What Is the Most Effective Strategy for Acute Postoperative Pain in Total Knee Arthroplasty—Retrospective Observational Study
Abstract
1. Introduction
2. Methods
2.1. Ethical Considerations
2.2. Study Population
2.3. Study Protocol
2.3.1. Anesthetic Techniques
2.3.2. Surgical Techniques
2.4. Clinical Variables
2.4.1. Primary Outcome
2.4.2. Secondary Outcomes
2.5. Statistical Analyses
3. Results
3.1. Demographic Characteristics
3.1.1. Preoperative Characteristics
3.1.2. Intraoperative Variables
3.1.3. Postoperative Variables
3.2. Comparison of PCA Dosage Among Groups
3.3. Comparison of Supplemental Analgesic (PRN) Use Among Groups
3.4. Comparison of PONV Occurrence and Antiemetic Use During the Acute Postoperative Period
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation
| TKA | total knee arthroplasty |
| RA-TKA | robot-assisted total knee arthroplasty |
| C-TKA | conventional TKA |
| PCA | patient-controlled analgesia |
| PONV | postoperative nausea and vomiting |
References
- Zhang, Y.E.; Xu, X.; Gong, R. Postoperative Pain Management Outcomes at a Chinese Hospital: A Cross-Sectional Survey. J. Perianesth. Nurs. 2023, 38, 434–439. [Google Scholar] [CrossRef]
- Korean Knee Society. Guidelines for the management of postoperative pain after total knee arthroplasty. Knee Surg. Relat. Res. 2012, 24, 201–207. [Google Scholar] [CrossRef]
- Krishna Prasad, G.V. Post-operative analgesia techniques after total knee arthroplasty: A narrative review. Saudi J. Anaesth. 2020, 14, 85–90. [Google Scholar] [CrossRef]
- O’Donnell, R.; Dolan, J. Anaesthesia and analgesia for knee joint arthroplasty. BJA Educ. 2018, 18, 8–15. [Google Scholar] [CrossRef]
- Hung, K.C.; Wang, W.T.; Liu, W.C.; Hsu, C.W.; Huang, Y.T.; Wu, J.Y.; Chen, I.W. Comparing subjective quality of recovery between remimazolam- and propofol-based total intravenous anesthesia for surgical procedures: A meta-analysis. Syst. Rev. 2024, 13, 235. [Google Scholar] [CrossRef]
- Fang, P.P.; Hu, J.; Wei, Q.F.; Liang, Y.J.; Fan, Y.G.; Shen, Q.Y.; Lu, Y.; Liu, X.S.; Maze, M. Effect of remimazolam besylate vs propofol on incidence of postoperative delirium in older patients undergoing hip surgery: A randomized noninferiority trial. Int. J. Surg. 2025, 111, 1469–1472. [Google Scholar] [CrossRef]
- Wiltshire, H.R.; Kilpatrick, G.J.; Tilbrook, G.S.; Borkett, K.M. A placebo- and midazolam-controlled phase I single ascending-dose study evaluating the safety, pharmacokinetics, and pharmacodynamics of remimazolam (CNS 7056): Part II. Population pharmacokinetic and pharmacodynamic modeling and simulation. Anesth. Analg. 2012, 115, 284–296. [Google Scholar] [CrossRef]
- Liu, R.; Wang, Z.; Meng, Y.; Chen, W.; Zhou, M. Effectiveness Analysis of Sevoflurane Combined with Propofol or Remimazolam Anesthesia in Pediatric Laparoscopic Inguinal Hernia Repair and Its Impact on Hemodynamics and Postoperative Pain. J. Investig. Surg. 2025, 38, 2500438. [Google Scholar] [CrossRef]
- Yan, J.; Deng, S.; Chen, Q.; Liu, N.; Huan, S.; Zheng, M.; Zhang, J.; Gao, Y. Postoperative anterior knee pain in robot assisted total knee arthroplasty: A propensity score matching analysis. Surg. Pract. Sci. 2025, 22, 100301. [Google Scholar] [CrossRef]
- Choi, J.Y.; Lee, H.S.; Kim, J.Y.; Han, D.W.; Yang, J.Y.; Kim, M.J.; Song, Y. Comparison of remimazolam-based and propofol-based total intravenous anesthesia on postoperative quality of recovery: A randomized non-inferiority trial. J. Clin. Anesth. 2022, 82, 110955. [Google Scholar] [CrossRef]
- Alrajeb, R.; Zarti, M.; Shuia, Z.; Alzobi, O.; Ahmed, G.; Elmhiregh, A. Robotic-assisted versus conventional total knee arthroplasty: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Orthop. Surg. Traumatol. 2024, 34, 1333–1343. [Google Scholar]
- Ward, G.H.; Montalbano, M.J. Postoperative scores for robot-assisted and conventional total knee arthroplasty: A meta-analysis. J. Clin. Orthop. Trauma 2023, 41, 102189. [Google Scholar] [CrossRef]
- Clapp, I.M.; Braathen, D.L.; Blackburn, B.E.; Archibeck, M.J.; Peters, C.L. Robotic-Assisted Primary Total Knee Arthroplasty Requires Fewer Soft-Tissue Releases and Is Associated with a Larger Reduction in Early Postoperative Pain. J. Arthroplasty 2025, 40, S123–S129. [Google Scholar]
- Lee, J.H.; Jung, H.J.; Choi, B.S.; Ro, D.H.; Kim, J.I. Effectiveness of Robotic Arm-Assisted Total Knee Arthroplasty on Transfusion Rate in Staged Bilateral Surgery. J. Clin. Med. 2023, 12, 4570. [Google Scholar] [CrossRef]
- Hampp, E.L.; Chughtai, M.; Scholl, L.Y.; Sodhi, N.; Bhowmik-Stoker, M.; Jacofsky, D.J.; Mont, M.A. Robotic-Arm Assisted Total Knee Arthroplasty Demonstrated Greater Accuracy and Precision to Plan Compared with Manual Techniques. J. Knee Surg. 2019, 32, 239–250. [Google Scholar] [CrossRef]
- Shatrov, J.; Parker, D. Computer and robotic-assisted total knee arthroplasty: A review of outcomes. J. Exp. Orthop. 2020, 7, 70. [Google Scholar] [CrossRef]
- Xu, J.; Li, L.; Fu, J.; Xu, C.; Ni, M.; Chai, W.; Hao, L.; Zhang, G.; Chen, J. Early Clinical and Radiographic Outcomes of Robot-Assisted Versus Conventional Manual Total Knee Arthroplasty: A Randomized Controlled Study. Orthop. Surg. 2022, 14, 1972–1980. [Google Scholar] [CrossRef]
- Chareancholvanich, K.; Pornrattanamaneewong, C.; Udompanich, R.; Awirotananon, K.; Narkbunnam, R. A comparative study of early postoperative pain: Robotic-assisted versus conventional total knee arthroplasty. Int. Orthop. 2025, 49, 1359–1364. [Google Scholar] [CrossRef]
- Bhimani, S.J.; Bhimani, R.; Smith, A.; Eccles, C.; Smith, L.; Malkani, A. Robotic-assisted total knee arthroplasty demonstrates decreased postoperative pain and opioid usage compared to conventional total knee arthroplasty. Bone Jt. Open 2020, 1, 8–12. [Google Scholar] [CrossRef]
- Mert, Ü.; Khasawneh, M.Y.; Ghandour, M.; Al Zuabi, A.; Horst, K.; Hildebrand, F.; Bouillon, B.; Mahmoud, M.A.; Kabir, K. Comparative Efficacy and Precision of Robot-Assisted vs. Conventional Total Knee Arthroplasty: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2025, 14, 3249. [Google Scholar] [CrossRef]
- Zak, S.G.; Yeroushalmi, D.; Tang, A.; Meftah, M.; Schnaser, E.; Schwarzkopf, R. The Use of Navigation or Robotic-Assisted Technology in Total Knee Arthroplasty Does Not Reduce Postoperative Pain. J. Knee Surg. 2023, 36, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Keam, S.J. Remimazolam: First Approval. Drugs 2020, 80, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Takaki, R.; Yokose, M.; Mihara, T.; Saigusa, Y.; Tanaka, H.; Yamamoto, N.; Masui, K.; Goto, T. Hypotension after general anaesthesia induction using remimazolam or propofol in geriatric patients undergoing sevoflurane anaesthesia with remifentanil: A single-centre, double-blind, randomised controlled trial. Br. J. Anaesth. 2024, 133, 24–32. [Google Scholar]
- Ma, H.Y.; Cai, Y.H.; Zhong, J.W.; Chen, J.; Wang, Z.; Lin, C.Y.; Wang, Q.Q.; Liu, H.C. The effect of remimazolam-based total intravenous anesthesia versus sevoflurane-based inhalation anesthesia on emergence delirium in children undergoing tonsillectomy and adenoidectomy: Study protocol for a prospective randomized controlled trial. Front. Pharmacol. 2024, 15, 1373006. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.Y.; Zhang, M.Q.; Sun, R.; Li, L.; Li, D.L. Effect of remimazolam tosilate for injection (HR7056) versus sevoflurane on the incidence of postoperative delirium in older patients undergoing total hip arthroplasty: Study protocol for a prospective, multicentre, two-arm, parallel-group, randomised controlled trial. BMC Geriatr. 2025, 25, 109. [Google Scholar]
- Kim, A.G.; Bernhard, Z.; Acuña, A.J.; Wu, V.S.; Kamath, A.F. Use of intraoperative technology in total knee arthroplasty is not associated with reductions in postoperative pain. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 1370–1381. [Google Scholar] [CrossRef]
- Alshatwi, R.; Alfadhel, S.; Alrasheed, M.; Alhakbani, A.; AlShaya, O. Comparison of Postoperative Pain and Function in Robotic Total Knee Arthroplasty and Conventional Total Knee Arthroplasty Amongst Patients at King Fahad Medical City in Riyadh, Saudi Arabia. Cureus 2023, 15, e36285. [Google Scholar] [CrossRef]
- Wu, J.X.; Assel, M.; Vickers, A.; Afonso, A.M.; Twersky, R.S.; Simon, B.A.; Cohen, M.A.; Rieth, E.F.; Cracchiolo, J.R. Impact of intraoperative remifentanil on postoperative pain and opioid use in thyroid surgery. J. Surg. Oncol. 2019, 120, 1456–1461. [Google Scholar] [CrossRef]
- Huang, X.; Cai, J.; Lv, Z.; Zhou, Z.; Zhou, X.; Zhao, Q.; Sun, J.; Chen, L. Postoperative pain after different doses of remifentanil infusion during anaesthesia: A meta-analysis. BMC Anesthesiol. 2024, 24, 25. [Google Scholar] [CrossRef]
- Yokose, M.; Takaki, R.; Mihara, T.; Saigusa, Y.; Yamamoto, N.; Masui, K.; Goto, T. Hypotension after general anesthesia induction using remimazolam in geriatric patients: Protocol for a double-blind randomized controlled trial. PLoS ONE 2022, 17, e0275451. [Google Scholar] [CrossRef] [PubMed]
- Xin, Z.; Wang, N.; Wang, H. Remimazolam and Remifentanil Use Induced Severe Respiratory Depression and Laryngeal Spasm During Intravenous Sedation and Analgesia: A Case Report. Curr. Drug Saf. 2024, 19, 277–281. [Google Scholar] [CrossRef]
- Chen, X.; Sang, N.; Song, K.; Zhong, W.; Wang, H.; Jiang, J.; Huang, Y.; Hu, P. Psychomotor Recovery Following Remimazolam-induced Sedation and the Effectiveness of Flumazenil as an Antidote. Clin. Ther. 2020, 42, 614–624. [Google Scholar] [CrossRef]
- Pan, Y.; Chen, M.; Gu, F.; Chen, J.; Zhang, W.; Huang, Z.; Zhu, D.; Song, J.; Fang, J.; Yu, W.; et al. Comparison of Remimazolam-Flumazenil versus Propofol for Rigid Bronchoscopy: A Prospective Randomized Controlled Trial. J. Clin. Med. 2022, 12, 257. [Google Scholar] [CrossRef]
- Yang, L.; Zhong, L.; Deng, X.; Fang, H.; Li, S.; Li, Y. Effects of different doses of remimazolam besylate on postoperative sedation, pain, and adverse reactions in patients undergoing hysteroscopic surgery. BMC Surg. 2025, 25, 278. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Dai, L.L.; Li, Y.N.; Zhang, J.W.; Qu, M.C.; Zhou, Y.Y.; Xing, N. Comparing Remimazolam and Propofol for Postoperative Anesthesia Satisfaction in Outpatient Gynecological Surgery: A Randomized Clinical Trial. Drug Des. Devel. Ther. 2024, 18, 4615–4627. [Google Scholar] [CrossRef] [PubMed]
- van Boekel, R.L.M.; Bronkhorst, E.M.; Vloet, L.; Steegers, M.A.M.; Vissers, K.C.P. Identification of preoperative predictors for acute postsurgical pain and for pain at three months after surgery: A prospective observational study. Sci. Rep. 2021, 11, 16459. [Google Scholar] [CrossRef]
- Li, J.W.; Ma, Y.S.; Xiao, L.K. Postoperative Pain Management in Total Knee Arthroplasty. Orthop. Surg. 2019, 11, 755–761. [Google Scholar] [CrossRef]
- Chae, M.S.; Lee, N.; Koh, H.J. Age-Related Response to Remimazolam among Older Patients Undergoing Orthopedic Surgery: A Single-Center Prospective Observational Study. Medicina 2024, 60, 1616. [Google Scholar] [CrossRef]
- Lu, L.; Chen, B.; Zhao, X.; Zhai, J.; Zhang, P.; Hua, Z. Comparison of Remimazolam and Propofol in Recovery of Elderly Outpatients Undergoing Gastrointestinal Endoscopy: A Randomized, Non-Inferiority Trial. Drug Des. Devel. Ther. 2024, 18, 4307–4318. [Google Scholar] [CrossRef] [PubMed]
- Ayers, D.C.; Zheng, H.; Yang, W.; Yousef, M. Gender Differences in Pain, Function, and Quality of Life Five Years Following Primary Total Knee Arthroplasty. J. Arthroplasty 2024, 39, S100–S107. [Google Scholar] [CrossRef]
- Clement, N.D.; Weir, D.; Holland, J.; Deehan, D.J. Sex does not clinically influence the functional outcome of total knee arthroplasty but females have a lower rate of satisfaction with pain relief. Knee Surg. Relat. Res. 2020, 32, 32. [Google Scholar] [CrossRef] [PubMed]
- Royon, T.; Foissey, C.; Fontalis, A.; Planchet, F.; Servien, E.; Batailler, C.; Lustig, S. Gender does not influence outcomes and complications in medial unicompartmental knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2024, 32, 2551–2561. [Google Scholar] [CrossRef] [PubMed]


| Group | Group RR | Group CR | Group RC | Group CC | p-Value |
|---|---|---|---|---|---|
| n | 115 | 134 | 79 | 152 | |
| Preoperative variables | |||||
| Age (years) | 71.62 ± 5.98 | 72.34 ± 8.26 | 71.65 ± 6.31 | 70.72 ± 6.3 | 0.257 |
| Gender | 0.013 * | ||||
| Male | 24 | 9 | 13 | 24 | |
| Female | 91 | 125 | 66 | 128 | |
| ASA PS | 0.163 | ||||
| I | 1 | 7 | 5 | 10 | |
| II | 105 | 120 | 70 | 126 | |
| III | 9 | 7 | 4 | 16 | |
| BMI (kg/m2) | 25.9 ± 3.43 | 25.27 ± 2.8 | 26.48 ± 3.54 | 26.07 ± 3.65 | 0.06 |
| Intraoperative variables | |||||
| Operation duration (min) | 100.08 ± 33.89 | 77.75 ± 17.76 | 101.53 ± 35.58 | 91.44 ± 35.42 | <0.001 * |
| Anesthesia duration (min) | 137.45 ± 37.86 | 112.08 ± 21.83 | 131.38 ± 36.78 | 120.34 ± 40.02 | <0.001 * |
| Remifentanil total dosage (mg) | 0.58 ± 0.24 | 0.49 ± 0.22 | 0.43 ± 0.20 | 0.41 ± 0.18 | 0.426 |
| Postoperative variables | |||||
| Length of stay in PACU (min) | 59.53 ± 22.74 | 59.39 ± 19.89 | 48.47 ± 9.01 | 52.16 ± 17.22 | <0.001 * |
| PONV | 0 | 0 | 0 | 2 | 0.289 |
| Anti-emetics | 0 | 0 | 0 | 1 | 1 |
| Modified Aldrete score 1 | 7.62 ± 0.78 | 7.71 ± 0.56 | 7.8 ± 0.56 | 7.70 ± 0.54 | 0.174 |
| Modified Aldrete score 2 | 9.51 ± 0.52 | 9.53 ± 0.53 | 9.76 ± 0.43 | 9.79 ± 0.44 | <0.001 * |
| Postoperative Variables. | Group RR | Group CR | Group RC | Group CC | |
|---|---|---|---|---|---|
| Total PCA | 57.85 ± 24.90 | 53.76 ± 26.88 | 51.75 ± 24.97 | 55.86 ± 26.41 | 0.427 |
| PCA dosage on POD 0 | 10.40 ± 7.31 | 10.71 ± 7.35 | 9.92 ± 6.9 | 10.06 ± 7.08 | 0.839 |
| PCA dosage on POD 1 | 39.98 ± 17.91 | 39.41 ± 16.89 | 39.39 ± 20.19 | 38.93 ± 18.09 | 0.974 |
| Postoperative Variables | Group RR | Group CR | Group RC | Group CC | |
|---|---|---|---|---|---|
| Number of PRN analgesic use on POD 0 | 1.02 ± 1.04 | 1.45 ± 1.42 | 1.42 ± 1.32 | 1.61 ± 1.28 | 0.003 |
| Number of PRN analgesic use on POD1–2 | 1.32 ± 1.50 | 1.50 ± 1.41 | 1.71 ± 1.90 | 1.41 ± 1.74 | 0.413 |
| Postoperative Variables | Group RR | Group CR | Group RC | Group CC | |
|---|---|---|---|---|---|
| PONV occurrence (no.) | 0 | 0 | 0 | 2 | 0.228 |
| Anti-emetics within 24 h (no.) | 0 | 0 | 0 | 1 | 0.539 |
| Anti-emetics between 24 and 72 h (no.) | 72 | 86 | 48 | 115 | 0.989 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joo, J.; Kim, M.S.; Lee, J.; Koh, H.J. What Is the Most Effective Strategy for Acute Postoperative Pain in Total Knee Arthroplasty—Retrospective Observational Study. J. Clin. Med. 2025, 14, 8138. https://doi.org/10.3390/jcm14228138
Joo J, Kim MS, Lee J, Koh HJ. What Is the Most Effective Strategy for Acute Postoperative Pain in Total Knee Arthroplasty—Retrospective Observational Study. Journal of Clinical Medicine. 2025; 14(22):8138. https://doi.org/10.3390/jcm14228138
Chicago/Turabian StyleJoo, Jin, Man Soo Kim, Jeha Lee, and Hyun Jung Koh. 2025. "What Is the Most Effective Strategy for Acute Postoperative Pain in Total Knee Arthroplasty—Retrospective Observational Study" Journal of Clinical Medicine 14, no. 22: 8138. https://doi.org/10.3390/jcm14228138
APA StyleJoo, J., Kim, M. S., Lee, J., & Koh, H. J. (2025). What Is the Most Effective Strategy for Acute Postoperative Pain in Total Knee Arthroplasty—Retrospective Observational Study. Journal of Clinical Medicine, 14(22), 8138. https://doi.org/10.3390/jcm14228138

