 m/s | WC (M ≥ 102 cm, F ≥ 88 cm) | Coronary angiography: Gensini score > 40 | Both decreased muscle mass and increased waist circumference in SO patients correlate with coronary stenosis severity in CHD patients. |
| Chung et al. (2021) Korea [89] | Cross-sectional | Health examinees (1282) | BIA: ASM% < −2SD | BMI ≥ 25 kg/m2 | CT: CAC score ≥ 100 | SO is independently associated with CAC, and confers significantly higher risk than isolated obesity or isolated sarcopenia. |
| Ohara et al. (2014) Japan [96] | Cross-sectional | Middle-aged and elderly individuals without history of cardiovascular events (1470) | CT: Thigh muscle cross-sectional area (CSA) < −1 SD or < 20th percentile of the study population | CT: VFA > 100 cm2 | baPWV > 1800 cm/s | SO shows a stronger correlation with arterial stiffness than isolated sarcopenia or isolated obesity. |
| Kim et al. (2011) Korea [97] | Cross-sectional | Healthy adults aged 20–80 years (510) | DXA/CT: MFR (ASM/VFA); DXA: ASMI | baPWV > 1800 cm/s | MFR may be an independent negative predictor of arterial stiffness, whereas ASMI shows a weaker correlation with arterial stiffness. | |
| Xu et al. (2018) China [98] | Cross-sectional | T2DM patients (423) | BIA: ASM (g)/VFA (cm2), divide into tertiles | baPWV > 1800 mm/s | Compared to ASM, VFA, or ASM/height2 alone, ASM/VFA demonstrates greater predictive value for arterial stiffness. | |
| Matsumoto et al. (2022) Japan [99] | Cross-sectional | Adults ≥ 50 years old undergoing health examination (137) | Two-step test; Stand-up test | CT: VFA > 100 cm2 | baPWV | High VFA combined with reduced physical function is also independently associated with arterial stiffness. |
| Fantin et al. (2024) Italy [100] | Cross-sectional | Geriatric Inpatients (77) | BIA: SMI (M < 10.75 kg/m2, F < 6.75 kg/m2; Grip strength (M < 30 kg, F < 20 kg) | BMI ≥ 30 kg/m2; WC (M ≥ 102 cm, F ≥ 88 cm) | cfPWV; CAVI | Sarcopenia and SO are both associated with increased arterial stiffness, and SO may exert a greater effect on the central arteries. |
| Wang et al. (2020) China [101] | Cross-sectional | Hospitalized elderly patients (1150) | BIA: ASMI (M < 7 kg/m2, F < 5.7 kg/m2) | BIA: BFP (M ≥ 25%,F ≥ 35%); BIA: Visceral fat mass/Total fat mass ratio | CAVI ≥ 9 m/s | SO is a significant influencing factor for CAVI, whereas isolated obesity or reduced muscle mass show no significant effects. |
| Liu et al. (2025) China [102] | Prospective cohort (follow-up: 3 years) | Inpatients ≥ 18 years old | CT: Measure the paraspinal muscle area at the T12 level and calculate SMI and SMFI (muscle area (cm2)/muscle density (HU)) | baPWV ≥ 1400 cm/s | SMI combined with SMFI outperforms either SMI or SMFI alone in predicting arterial stiffness. | |
| Jang et al.(2023) Korea [103] | Cross-sectional | Health examination adults ≥ 21 years (7177) | BIA: ASMI (M < 7 kg/m2, F < 5.7 kg/m2) | BIA: VFA > 100 cm2, Visceral fat mass/Total fat mass ratio | baPWV > 1800 cm/s | In males, SO is a significant risk factor for elevated baPWV. Decreased ASMI may contribute more to arteriosclerosis than VFA. In females, no association was found between SO and baPWV. |
| Han et al. (2024) Korea [106] | Cross-sectional | Adults ≥ 20 years at high risk for NAFLD (1455) | BIA: ASM/VFA (<sex-specific tertile); ASM/BMI (M < 0.789, F < 0.512) | The 10-year ASCVD risk assessment model from ACC/AHA | Low ASM/VFA combined with low ASM/BMI synergistically increases 10-year ASCVD risk, whereas isolated low ASM/VFA or isolated low ASM/BMI shows no significant association with 10-year ASCVD risk. | |
| Chen et al. (2025) China [107] | Cross-sectional | Adults ≥ 40 years undergoing health examination (1592) | BIA: FMR | The 10-year ASCVD risk assessment model from ACC/AHA | Elevated FMR significantly increases 10-year ASCVD risk in hypertensive patients. | |
| Chien et al. (2025) Taiwan, China [108] | Cross-sectional | MASLD patients (223) | DXA: ASM% (M < 30.8%, F < 24.3%) | DXA: BFP (M > 25%, F > 38%) | The 10-year ASCVD risk assessment model from ACC/AHA | MASLD with SO had more individuals at high 10-year ASCVD risk than non-SO patients. |
| Yan et al.(2024) China [109] | Cross-sectional | Hypertensive patients (1512); NAFLD patients (1249) | BIA: ASMI (M ≤ 7.0 kg/m2, F ≤ 5.7 kg/m2) | BIA: BFP (M > 25%, F > 35%) | The 10-year ASCVD risk assessment model from ACC/AHA | SO is a significant risk factor for 10-year ASCVD in hypertensive and NAFLD patients. |
| Leem et al. (2022) Korea [110] | Cross-sectional, (data from KNHANES 2008–2011) | Male COPD patients (704) | DXA: ASM/BMI < −1SD | WC ≥ 90 cm; BMI ≥ 25 kg/m2; FMI ≥ 7.0 kg/m2 | The 10-year ASCVD risk assessment model from ACC/AHA | Decreased ASM/BMI significantly increases 10-year ASCVD risk in male COPD patients, independent of BMI, WC, and FMI (fat mass/height2). |
7. Pathophysiological Mechanisms Between Sarcopenic Obesity and Atherosclerosis
7.1. Hormonal and Adipo-Myokine Imbalance
7.2. Insulin Resistance and Endothelial Dysfunction
7.3. Chronic Low-Grade Inflammation and Oxidative Stress
7.4. Dyslipidemia and Vascular Injury
7.5. Vicious Cycles of Sarcopenia, Obesity, and Atherosclerosis
8. Research Challenges and Future Directions
8.1. Current Research Challenges and Limitations
8.2. Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Donini, L.M.; Busetto, L.; Bischoff, S.C.; Cederholm, T.; Ballesteros-Pomar, M.D.; Batsis, J.A.; Bauer, J.M.; Boirie, Y.; Cruz-Jentoft, A.J.; Dicker, D.; et al. Definition and diagnostic criteria for sarcopenic obesity: ESPEN and EASO consensus statement. Clin. Nutr. 2022, 41, 990–1000. [Google Scholar] [CrossRef]
- Prado, C.M.; Batsis, J.A.; Donini, L.M.; Gonzalez, M.C.; Siervo, M. Sarcopenic obesity in older adults: A clinical overview. Nat. Rev. Endocrinol. 2024, 20, 261–277. [Google Scholar] [CrossRef] [PubMed]
- Yanhui, L.; Shuchun, C. Interpretation and Clinical Significance of the Definition and Diagnostic Criteria for Sarcopenic Obesity: ESPEN and EASO Consensus Statement. Chin. General. Pract. 2023, 26, 1422–1428. [Google Scholar]
- Ji, T.; Li, Y.; Ma, L. Sarcopenic Obesity: An Emerging Public Health Problem. Aging Dis. 2022, 13, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, M.; Wang, L.; He, X.; Ma, L.; Song, Y.; Chen, N. Prevalence of sarcopenic obesity: Comparison of different diagnostic criteria and exploration of optimal screening methods. BMC Geriatr. 2024, 24, 799. [Google Scholar] [CrossRef]
- Gao, Q.; Mei, F.; Shang, Y.; Hu, K.; Chen, F.; Zhao, L.; Ma, B. Global prevalence of sarcopenic obesity in older adults: A systematic review and meta-analysis. Clin. Nutr. 2021, 40, 4633–4641. [Google Scholar] [CrossRef]
- Scott, D.; Blyth, F.; Naganathan, V.; Le Couteur, D.G.; Handelsman, D.J.; Waite, L.M.; Hirani, V. Sarcopenia prevalence and functional outcomes in older men with obesity: Comparing the use of the EWGSOP2 sarcopenia versus ESPEN-EASO sarcopenic obesity consensus definitions. Clin. Nutr. 2023, 42, 1610–1618. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, Z.; Guo, S.Y.; Tian, Y. Research progress in the regulation and application prospects of exosomes on atherosclerotic diseases. Zhonghua Xin Xue Guan Bing. Za Zhi 2022, 50, 610–614. [Google Scholar] [CrossRef]
- Li, Z.; Yang, Y.; Wang, X.; Yang, N.; He, L.; Wang, J.; Ping, F.; Xu, L.; Zhang, H.; Li, W.; et al. Comparative analysis of atherosclerotic cardiovascular disease burden between ages 20-54 and over 55 years: Insights from the Global Burden of Disease Study 2019. BMC Med. 2024, 22, 303. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, Y.; Wong, N.D.; Wang, J. Impact of Aging on Cardiovascular Diseases: From Chronological Observation to Biological Insights: JACC Family Series. JACC Asia 2024, 4, 345–358. [Google Scholar] [CrossRef]
- Kim, S.J.; Mesquita, F.C.P.; Hochman-Mendez, C. New Biomarkers for Cardiovascular Disease. Tex. Heart Inst. J. 2023, 50, e238178. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Hui, L.; Yang-Gang, L.; Zhi-Lan, L.; Jia-Yan, X.; Qing-Song, W. Research progress on the role of sarcopenia in the pathogenesis of atherosclerotic cardiocerebrovascular disease in the elderly. Med. J. Chin. PLA 2021, 46, 512–517. [Google Scholar]
- Carmona-Maurici, J.; Rosa, A.; Azcona-Granada, N.; Peña, E.; Ricart-Jané, D.; Viñas, A.; López-Tejero, M.D.; Domingo, J.C.; Miñarro, A.; Baena-Fustegueras, J.A.; et al. Irisin as a Novel Biomarker of Subclinical Atherosclerosis in Severe Obesity. Int. J. Mol. Sci. 2023, 24, 8171. [Google Scholar] [CrossRef] [PubMed]
- Shibao, C.; Peche, V.S.; Williams, I.M.; Samovski, D.; Pietka, T.A.; Abumrad, N.N.; Gamazon, E.; Goldberg, I.J.; Wasserman, D.; Abumrad, N.A. Microvascular insulin resistance associates with enhanced muscle glucose disposal in CD36 deficiency. medRxiv 2024. [Google Scholar] [CrossRef]
- Hajj, J.; Schneider, A.L.C.; Jacoby, D.; Schreiber, J.; Nolfi, D.; Turk, M.T. Associations of Neighborhood Environments and Socioeconomic Status With Subclinical Atherosclerosis: An Integrative Review. J. Cardiovasc. Nurs. 2025, 40, 228–249. [Google Scholar] [CrossRef]
- Santiago-Fernandez, C.; Martin-Reyes, F.; Bautista, R.; Tome, M.; Gómez-Maldonado, J.; Gutierrez-Repiso, C.; Tinahones, F.J.; Garcia-Fuentes, E.; Garrido-Sánchez, L. miRNA/Target Gene Profile of Endothelial Cells Treated with Human Triglyceride-Rich Lipoproteins Obtained after a High-Fat Meal with Extra-Virgin Olive Oil or Sunflower Oil. Mol. Nutr. Food Res. 2020, 64, e2000221. [Google Scholar] [CrossRef]
- Pedro-Botet, J.; Climent, E.; Benaiges, D. LDL cholesterol as a causal agent of atherosclerosis. Clin. Investig. Arterioscler. 2024, 36 (Suppl. 1), S3–S8. [Google Scholar] [CrossRef]
- Gulley Cox, L.I.; Dias, N.; Zhang, C.; Zhang, Y.; Gorniak, S.L. Impact of aging and body mass index on upper extremity motor unit number index and size. Exp. Biol. Med. 2025, 250, 10491. [Google Scholar] [CrossRef]
- Zamboni, M.; Mazzali, G.; Fantin, F.; Rossi, A.; Di Francesco, V. Sarcopenic obesity: A new category of obesity in the elderly. Nutr. Metab. Cardiovasc. Dis. 2008, 18, 388–395. [Google Scholar] [CrossRef]
- Angerås, O.; Albertsson, P.; Karason, K.; Råmunddal, T.; Matejka, G.; James, S.; Lagerqvist, B.; Rosengren, A.; Omerovic, E. Evidence for obesity paradox in patients with acute coronary syndromes: A report from the Swedish Coronary Angiography and Angioplasty Registry. Eur. Heart J. 2013, 34, 345–353. [Google Scholar] [CrossRef]
- Lavie, C.J.; De Schutter, A.; Patel, D.A.; Romero-Corral, A.; Artham, S.M.; Milani, R.V. Body composition and survival in stable coronary heart disease: Impact of lean mass index and body fat in the “obesity paradox”. J. Am. Coll. Cardiol. 2012, 60, 1374–1380. [Google Scholar] [CrossRef] [PubMed]
- Zahid, S.; Peng, A.W.; Razavi, A.C.; Yao, Z.; Blumenthal, R.S.; Blaha, M.J. Does the New Clinical Obesity Definition Address the Obesity Paradox in Cardiovascular Health? Mayo Clin. Proc. 2025, 100, 1879–1882. [Google Scholar] [CrossRef] [PubMed]
- Lavie, C.J.; Sharma, A.; Alpert, M.A.; De Schutter, A.; Lopez-Jimenez, F.; Milani, R.V.; Ventura, H.O. Update on Obesity and Obesity Paradox in Heart Failure. Prog. Cardiovasc. Dis. 2016, 58, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Alansari, H.; Lazzara, G.; Taha, M.B.; Gorthi, J.R. The Impact of Obesity on Cardiovascular Diseases: Heart Failure. Methodist. Debakey Cardiovasc. J. 2025, 21, 44–52. [Google Scholar] [CrossRef]
- Bahniwal, R.K.; Sadr, N.; Schinderle, C.; Avila, C.J.; Sill, J.; Qayyum, R. Obesity Paradox and the Effect of NT-proBNP on All-Cause and Cause-Specific Mortality. Clin. Cardiol. 2024, 47, e70044. [Google Scholar] [CrossRef]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2021, 143, e984–e1010. [Google Scholar] [CrossRef]
- Li, J.; Liu, X.; Yang, Q.; Huang, W.; Nie, Z.; Wang, Y. Low lean mass and all-cause mortality risk in the middle-aged and older population: A dose-response meta-analysis of prospective cohort studies. Front. Med. 2025, 12, 1589888. [Google Scholar] [CrossRef]
- Sedlmeier, A.M.; Baumeister, S.E.; Weber, A.; Fischer, B.; Thorand, B.; Ittermann, T.; Dörr, M.; Felix, S.B.; Völzke, H.; Peters, A.; et al. Relation of body fat mass and fat-free mass to total mortality: Results from 7 prospective cohort studies. Am. J. Clin. Nutr. 2021, 113, 639–646. [Google Scholar] [CrossRef]
- Rubino, F.; Cummings, D.E.; Eckel, R.H.; Cohen, R.V.; Wilding, J.P.H.; Brown, W.A.; Stanford, F.C.; Batterham, R.L.; Farooqi, I.S.; Farpour-Lambert, N.J.; et al. Definition and diagnostic criteria of clinical obesity. Lancet Diabetes Endocrinol. 2025, 13, 221–262. [Google Scholar] [CrossRef]
- Abramowitz, M.K.; Hall, C.B.; Amodu, A.; Sharma, D.; Androga, L.; Hawkins, M. Muscle mass, BMI, and mortality among adults in the United States: A population-based cohort study. PLoS ONE 2018, 13, e0194697. [Google Scholar] [CrossRef]
- McAuley, P.A.; Artero, E.G.; Sui, X.; Lee, D.C.; Church, T.S.; Lavie, C.J.; Myers, J.N.; España-Romero, V.; Blair, S.N. The obesity paradox, cardiorespiratory fitness, and coronary heart disease. Mayo Clin. Proc. 2012, 87, 443–451. [Google Scholar] [CrossRef]
- Tutor, A.W.; Lavie, C.J.; Kachur, S.; Milani, R.V.; Ventura, H.O. Updates on obesity and the obesity paradox in cardiovascular diseases. Prog. Cardiovasc. Dis. 2023, 78, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Bushita, H.; Ozato, N.; Mori, K.; Kawada, H.; Katsuragi, Y.; Osaki, N.; Mikami, T.; Itoh, K.; Murashita, K.; Nakaji, S.; et al. Effect of visceral fat on onset of metabolic syndrome. Sci. Rep. 2025, 15, 19012. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Lin, Q.Q.; Liu, H.B.; Wang, S. Correlation among skeletal muscle mass index, grip strength, and muscle-fat ratio, and the risk of atherosclerotic cardiovascular disease. Chin. J. Osteoporos 2024, 30, 1281–1286+1328. [Google Scholar]
- Stenholm, S.; Harris, T.B.; Rantanen, T.; Visser, M.; Kritchevsky, S.B.; Ferrucci, L. Sarcopenic obesity: Definition, cause and consequences. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 693–700. [Google Scholar] [CrossRef]
- Siervo, M.; Prado, C.M.; Mire, E.; Broyles, S.; Wells, J.C.; Heymsfield, S.; Katzmarzyk, P.T. Body composition indices of a load-capacity model: Gender- and BMI-specific reference curves. Public Health Nutr. 2015, 18, 1245–1254. [Google Scholar] [CrossRef]
- Walowski, C.O.; Braun, W.; Maisch, M.J.; Jensen, B.; Peine, S.; Norman, K.; Müller, M.J.; Bosy-Westphal, A. Reference Values for Skeletal Muscle Mass—Current Concepts and Methodological Considerations. Nutrients 2020, 12, 755. [Google Scholar] [CrossRef]
- Wang, M.; Tan, Y.; Shi, Y.; Wang, X.; Liao, Z.; Wei, P. Diabetes and Sarcopenic Obesity: Pathogenesis, Diagnosis, and Treatments. Front. Endocrinol. 2020, 11, 568. [Google Scholar] [CrossRef]
- Rossi, A.P.; Rubele, S.; Calugi, S.; Caliari, C.; Pedelini, F.; Soave, F.; Chignola, E.; Vittoria Bazzani, P.; Mazzali, G.; Dalle Grave, R.; et al. Weight Cycling as a Risk Factor for Low Muscle Mass and Strength in a Population of Males and Females with Obesity. Obesity 2019, 27, 1068–1075. [Google Scholar] [CrossRef]
- Peng, T.C.; Chen, W.L.; Chen, Y.Y.; Chao, Y.P.; Wu, L.W.; Kao, T.W. Associations between different measurements of sarcopenic obesity and health outcomes among non-frail community-dwelling older adults in Taiwan. Br. J. Nutr. 2021, 126, 1749–1757. [Google Scholar] [CrossRef]
- Atkins, J.L.; Wannamathee, S.G. Sarcopenic obesity in ageing: Cardiovascular outcomes and mortality. Br. J. Nutr. 2020, 124, 1102–1113. [Google Scholar] [CrossRef] [PubMed]
- Benz, E.; Pinel, A.; Guillet, C.; Capel, F.; Pereira, B.; De Antonio, M.; Pouget, M.; Cruz-Jentoft, A.J.; Eglseer, D.; Topinkova, E.; et al. Sarcopenia and Sarcopenic Obesity and Mortality Among Older People. JAMA Netw. Open 2024, 7, e243604. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Feng, C.; Na, L.; Difei, W. Sarcopenic obesity in the elderly: Etiology, diagnosis, and treatment strategies. Chin. J. Geriatr. 2024, 43, 1545–1550. [Google Scholar]
- Gandham, A.; Mesinovic, J.; Jansons, P.; Zengin, A.; Bonham, M.P.; Ebeling, P.R.; Scott, D. Falls, fractures, and areal bone mineral density in older adults with sarcopenic obesity: A systematic review and meta-analysis. Obes. Rev. 2021, 22, e13187. [Google Scholar] [CrossRef]
- Jiang, M.; Ren, X.; Han, L.; Zheng, X. Associations between sarcopenic obesity and risk of cardiovascular disease: A population-based cohort study among middle-aged and older adults using the CHARLS. Clin. Nutr. 2024, 43, 796–802. [Google Scholar] [CrossRef]
- Guan, Z.; Stephan, B.C.M.; Donini, L.M.; Prado, C.M.; Sim, M.; Siervo, M. Exploring the association between sarcopenic obesity and cardiovascular risk: A summary of findings from longitudinal studies and potential mechanisms. Proc. Nutr. Soc. 2024, 84, 225–233. [Google Scholar] [CrossRef]
- Bak, H.R.; Jang, H.J.; Koh, H.M.; Ko, N.G.; Cho, Y.H. Association between Sarcopenic Obesity and Arterial Stiffness in Korean Adults. J. Clin. Med. 2024, 13, 6108. [Google Scholar] [CrossRef]
- Wei, S.; Nguyen, T.T.; Zhang, Y.; Ryu, D.; Gariani, K. Sarcopenic obesity: Epidemiology, pathophysiology, cardiovascular disease, mortality, and management. Front. Endocrinol. 2023, 14, 1185221. [Google Scholar] [CrossRef]
- Liu, C.; Wong, P.Y.; Chung, Y.L.; Chow, S.K.; Cheung, W.H.; Law, S.W.; Chan, J.C.N.; Wong, R.M.Y. Deciphering the “obesity paradox” in the elderly: A systematic review and meta-analysis of sarcopenic obesity. Obes. Rev. 2023, 24, e13534. [Google Scholar] [CrossRef]
- Batsis, J.A.; Villareal, D.T. Sarcopenic obesity in older adults: Aetiology, epidemiology and treatment strategies. Nat. Rev. Endocrinol. 2018, 14, 513–537. [Google Scholar] [CrossRef]
- Koliaki, C.; Liatis, S.; Dalamaga, M.; Kokkinos, A. Sarcopenic Obesity: Epidemiologic Evidence, Pathophysiology, and Therapeutic Perspectives. Curr. Obes. Rep. 2019, 8, 458–471. [Google Scholar] [CrossRef]
- Chen, T.P.; Kao, H.H.; Ogawa, W.; Arai, H.; Tahapary, D.L.; Assantachai, P.; Tham, K.W.; Chan, D.C.; Yuen, M.M.; Appannah, G.; et al. The Asia-Oceania consensus: Definitions and diagnostic criteria for sarcopenic obesity. Obes. Res. Clin. Pract. 2025, 19, 185–192. [Google Scholar] [CrossRef]
- Baumgartner, R.N.; Wayne, S.J.; Waters, D.L.; Janssen, I.; Gallagher, D.; Morley, J.E. Sarcopenic obesity predicts instrumental activities of daily living disability in the elderly. Obes. Res. 2004, 12, 1995–2004. [Google Scholar] [CrossRef]
- Chen, L.K.; Lee, W.J.; Peng, L.N.; Liu, L.K.; Arai, H.; Akishita, M. Recent Advances in Sarcopenia Research in Asia: 2016 Update From the Asian Working Group for Sarcopenia. J. Am. Med. Dir. Assoc. 2016, 17, 767.e1–767.e7. [Google Scholar] [CrossRef]
- Fujii, H.; Kodani, E.; Kaneko, T.; Nakamura, H.; Sasabe, H.; Tamura, Y. Factors Influencing Sarcopenic Changes in YUBI-WAKKA Finger-Ring Test Results After One Year: A Retrospective Observational Study. J. Clin. Med. Res. 2023, 15, 23–30. [Google Scholar] [CrossRef]
- Ishii, K.; Ogawa, W.; Kimura, Y.; Kusakabe, T.; Miyazaki, R.; Sanada, K.; Satoh-Asahara, N.; Someya, Y.; Tamura, Y.; Ueki, K.; et al. Diagnosis of sarcopenic obesity in Japan: Consensus statement of the Japanese Working Group on Sarcopenic Obesity. Geriatr. Gerontol. Int. 2024, 24, 997–1000. [Google Scholar] [CrossRef] [PubMed]
- Dixon, J.B. The effect of obesity on health outcomes. Mol. Cell. Endocrinol. 2010, 316, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Busetto, L.; Dicker, D.; Frühbeck, G.; Halford, J.C.G.; Sbraccia, P.; Yumuk, V.; Goossens, G.H. A new framework for the diagnosis, staging and management of obesity in adults. Nat. Med. 2024, 30, 2395–2399. [Google Scholar] [CrossRef] [PubMed]
- Piché, M.-E.; Tchernof, A.; Després, J.-P. Obesity Phenotypes, Diabetes, and Cardiovascular Diseases. Circ. Res. 2020, 126, 1477–1500. [Google Scholar] [CrossRef]
- Bennett, J.P.; Lim, S. The Critical Role of Body Composition Assessment in Advancing Research and Clinical Health Risk Assessment across the Lifespan. J. Obes. Metab. Syndr. 2025, 34, 120–137. [Google Scholar] [CrossRef]
- Nana, A.; Staynor, J.M.D.; Arlai, S.; El-Sallam, A.; Dhungel, N.; Smith, M.K. Agreement of anthropometric and body composition measures predicted from 2D smartphone images and body impedance scales with criterion methods. Obes. Res. Clin. Pract. 2022, 16, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300.e302–307.e302. [Google Scholar] [CrossRef]
- Tseng, L.Y.; Liang, C.K.; Peng, L.N.; Lin, M.H.; Loh, C.H.; Lee, W.J.; Hsiao, F.Y.; Chen, L.K. The distinct impacts of sarcopenic and dynapenic obesity on mortality in middle-aged and older adults based on different adiposity metrics: Results from I-Lan Longitudinal Aging Study. Clin. Nutr. 2024, 43, 1892–1899. [Google Scholar] [CrossRef]
- Shimizu, A.; Maeda, K.; Ueshima, J.; Inoue, T.; Murotani, K.; Ohno, T.; Nomoto, A.; Nagano, A.; Kayashita, J.; Mori, N.; et al. Prevalence of sarcopenic obesity based on newly proposed diagnostic criteria and functional outcomes in older adults undergoing rehabilitation. Mech. Ageing Dev. 2022, 208, 111728. [Google Scholar] [CrossRef]
- Wang, H.; Xiao, Y.; Han, L.; Lyu, G.; Lin, S.; Li, S.L. Advancements in clinical diagnosis and the application of auxiliary imaging in sarcopenic obesity. Obes. Facts 2025. online ahead of print. [Google Scholar] [CrossRef]
- Sizoo, D.; de Heide, L.J.M.; Emous, M.; van Zutphen, T.; Navis, G.; van Beek, A.P. Measuring Muscle Mass and Strength in Obesity: A Review of Various Methods. Obes. Surg. 2021, 31, 384–393. [Google Scholar] [CrossRef]
- Choe, E.K.; Kang, H.Y.; Park, B.; Yang, J.I.; Kim, J.S. The Association between Nonalcoholic Fatty Liver Disease and CT-Measured Skeletal Muscle Mass. J. Clin. Med. 2018, 7, 310. [Google Scholar] [CrossRef]
- Hebebrand, J.; Holm, J.C.; Woodward, E.; Baker, J.L.; Blaak, E.; Durrer Schutz, D.; Farpour-Lambert, N.J.; Frühbeck, G.; Halford, J.G.C.; Lissner, L.; et al. A Proposal of the European Association for the Study of Obesity to Improve the ICD-11 Diagnostic Criteria for Obesity Based on the Three Dimensions Etiology, Degree of Adiposity and Health Risk. Obes. Facts 2017, 10, 284–307. [Google Scholar] [CrossRef]
- Tawil, R.; Padberg, G.W.; Shaw, D.W.; van der Maarel, S.M.; Tapscott, S.J. Clinical trial preparedness in facioscapulohumeral muscular dystrophy: Clinical, tissue, and imaging outcome measures 29–30 May 2015, Rochester, New York. Neuromuscul Disord 2016, 26, 181–186. [Google Scholar] [CrossRef]
- Rashid, S.A. Ultrasound Assessment of Carotid Intima-Media Thickness: Comparison between Diabetes and Nondiabetes Subjects, and Correlation with Serum Vitamin D. Radiol. Res. Pract. 2024, 2024, 7178920. [Google Scholar] [CrossRef]
- Milic, J.; Calza, S.; Cantergiani, S.; Albertini, M.; Gallerani, A.; Menozzi, M.; Barp, N.; Todisco, V.; Renzetti, S.; Motta, F.; et al. Sarcopenic Obesity Phenotypes in Patients With HIV: Implications for Cardiovascular Prevention and Rehabilitation. Can. J. Cardiol. 2023, 39, S359–S367. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Xin, C.; Liu, Y.; Xu, Y.; Liu, G.; Han, B. Association between sarcopenic obesity and cardiovascular diseases: The role of systemic inflammation indices. Front. Med. 2025, 12, 1581146. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.Y.; Lim, J.S. Muscle mass and grip strength in relation to carotid intima-media thickness and plaque score in patients with type 2 diabetes. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 2935–2944. [Google Scholar] [CrossRef] [PubMed]
- Bouchi, R.; Nakano, Y.; Ohara, N.; Takeuchi, T.; Murakami, M.; Asakawa, M.; Sasahara, Y.; Numasawa, M.; Minami, I.; Izumiyama, H.; et al. Clinical relevance of dual-energy X-ray absorptiometry (DXA) as a simultaneous evaluation of fatty liver disease and atherosclerosis in patients with type 2 diabetes. Cardiovasc. Diabetol. 2016, 15, 64. [Google Scholar] [CrossRef]
- Oh, J.; Kim, S.K.; Shin, D.K.; Park, K.S.; Park, S.W.; Cho, Y.W. A simple ultrasound correlate of visceral fat. Ultrasound Med. Biol. 2011, 37, 1444–1451. [Google Scholar] [CrossRef]
- Nakano, R.; Takebe, N.; Ono, M.; Hangai, M.; Nakagawa, R.; Yashiro, S.; Murai, T.; Nagasawa, K.; Takahashi, Y.; Satoh, J.; et al. Involvement of oxidative stress in atherosclerosis development in subjects with sarcopenic obesity. Obes. Sci. Pract. 2017, 3, 212–218. [Google Scholar] [CrossRef]
- Sato, M.; Tamura, Y.; Murao, Y.; Yorikawa, F.; Katsumata, Y.; Watanabe, S.; Zen, S.; Kodera, R.; Oba, K.; Toyoshima, K.; et al. Coexistence of high visceral fat area and sarcopenia is associated with atherosclerotic markers in old-old patients with diabetes: A cross-sectional study. J. Diabetes Investig. 2024, 15, 1510–1518. [Google Scholar] [CrossRef]
- Lu, Y.; Tian, J.; Wu, L.; Xia, Q.; Zhu, Q. Low appendicular skeletal muscle index increases the risk of carotid artery plaque in postmenopausal women with and without hypertension/hyperglycemia: A retrospective study. BMC Geriatr. 2023, 23, 379. [Google Scholar] [CrossRef]
- Cao, Y.; Zhong, M.; Zhang, Y.; Zheng, Z.; Liu, Y.; Ni, X.; Han, L.; Song, M.; Zhang, W.; Wang, Z. Presarcopenia Is an Independent Risk Factor for Carotid Atherosclerosis in Chinese Population with Metabolic Syndrome. Diabetes Metab. Syndr. Obes. 2020, 13, 81–88. [Google Scholar] [CrossRef]
- Kang, M.K.; Park, J.G. Low Skeletal Muscle Mass Is a Risk Factor for Subclinical Atherosclerosis in Patients with Nonalcoholic Fatty Liver Disease. Diagnostics 2021, 11, 854. [Google Scholar] [CrossRef]
- Xia, M.F.; Chen, L.Y.; Wu, L.; Ma, H.; Li, X.M.; Li, Q.; Aleteng, Q.; Hu, Y.; He, W.Y.; Gao, J.; et al. Sarcopenia, sarcopenic overweight/obesity and risk of cardiovascular disease and cardiac arrhythmia: A cross-sectional study. Clin. Nutr. 2021, 40, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.E.; Kim, H.C.; Shim, J.S.; Song, B.M.; Bae, H.Y.; Lee, H.J.; Suh, I. Association of appendicular skeletal muscle mass with carotid intima-media thickness according to body mass index in Korean adults. Epidemiol. Health 2018, 40, e2018049. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Park, H.S.; Huh, B.W.; Lee, Y.H.; Seo, S.H.; Seo, D.H.; Ahn, S.H.; Hong, S.; Kim, S.H. Non-Alcoholic Fatty Liver Disease with Sarcopenia and Carotid Plaque Progression Risk in Patients with Type 2 Diabetes Mellitus. Diabetes Metab. J. 2023, 47, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.A.; Hwang, S.Y.; Chung, H.S.; Kim, N.H.; Seo, J.A.; Kim, S.G.; Kim, N.H.; Choi, K.M.; Baik, S.H.; Yoo, H.J. Proportion and Characteristics of the Subjects with Low Muscle Mass and Abdominal Obesity among the Newly Diagnosed and Drug-Naïve Type 2 Diabetes Mellitus Patients. Diabetes Metab. J. 2019, 43, 105–113. [Google Scholar] [CrossRef]
- Tan, L.F.; Sia, C.H.; Merchant, R.A. Sarcopenia and sarcopenic obesity in cardiovascular disease: A comprehensive review. Singap. Med. J. 2025; online ahead of print. [Google Scholar] [CrossRef]
- Jun, J.E.; Kang, M.; Jin, S.M.; Kim, K.; Hwang, Y.C.; Jeong, I.K.; Kim, J.H. Additive effect of low skeletal muscle mass and abdominal obesity on coronary artery calcification. Eur. J. Endocrinol. 2021, 184, 867–877. [Google Scholar] [CrossRef]
- Ren, Z.Y.; Wu, M.; Guo, P.X.; Ao, Q.; Yi, S.W.; Li, X.Z.; Zhou, G.; Li, N.; Wu, J.J.; Ma, B. Relationship between sarcopenic obesity and cardiovascular diseases: A systematic review and Meta-analysis. Chin. J. Evid. Based Cardiovasc. 2025, 17, 145–152. [Google Scholar] [CrossRef]
- Wang, J.X. Study on the Relationship Between Sarcopenia and the Degree of Coronary Stenosis and Short-Term Prognosis of Coronary Heart Disease. Master’s Thesis, Xi’an Medical University, Xi’an, China, 2023. [Google Scholar]
- Chung, G.E.; Park, H.E.; Lee, H.; Kim, M.J.; Choi, S.Y.; Yim, J.Y.; Yoon, J.W. Sarcopenic Obesity Is Significantly Associated with Coronary Artery Calcification. Front. Med. 2021, 8, 651961. [Google Scholar] [CrossRef]
- Cao, T.; Cheng, Z.; Wei, Y.; Ding, C.; Lu, W.; Gao, L.; Liu, L.; Zhang, Y.; Li, J.; Huo, Y.; et al. Arterial Stiffness, Central Blood Pressure, and the Risk of Incident Stroke in Hypertensive Adults. Eur. J. Neurol. 2025, 32, e70178. [Google Scholar] [CrossRef]
- Expert Consensus Drafting Group, B.o.R.H.a.P.A.D.; China International Exchange and Promotion Association for Medical and Healthcare. Expert Consensus on Clinical Application of Simultaneously Blood Pressure and Brachial-ankle Pulse Wave Velocity. Chin. Circ. J. 2020, 35, 521–528. [Google Scholar]
- Wang, J.; Gao, C.; Fan, Y.; Zhang, N.; Qiu, Y.; Xu, J. Association between autonomic dysfunction and arterial stiffness in hypertensive patients. Sci. Rep. 2025, 15, 28076. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.; Fan, F.; Chen, H.; Dong, Z.; Yang, L.; Luo, Y.; Qiu, Z.; Fang, R.; Zheng, Q.; Zhang, X.; et al. Comparison between vascular age based on brachial-ankle pulse wave velocity or carotid-femoral pulse wave velocity. Hypertens. Res. 2025, 48, 2315–2325. [Google Scholar] [CrossRef] [PubMed]
- Nagayama, D.; Shirai, K.; Saiki, A. Significance of CAVI as a Functional Stiffness Parameter: Beyond the Prognostic Value for Cardiovascular Events. JACC Adv. 2024, 3, 101018. [Google Scholar] [CrossRef] [PubMed]
- Asmar, R.; Stergiou, G.; de la Sierra, A.; Jelaković, B.; Millasseau, S.; Topouchian, J.; Shirai, K.; Blacher, J.; Avolio, A.; Jankowski, P.; et al. Blood pressure measurement and assessment of arterial structure and function: An expert group position paper. J. Hypertens. 2024, 42, 1465–1481. [Google Scholar] [CrossRef]
- Ohara, M.; Kohara, K.; Tabara, Y.; Ochi, M.; Nagai, T.; Igase, M.; Miki, T. Sarcopenic obesity and arterial stiffness, pressure wave reflection and central pulse pressure: The J-SHIPP study. Int. J. Cardiol. 2014, 174, 214–217. [Google Scholar] [CrossRef]
- Kim, T.N.; Park, M.S.; Lim, K.I.; Yang, S.J.; Yoo, H.J.; Kang, H.J.; Song, W.; Seo, J.A.; Kim, S.G.; Kim, N.H.; et al. Skeletal muscle mass to visceral fat area ratio is associated with metabolic syndrome and arterial stiffness: The Korean Sarcopenic Obesity Study (KSOS). Diabetes Res. Clin. Pract. 2011, 93, 285–291. [Google Scholar] [CrossRef]
- Xu, J.; Pan, X.; Liang, H.; Lin, Y.; Hong, Y.; Si, Q.; Shen, F.; Gu, X. Association between skeletal muscle mass to visceral fat area ratio and arterial stiffness in Chinese patients with type 2 diabetes mellitus. BMC Cardiovasc. Disord. 2018, 18, 89. [Google Scholar] [CrossRef]
- Matsumoto, C.; Tomiyama, H.; Matsuura, M.; Takamiya, S.; Nakano, H.; Shiina, K.; Yamashina, A. Abstract 14129: The Association of Sarcopenic Obesity and Increased Arterial Stiffness. Circulation 2022, 146, A14129. [Google Scholar] [CrossRef]
- Fantin, F.; Giani, A.; Manzato, G.; Zampieri, A.; Comellato, G.; Urbani, S.; Zoico, E.; Mazzali, G.; Zamboni, M. Sarcopenia, sarcopenic obesity, and arterial stiffness among older adults. Front. Cardiovasc. Med. 2024, 11, 1272854. [Google Scholar] [CrossRef]
- Wang, Y.L.; Qi, B.L.; Bai, L.J.; Liu, L.H.; Wang, R.Y.; Liu, Y.; He, L.F. The correlation of body composition types based on obesity and muscle mass and atherosclerosis. J. Clin. Cardiol. 2020, 36, 906–913. [Google Scholar] [CrossRef]
- Liu, W.; Zhu, M.; Wei, Z.; Chen, N.; Han, T.; Zhang, T.; Weng, Y.; Fan, Y.; Hu, Y. A nomogram model combining sarcopenic obesity and biomarkers to predict the risk of vascular stiffness. Clin. Nutr. ESPEN 2025, 69, 323–332. [Google Scholar] [CrossRef]
- Jang, H.-J.; Koh, H.M.; Jang, J.-Y.; Lee, H.J.; Moon, J.S.; Ji, J.M.; Lee, A. Relationship between Body Composition and Arterial Stiffness in Korean Adults. Korean J. Fam. Pract. 2023, 13, 23–30. [Google Scholar] [CrossRef]
- Karmali Kunal, N.; Goff David, C.; Ning, H.; Lloyd-Jones Donald, M. A Systematic Examination of the 2013 ACC/AHA Pooled Cohort Risk Assessment Tool for Atherosclerotic Cardiovascular Disease. JACC 2014, 64, 959–968. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, J.; Hu, D.; Chen, J.; Li, Y.; Huang, J.; Liu, X.; Liu, F.; Cao, J.; Shen, C.; et al. Predicting the 10-Year Risks of Atherosclerotic Cardiovascular Disease in Chinese Population. Circulation 2016, 134, 1430–1440. [Google Scholar] [CrossRef] [PubMed]
- Han, E.; Lee, Y.H.; Ahn, S.H.; Cha, B.S.; Kim, S.U.; Lee, B.W. Appendicular Skeletal Muscle Mass to Visceral Fat Area Ratio Predicts Hepatic Morbidities. Gut Liver 2024, 18, 509–519. [Google Scholar] [CrossRef]
- Chen, Z.; Guo, D.; Xiao, L.; Su, H.; Chen, Y. Association of fat-to-muscle ratio with hypertension: A cross-sectional study in China. J. Hum. Hypertens. 2025, 39, 301–307. [Google Scholar] [CrossRef]
- Chien, S.C.; Chiu, H.C.; Chiu, Y.C.; Wang, R.H.; Dillera, K.P.O.; Lee, K.T.; Tsai, H.W.; Tsai, Y.S.; Ou, H.Y.; Cheng, P.N. Clinical Relevancies of Sarcopenic Obesity in Patients with Metabolic Dysfunction-Associated Fatty Liver Disease (MASLD). Dig. Dis. Sci. 2025, 70, 1190–1200. [Google Scholar] [CrossRef]
- Yan, F.Q. The Impact of Sarcopenic Obesity on Atherosclerotic Cardiovascular Disease. Ph.D. Thesis, Huazhong University of Science and Technology, Wuhan, China, 2024. [Google Scholar] [CrossRef]
- Leem, A.Y.; Kim, Y.S.; Chung, K.S.; Park, M.S.; Kang, Y.A.; Park, Y.M.; Jung, J.Y. Sarcopenia is associated with cardiovascular risk in men with COPD, independent of adiposity. Respir. Res. 2022, 23, 185. [Google Scholar] [CrossRef]
- Caicedo, D.; Díaz, O.; Devesa, P.; Devesa, J. Growth Hormone (GH) and Cardiovascular System. Int. J. Mol. Sci. 2018, 19, 290. [Google Scholar] [CrossRef]
- Swislocki, A.L.M.; Eisenberg, M.L. A Review on Testosterone: Estradiol Ratio-Does It Matter, How Do You Measure It, and Can You Optimize It? World J. Mens. Health 2025, 43, 453–464. [Google Scholar] [CrossRef]
- Mauvais-Jarvis, F.; Lindsey, S.H. Metabolic benefits afforded by estradiol and testosterone in both sexes: Clinical considerations. J. Clin. Investig. 2024, 134, e180073. [Google Scholar] [CrossRef] [PubMed]
- Kato, A. Arterial Stiffening and Clinical Outcomes in Dialysis Patients. Pulse 2015, 3, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.H.; Kim, H.S. Menopause-Associated Lipid Metabolic Disorders and Foods Beneficial for Postmenopausal Women. Nutrients 2020, 12, 202. [Google Scholar] [CrossRef] [PubMed]
- Pataky, M.W.; Young, W.F.; Nair, K.S. Hormonal and Metabolic Changes of Aging and the Influence of Lifestyle Modifications. Mayo Clin. Proc. 2021, 96, 788–814. [Google Scholar] [CrossRef]
- Gharahdaghi, N.; Phillips, B.E.; Szewczyk, N.J.; Smith, K.; Wilkinson, D.J.; Atherton, P.J. Links Between Testosterone, Oestrogen, and the Growth Hormone/Insulin-Like Growth Factor Axis and Resistance Exercise Muscle Adaptations. Front. Physiol. 2020, 11, 621226. [Google Scholar] [CrossRef]
- Gentile, G.; De Stefano, F.; Sorrentino, C.; D’Angiolo, R.; Lauretta, C.; Giovannelli, P.; Migliaccio, A.; Castoria, G.; Di Donato, M. Androgens as the “old age stick” in skeletal muscle. Cell Commun. Signal. 2025, 23, 167. [Google Scholar] [CrossRef]
- Choi, K.M. The Impact of Organokines on Insulin Resistance, Inflammation, and Atherosclerosis. Endocrinol. Metab. 2016, 31, 1–6. [Google Scholar] [CrossRef]
- Luo, J.; He, Z.; Li, Q.; Lv, M.; Cai, Y.; Ke, W.; Niu, X.; Zhang, Z. Adipokines in atherosclerosis: Unraveling complex roles. Front. Cardiovasc. Med. 2023, 10, 1235953. [Google Scholar] [CrossRef]
- Yang, W.; Li, Y.; Wang, J.Y.; Han, R.; Wang, L. Circulating levels of adipose tissue-derived inflammatory factors in elderly diabetes patients with carotid atherosclerosis: A retrospective study. Cardiovasc. Diabetol. 2018, 17, 75. [Google Scholar] [CrossRef]
- Kato, A.; Odamaki, M.; Ishida, J.; Hishida, A. Association of high-molecular-weight to total adiponectin ratio with pulse wave velocity in hemodialysis patients. Nephron Clin. Pract. 2008, 109, c18–c24. [Google Scholar] [CrossRef]
- Seo, D.H.; Lee, Y.H.; Suh, Y.J.; Ahn, S.H.; Hong, S.; Choi, Y.J.; Huh, B.W.; Park, S.W.; Lee, E.; Kim, S.H. Low muscle mass is associated with carotid atherosclerosis in patients with type 2 diabetes. Atherosclerosis 2020, 305, 19–25. [Google Scholar] [CrossRef]
- Saxena, G.; Gallagher, S.; Law, T.D.; Maschari, D.; Walsh, E.; Dudley, C.; Brault, J.J.; Consitt, L.A. Sex-specific increases in myostatin and SMAD3 contribute to obesity-related insulin resistance in human skeletal muscle and primary human myotubes. Am. J. Physiol. Endocrinol. Metab. 2024, 326, E352–E365. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.Y.; Choi, K.M. Impact of Adipose Tissue and Lipids on Skeletal Muscle in Sarcopenia. J. Cachexia Sarcopenia Muscle 2025, 16, e70000. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.S.; Choi, K.M. Adipokines and Myokines: A Pivotal Role in Metabolic and Cardiovascular Disorders. Curr. Med. Chem. 2018, 25, 2401–2415. [Google Scholar] [CrossRef] [PubMed]
- Rhee, E.J. The Influence of Obesity and Metabolic Health on Vascular Health. Endocrinol. Metab. 2022, 37, 1–8. [Google Scholar] [CrossRef]
- Jung, W.S.; Kim, Y.Y.; Kim, J.W.; Park, H.Y. Effects of Circuit Training Program on Cardiovascular Risk Factors, Vascular Inflammatory Markers, and Insulin-like Growth Factor-1 in Elderly Obese Women with Sarcopenia. Rev. Cardiovasc. Med. 2022, 23, 134. [Google Scholar] [CrossRef]
- Ryu, J.Y.; Choi, H.M.; Yang, H.I.; Kim, K.S. Dysregulated Autophagy Mediates Sarcopenic Obesity and Its Complications via AMPK and PGC1α Signaling Pathways: Potential Involvement of Gut Dysbiosis as a Pathological Link. Int. J. Mol. Sci. 2020, 21, 6887. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, X.; Chen, K.; Lang, H.; Zhang, Y.; Hou, P.; Ran, L.; Zhou, M.; Zheng, J.; Yi, L.; et al. Resveratrol prevents sarcopenic obesity by reversing mitochondrial dysfunction and oxidative stress via the PKA/LKB1/AMPK pathway. Aging 2019, 11, 2217–2240. [Google Scholar] [CrossRef]
- Fu, J.; Yu, M.G.; Li, Q.; Park, K.; King, G.L. Insulin’s actions on vascular tissues: Physiological effects and pathophysiological contributions to vascular complications of diabetes. Mol. Metab. 2021, 52, 101236. [Google Scholar] [CrossRef]
- Li, J.; Chen, K.; Li, X.; Zhang, X.; Zhang, L.; Yang, Q.; Xia, Y.; Xie, C.; Wang, X.; Tong, J.; et al. Mechanistic insights into the alterations and regulation of the AKT signaling pathway in diabetic retinopathy. Cell Death Discov. 2023, 9, 418. [Google Scholar] [CrossRef]
- Yurdagul, A., Jr. Crosstalk Between Macrophages and Vascular Smooth Muscle Cells in Atherosclerotic Plaque Stability. Arterioscler. Thromb. Vasc. Biol. 2022, 42, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Li, H.; Yue, X.; Guo, C.; Sun, Y.; Ma, C.; Gao, J.; Wu, Y.; Du, B.; Yang, J.; et al. Smooth muscle liver kinase B1 inhibits foam cell formation and atherosclerosis via direct phosphorylation and activation of SIRT6. Cell Death Dis. 2023, 14, 542. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Xiang, S.; Chen, Y.; Liu, Y.; Shen, D.; Yu, X.; Wu, Z.; Sun, Y.; Chen, K.; Luo, J.; et al. Gut microbiota: Implications in pathogenesis and therapy to cardiovascular disease (Review). Exp. Ther. Med. 2024, 28, 427. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Si, S.C.; Wang, W.H.; Li, J.; Ma, Y.X.; Zhao, H.; Liu, J. Gut dysbiosis in primary sarcopenia: Potential mechanisms and implications for novel microbiome-based therapeutic strategies. Front. Microbiol. 2025, 16, 1526764. [Google Scholar] [CrossRef]
- Frasca, D.; Blomberg, B.B. Adipose tissue, immune aging, and cellular senescence. Semin. Immunopathol. 2020, 42, 573–587. [Google Scholar] [CrossRef]
- Ou, M.Y.; Zhang, H.; Tan, P.C.; Zhou, S.B.; Li, Q.F. Adipose tissue aging: Mechanisms and therapeutic implications. Cell Death Dis. 2022, 13, 300. [Google Scholar] [CrossRef]
- Sukumar, D.; Partridge, N.C.; Wang, X.; Shapses, S.A. The high serum monocyte chemoattractant protein-1 in obesity is influenced by high parathyroid hormone and not adiposity. J. Clin. Endocrinol. Metab. 2011, 96, 1852–1858. [Google Scholar] [CrossRef]
- Gong, S.; Li, Y.; Yan, K.; Shi, Z.; Leng, J.; Bao, Y.; Ning, K. The Crosstalk Between Endothelial Cells, Smooth Muscle Cells, and Macrophages in Atherosclerosis. Int. J. Mol. Sci. 2025, 26, 1457. [Google Scholar] [CrossRef]
- Pandit, R.; Yurdagul, A. The Atherosclerotic Plaque Microenvironment as a Therapeutic Target. Curr. Atheroscler. Rep. 2025, 27, 47. [Google Scholar] [CrossRef]
- Korach-Rechtman, H.; Rom, O.; Mazouz, L.; Freilich, S.; Jeries, H.; Hayek, T.; Aviram, M.; Kashi, Y. Soybean Oil Modulates the Gut Microbiota Associated with Atherogenic Biomarkers. Microorganisms 2020, 8, 486. [Google Scholar] [CrossRef]
- Kim, H.S.; Cho, Y.K.; Kim, M.J.; Kim, E.H.; Lee, M.J.; Lee, W.J.; Kim, H.K.; Jung, C.H. Association between atherogenic dyslipidemia and muscle quality defined by myosteatosis. Front. Endocrinol. 2024, 15, 1327522. [Google Scholar] [CrossRef]
- Chinese Society of Nutritional Oncology; Chinese Society for Holistic Integrative Supportive Care. Clinical expert consensus on the diagnosis and treatment of sarcopenic obesity. Electron. J. Metab. Nutr. Cancer 2025, 12, 168–180. [Google Scholar] [CrossRef]
- Roh, E.; Choi, K.M. Health Consequences of Sarcopenic Obesity: A Narrative Review. Front. Endocrinol. 2020, 11, 332. [Google Scholar] [CrossRef]
- Lee, D.C.; Shook, R.P.; Drenowatz, C.; Blair, S.N. Physical activity and sarcopenic obesity: Definition, assessment, prevalence and mechanism. Future Sci. OA 2016, 2, Fso127. [Google Scholar] [CrossRef]
- Park, M.J.; Choi, K.M. Interplay of skeletal muscle and adipose tissue: Sarcopenic obesity. Metabolism 2023, 144, 155577. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Yao, J.; Li, J.; Zhang, J.; Wang, D.; Zuo, H.; Zhang, Y.; Xu, B.; Zhong, Y.; Shen, F.; et al. Irisin ameliorates age-associated sarcopenia and metabolic dysfunction. J. Cachexia Sarcopenia Muscle 2023, 14, 391–405. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J. Targeting the myostatin signaling pathway to treat muscle loss and metabolic dysfunction. J. Clin. Investig. 2021, 131, e148372. [Google Scholar] [CrossRef] [PubMed]
- Fang, P.; She, Y.; Yu, M.; Min, W.; Shang, W.; Zhang, Z. Adipose-Muscle crosstalk in age-related metabolic disorders: The emerging roles of adipo-myokines. Ageing Res. Rev. 2023, 84, 101829. [Google Scholar] [CrossRef]
- Abizanda, P.; Romero, L.; Sánchez-Jurado, P.M.; Ruano, T.F.; Ríos, S.S.; Sánchez, M.F. Energetics of Aging and Frailty: The FRADEA Study. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 787–796. [Google Scholar] [CrossRef]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol. 2021, 320, C375–C391. [Google Scholar] [CrossRef]
- Olefsky, J.M.; Glass, C.K. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 2010, 72, 219–246. [Google Scholar] [CrossRef]
- Barazzoni, R.; Bischoff, S.; Boirie, Y.; Busetto, L.; Cederholm, T.; Dicker, D.; Toplak, H.; Van Gossum, A.; Yumuk, V.; Vettor, R. Sarcopenic Obesity: Time to Meet the Challenge. Obes. Facts 2018, 11, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Feng, W.; Lai, J.; Yuan, D.; Xiao, W.; Li, Y. Role of adipokines in sarcopenia. Chin. Med. J. 2023, 136, 1794–1804. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh Pahlavani, H. Exercise Therapy for People With Sarcopenic Obesity: Myokines and Adipokines as Effective Actors. Front. Endocrinol. 2022, 13, 811751. [Google Scholar] [CrossRef] [PubMed]
- Collins, K.H.; Gui, C.; Ely, E.V.; Lenz, K.L.; Harris, C.A.; Guilak, F.; Meyer, G.A. Leptin mediates the regulation of muscle mass and strength by adipose tissue. J. Physiol. 2022, 600, 3795–3817. [Google Scholar] [CrossRef]
- Bilski, J.; Pierzchalski, P.; Szczepanik, M.; Bonior, J.; Zoladz, J.A. Multifactorial Mechanism of Sarcopenia and Sarcopenic Obesity. Role of Physical Exercise, Microbiota and Myokines. Cells 2022, 11, 160. [Google Scholar] [CrossRef]
- He, N.; Zhang, Y.; Zhang, L.; Zhang, S.; Ye, H. Relationship Between Sarcopenia and Cardiovascular Diseases in the Elderly: An Overview. Front. Cardiovasc. Med. 2021, 8, 743710. [Google Scholar] [CrossRef]
- McDermott, M.M.; Greenland, P.; Liu, K.; Guralnik, J.M.; Criqui, M.H.; Dolan, N.C.; Chan, C.; Celic, L.; Pearce, W.H.; Schneider, J.R.; et al. Leg symptoms in peripheral arterial disease: Associated clinical characteristics and functional impairment. JAMA 2001, 286, 1599–1606. [Google Scholar] [CrossRef]
- McDermott, M.M.; Guralnik, J.M.; Ferrucci, L.; Tian, L.; Liu, K.; Liao, Y.; Green, D.; Sufit, R.; Hoff, F.; Nishida, T.; et al. Asymptomatic peripheral arterial disease is associated with more adverse lower extremity characteristics than intermittent claudication. Circulation 2008, 117, 2484–2491. [Google Scholar] [CrossRef]
- Weiss, D.J.; Casale, G.P.; Koutakis, P.; Nella, A.A.; Swanson, S.A.; Zhu, Z.; Miserlis, D.; Johanning, J.M.; Pipinos, I.I. Oxidative damage and myofiber degeneration in the gastrocnemius of patients with peripheral arterial disease. J. Transl. Med. 2013, 11, 230. [Google Scholar] [CrossRef]
- McDermott, M.M.; Hoff, F.; Ferrucci, L.; Pearce, W.H.; Guralnik, J.M.; Tian, L.; Liu, K.; Schneider, J.R.; Sharma, L.; Tan, J.; et al. Lower extremity ischemia, calf skeletal muscle characteristics, and functional impairment in peripheral arterial disease. J. Am. Geriatr. Soc. 2007, 55, 400–406. [Google Scholar] [CrossRef]
- McDermott, M.M.; Fried, L.; Simonsick, E.; Ling, S.; Guralnik, J.M. Asymptomatic peripheral arterial disease is independently associated with impaired lower extremity functioning: The women’s health and aging study. Circulation 2000, 101, 1007–1012. [Google Scholar] [CrossRef]
- Gillani, S.; Cao, J.; Suzuki, T.; Hak, D.J. The effect of ischemia reperfusion injury on skeletal muscle. Injury 2012, 43, 670–675. [Google Scholar] [CrossRef]
- Pipinos, I.I.; Judge, A.R.; Selsby, J.T.; Zhu, Z.; Swanson, S.A.; Nella, A.A.; Dodd, S.L. The myopathy of peripheral arterial occlusive disease: Part 1. Functional and histomorphological changes and evidence for mitochondrial dysfunction. Vasc. Endovasc. Surg. 2007, 41, 481–489. [Google Scholar] [CrossRef]
- Johnson, A.L.; Kamal, M.; Parise, G. The Role of Supporting Cell Populations in Satellite Cell Mediated Muscle Repair. Cells 2023, 12, 1968. [Google Scholar] [CrossRef]
- Tidball, J.G. Mechanisms of muscle injury, repair, and regeneration. Compr. Physiol. 2011, 1, 2029–2062. [Google Scholar] [CrossRef]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, K.; Yang, W.; Si, S.-C.; Liu, J.; Ma, Y.-X.; Zhao, H. Research Progress on the Association Between Sarcopenic Obesity and Atherosclerosis: Current Status and Challenges. J. Clin. Med. 2025, 14, 8148. https://doi.org/10.3390/jcm14228148
Yang K, Yang W, Si S-C, Liu J, Ma Y-X, Zhao H. Research Progress on the Association Between Sarcopenic Obesity and Atherosclerosis: Current Status and Challenges. Journal of Clinical Medicine. 2025; 14(22):8148. https://doi.org/10.3390/jcm14228148
Chicago/Turabian StyleYang, Kai, Wei Yang, Si-Cong Si, Jia Liu, Yi-Xin Ma, and Huan Zhao. 2025. "Research Progress on the Association Between Sarcopenic Obesity and Atherosclerosis: Current Status and Challenges" Journal of Clinical Medicine 14, no. 22: 8148. https://doi.org/10.3390/jcm14228148
APA StyleYang, K., Yang, W., Si, S.-C., Liu, J., Ma, Y.-X., & Zhao, H. (2025). Research Progress on the Association Between Sarcopenic Obesity and Atherosclerosis: Current Status and Challenges. Journal of Clinical Medicine, 14(22), 8148. https://doi.org/10.3390/jcm14228148
