Modulation of Surgical Site Infection Risk in Spinal and Thoracic Surgeries Through Operative Parameters: A Narrative Review
Abstract
1. Introduction
2. Methodology
3. Preoperative Antibiotic Prophylaxis in Thoracic and Spinal Surgeries
3.1. Rationale and Timing
3.2. Antibiotic Selection and Adjustments
3.3. Intraoperative Redosing
3.4. Duration of Prophylaxis
3.5. Local and Adjunctive Antibiotic Measures
3.6. Protocol Integration and Quality Improvement
4. Operative Risk Factors and Their Correlation with SSI
4.1. Duration of Surgery
4.2. Intraoperative Blood Loss and Transfusion
4.3. Surgical Extent and Instrumentation
4.4. Synergistic Risk Profiles and Predictive Modeling
4.5. Clinical Decision-Making
5. Negative-Pressure Wound Therapy (NPWT)
5.1. Mechanism of Action and Physiological Effects
5.2. Evidence Base in Spinal and Thoracic Surgeries
5.3. Indications for Prophylactic NPWT
5.4. Technical Considerations and Best Practices
5.5. Limitations, Contraindications, and Adverse Effects
6. Combination Preventive Strategies for SSIs in Immunosuppressed Patients
6.1. Topical Vancomycin Powder (TVP)
6.2. Negative-Pressure Wound Therapy
6.3. Extended Systemic Antibiotic Prophylaxis
6.4. Combination Strategy Evidence
7. Outcomes and Complication Rates
7.1. Clinical Consequences and Patient Impact
7.2. Healthcare Resource Utilization
7.3. Functional Outcomes and Long-Term Consequences
7.4. Risk Stratification and Predictive Modeling
8. Recommendations and Preventive Strategies
8.1. Perioperative Antibiotic Management
8.1.1. Level I Recommendations (Strong Evidence, High Confidence)
8.1.2. Level II Recommendations (Moderate Evidence, Reasonable Confidence)
8.2. Operative Technique and Risk Mitigation
8.2.1. Level I Recommendations
8.2.2. Level II Recommendations
8.3. Advanced Wound-Management Technologies
8.3.1. Level I Recommendations for NPWT
8.3.2. Level II Recommendations
Combination Therapies
Emerging Technologies
8.4. Patient Optimization and Risk Stratification
8.4.1. Level I Recommendations
8.4.2. Level II Recommendations
8.5. Institutional Protocols and Quality Improvement
8.5.1. Level I Recommendations
Bundled Care Protocols
Quality Assurance
8.5.2. Level II Recommendations
Integrating Technology
Innovation
8.6. Special Populations and Considerations
8.6.1. Surgical Cases Marked by High Risk
8.6.2. Pediatric Factors to Consider
8.6.3. Resource-Limited Settings
9. Future Directions and Emerging Technologies
10. Limitations and Considerations
11. Conclusions
11.1. Key Evidence-Based Conclusions
- Antibiotic Prophylaxis Optimization: Proper timing (within 30–60 min), appropriate agent selection with weight-based dosing, and timely discontinuation (within 24 h) remain fundamental to SSI prevention. Intrawound antibiotics, particularly vancomycin powder in spinal instrumentation cases, can potentially provide additional protection in high-risk scenarios [3,10,20,21,22,23,25,34,39,40,56,58,62,85,101,154,163].
- Operative Risk-Factor Management: Minimizing operative duration (<4 h when possible) and blood loss (<500 mL) significantly reduces SSI risk. These targets should guide surgical planning and technique refinement, with enhanced prophylaxis protocols for cases exceeding these thresholds [34,54,56,137,138,139,163].
- Negative-Pressure Wound Therapy: Prophylactic NPWT is highly effective for high-risk patients, including those with BMI ≥ 35, diabetes mellitus, multilevel instrumentation, or anticipated prolonged procedures [48,118,119,120,121,122,123,124,125,126,127,128,130]. Evidence supports 5–7-day treatment protocols, with significant reductions in both superficial and deep SSI rates.
- Bundled Care Approaches: Comprehensive prevention bundles that address multiple risk factors simultaneously demonstrate superior outcomes compared to isolated interventions [33,92,136,137,138,139,140,163]. Bundles should include preoperative optimization, standardized prophylaxis protocols, and risk-stratified wound-management strategies.
11.2. Final Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsantes, A.G.; Papadopoulos, D.V.; Lytras, T.; Tsantes, A.E.; Mavrogenis, A.F.; Koulouvaris, P.; Gelalis, I.D.; Ploumis, A.; Korompilias, A.V.; Benzakour, T.; et al. Association of malnutrition with surgical site infection following spinal surgery: Systematic review and meta-analysis. J. Hosp. Infect. 2020, 104, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Liang, J.; Yu, H.; Qiu, G.; Xue, X.; Li, Z. Risk factors for delayed infections after spinal fusion and instrumentation in patients with scoliosis. J. Neurosurg. Spine 2014, 21, 648–652. [Google Scholar] [CrossRef] [PubMed]
- Ojo, O.A.; Owolabi, B.S.; Oseni, A.W.; Kanu, O.O.; Bankole, O.B. Surgical site infection in posterior spine surgery. Niger. J. Clin. Pract. 2016, 19, 821–826. [Google Scholar] [CrossRef] [PubMed]
- Farshad, M.; Bauer, D.E.; Wechsler, C.; Gerber, C.; Aichmair, A. Risk factors for perioperative morbidity in spine surgeries of different complexities: A multivariate analysis of 1009 consecutive patients. Spine J. 2018, 18, 1625–1631. [Google Scholar] [CrossRef] [PubMed]
- Pull ter Gunne, A.F.; Hosman, A.J.; Cohen, D.B.; Schuetz, M.; Habil, D.; van Laarhoven, C.J.; van Middendorp, J.J. A methodological systematic review on surgical site infections following spinal surgery: Part 1: Risk factors. Spine 2012, 37, 2017–2033. [Google Scholar] [CrossRef] [PubMed]
- Freire-Archer, M.; Sarraj, M.; Koziarz, A.; Thornley, P.; Alshaalan, F.; Alnemari, H.; Kachur, E.; Bhandari, M.; Oitment, C. Incidence and Recurrence of Deep Spine Surgical Site Infections: A Systematic Review and Meta-analysis. Spine 2023, 48, E269–E285. [Google Scholar] [CrossRef] [PubMed]
- Ogihara, S.; Yamazaki, T.; Shiibashi, M.; Chikuda, H.; Maruyama, T.; Miyoshi, K.; Inanami, H.; Oshima, Y.; Azuma, S.; Kawamura, N.; et al. Risk factors for deep surgical site infection following posterior instrumented fusion for degenerative diseases in the thoracic and/or lumbar spine: A multicenter, observational cohort study of 2913 consecutive cases. Eur. Spine J. 2021, 30, 1756–1764. [Google Scholar] [CrossRef] [PubMed]
- Croft, L.D.; Pottinger, J.M.; Chiang, H.Y.; Ziebold, C.S.; Weinstein, S.L.; Herwaldt, L.A. Risk factors for surgical site infections after pediatric spine operations. Spine 2015, 40, E112–E119. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wang, R.; Huo, X.; Xiong, W.; Kang, L.; Xue, Y. Incidence of Surgical Site Infection After Spine Surgery: A Systematic Review and Meta-analysis. Spine 2020, 45, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Chan, A.K.; Ammanuel, S.; Chan, A.Y.; Oh, T.; Skrehot, H.C.; Edwards, S.; Kondapavulur, S.; Nichols, A.D.; Liu, C.; et al. Risk factors for deep surgical site infection following thoracolumbar spinal surgery. J. Neurosurg. Spine 2019, 32, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Cvijanovic, V.S.; Ristanović, A.S.; Maric, N.T.; Vesovic, N.V.; Kostovski, V.V.; Djenic, L.V.; Stojkovic, D.V.; Nikolic, A.S.; Djordevic, D.M.; Suljagic, V.D. Surgical site infection incidence and risk factors in thoracic surgical procedures: A 12-year prospective cohort study. J. Infect. Dev. Ctries. 2019, 13, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Imperatori, A.; Nardecchia, E.; Dominioni, L.; Sambucci, D.; Spampatti, S.; Feliciotti, G.; Rotolo, N. Surgical site infections after lung resection: A prospective study of risk factors in 1091 consecutive patients. J. Thorac. Dis. 2017, 9, 3222–3231. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- de Tymowski, C.; Provenchère, S.; Para, M.; Duval, X.; Grall, N.; Sahnoun, T.; Iung, B.; Kernéis, S.; Lucet, J.C.; Montravers, P. Deep sternal wound infection after cardiac surgery: A combination of 2 distinct infection types, deep incisional surgical-site infection and mediastinitis: Results of a retrospective study. Surgery 2025, 181, 109255. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Q.; Ma, Z.J. Impact of video-assisted thoracic surgery versus open thoracotomy on postoperative wound infections in lung cancer patients: A systematic review and meta-analysis. BMC Pulm. Med. 2025, 25, 159. [Google Scholar] [CrossRef] [PubMed]
- Elsamadicy, A.A.; Adogwa, O.; Vuong, V.D.; Mehta, A.I.; Vasquez, R.A.; Cheng, J.; Karikari, I.O.; Bagley, C.A. Patient Body Mass Index is an Independent Predictor of 30-Day Hospital Readmission After Elective Spine Surgery. World Neurosurg. 2016, 96, 148–151. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K.; Zhou, Y.; Manson, J.F.; Watt, J.P. Radiographic spine adipose index: An independent risk factor for deep surgical site infection after posterior instrumented lumbar fusion. Spine J. 2021, 21, 1711–1717. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.; Khoury, H.; Girgenti, D.; Welner, S.; Yu, H. Burden of Surgical Site Infections Associated with Select Spine Operations and Involvement of Staphylococcus aureus. Surg. Infect. 2017, 18, 461–473. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Begier, E.; Rosenthal, N.A.; Richardson, W.; Chung, J.; Gurtman, A. Invasive Staphylococcus aureus Infection among Patients Undergoing Elective, Posterior, Instrumented Spinal Fusion Surgeries: A Retrospective Cohort Study. Surg. Infect. 2022, 23, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Ogihara, S.; Yamazaki, T.; Shiibashi, M.; Maruyama, T.; Chikuda, H.; Miyoshi, K.; Inanami, H.; Oshima, Y.; Azuma, S.; Kawamura, N.; et al. Risk Factor Analysis of Deep Surgical Site Infection After Posterior Instrumented Fusion Surgery for Spinal Trauma: A Multicenter Observational Study. World Neurosurg. 2020, 134, e524–e529. [Google Scholar] [CrossRef] [PubMed]
- White, A.J.; Fiani, B.; Jarrah, R.; Momin, A.A.; Rasouli, J. Surgical Site Infection Prophylaxis and Wound Management in Spine Surgery. Asian Spine J. 2022, 16, 451–461. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Amelot, A.; Riche, M.; Latreille, S.; Degos, V.; Carpentier, A.; Mathon, B.; Korinek, A.M. Antimicrobial prophylaxis in noninstrumented spine surgery: A prospective study to determine efficacy and drawbacks. J. Neurosurg. Spine 2021, 35, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Menendez Garcia, M.; Otermin Maya, I.; Librero Lopez, J.; Gutierrez Dubois, J.; Manrique Cuevas, D.; Alaez Cruz, J.I.; Azcona Salvatierra, L.; Ayechu Diaz, I.; Hidalgo Ovejero, A.M. Effects of extended oral antibiotic prophylaxis on surgical site infections after instrumented spinal fusion: A cohort study of 901 patients with a minimum follow-up of 1 year. Acta Orthop. 2023, 94, 80–86. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Anwar, F.N.; Roca, A.M.; Khosla, I.; Medakkar, S.S.; Loya, A.C.; Federico, V.P.; Massel, D.H.; Sayari, A.J.; Lopez, G.D.; Singh, K. Antibiotic use in spine surgery: A narrative review based in principles of antibiotic stewardship. N. Am. Spine Soc. J. 2023, 16, 100278. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Luo, H.; Ren, Y.; Su, Y.; Xue, F.; Hong, Z. Intraoperative vancomycin powder to reduce surgical site infections after posterior spine surgery: A systematic review and meta-analysis. EFORT Open Rev. 2022, 7, 109–121. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Salvetti, D.J.; Tempel, Z.J.; Gandhoke, G.S.; Parry, P.V.; Grandhi, R.M.; Kanter, A.S.; Okonkwo, D.O. Preoperative prealbumin level as a risk factor for surgical site infection following elective spine surgery. Surg. Neurol. Int. 2015, 6 (Suppl. 19), S500–S503. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Herrington, B.J.; Urquhart, J.C.; Rasoulinejad, P.; Siddiqi, F.; Gurr, K.; Bailey, C.S. Vancomycin Antibiotic Prophylaxis Compared to Cefazolin Increases Risk of Surgical Site Infection Following Spine Surgery. Glob. Spine J. 2025; Epub ahead of print. [Google Scholar] [CrossRef]
- Ferrer Pomares, P.; Duque Santana, P.; Moreno Mateo, F.; Mengis Palleck, C.L.; Tomé Bermejo, F.; Álvarez Galovich, L. Comparison of Surgical Site Infection After Instrumented Spine Surgery in Patients with High Risk of Infection According to Different Antibiotic Prophylaxis Protocols: A Cohort Study of 132 Patients with a Minimum Follow-Up of 1 Year. Glob. Spine J. 2025, 15, 1890–1894. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Lu, H.; Pan, A.; Guan, L.; Cheng, F.; Zhao, M.; Chu, S.; Hai, Y.; Liu, Y. Safety and Efficacy of Intrawound Vancomycin Powder in the Prevention of Lumbar Surgical Site Infection: A Prospective, Double-Blind, Randomized Controlled Study. Int. J. Surg. 2025, 111, 589–596. [Google Scholar] [CrossRef]
- Dubory, A.; Giorgi, H.; Walter, A.; Bouyer, B.; Vassal, M.; Zairi, F.; Dhenin, A.; Grelat, M.; Lonjon, N.; Dauzac, C.; et al. Surgical-site infection in spinal injury: Incidence and risk factors in a prospective cohort of 518 patients. Eur. Spine J. 2015, 24, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Toi, M.; Maruo, K.; Arizumi, F.; Kishima, K.; Nishizawa, M.; Rosenfeld, M.G.; Tachibana, T. Prevention of Surgical Site Infection after Spine Operation with Care Bundle. Surg. Infect. 2025, 26, 584–590. [Google Scholar] [CrossRef]
- Abola, M.V.; Lin, C.C.; Lin, L.J.; Schreiber-Stainthorp, W.; Frempong-Boadu, A.; Buckland, A.J.; Protopsaltis, T.S. Postoperative Prophylactic Antibiotics in Spine Surgery: A Propensity-Matched Analysis. J. Bone Jt. Surg. Am. 2021, 103, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Torres, K.A.; Konrade, E.; White, J.; Tavares Junior, M.C.M.; Bunch, J.T.; Burton, D.; Jackson, R.S.; Birlingmair, J.; Carlson, B.B. Irrigation techniques used in spine surgery for surgical site infection prophylaxis: A systematic review and meta-analysis. BMC Musculoskelet. Disord. 2022, 23, 813. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Elgafy, H.; Raberding, C.J.; Mooney, M.L.; Andrews, K.A.; Duggan, J.M. Analysis of a ten-step protocol to decrease postoperative spinal wound infections. World J. Orthop. 2018, 9, 271–284. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- El Zahlawy, H.N.; Ibrahim, Z.H.; Gadallah, G.H. Local Vancomycin in Prevention of Surgical Site Infection in Spinal Surgeries. Ain Shams Med. J. 2021, 72, 153–163. [Google Scholar] [CrossRef]
- Ahmed, H.; Mazhar, F.; Gilani, A.; Shah, N.; Azeem, A.; Rizwan, M.; Rehman, A. Antibiotic Prophylaxis in Orthopaedic Surgery: A Review and Institutional Experience. Cureus 2025, 17, e87385. [Google Scholar] [CrossRef] [PubMed]
- Brooks Peterson, M.; Cohen, M.N.; O’Neill, B.R.; Garg, S.; Child, J.; Henthorn, T.K.; Galinkin, J.G. Preoperative Vancomycin Administration for Surgical Site Prophylaxis: Plasma and Soft-Tissue Concentrations in Pediatric Neurosurgical and Orthopedic Patients. Anesth. Analg. 2020, 130, 1435–1444. [Google Scholar] [CrossRef]
- Algarny, S.; Perera, A.; Egenolf, P.; Weber, M.; Heck, V.; Walter, S.; Eysel, P.; Scheyerer, M.J.; Lenz, M. Postoperative Surgical Site Infections in Spine Surgery: Can the Duration of Surgery Predict the Pathogen Spectrum? In Vivo 2023, 37, 1688–1693. [Google Scholar] [CrossRef]
- Piantoni, L.; Tello, C.A.; Remondino, R.G.; Wilson, I.A.F.; Galaretto, E.; Bersusky, E.S.; Noel, M.A. Antibiotic Prophylaxis in High-Risk Pediatric Spine Surgery: Is Cefazolin Enough? Spine Deform. 2020, 8, 669–676. [Google Scholar] [CrossRef]
- Pivazyan, G.; Khan, Z.; Williams, J.D.; Kim, A.J.; Rush, D.M.; Cobourn, K.D.; Patel, N.; Nair, M.N. Utility of prolonged prophylactic systemic antibiotics for wound drains in posterior spine surgery: A systematic review and meta-analysis. J. Neurosurg. Spine 2023, 38, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.; Lee, H.; Huang, M.S.; Rutges, J.; Marion, T.E.; Mathew, J.; Fitzgerald, M.; Gonzalvo, A.; Hunn, M.K.; Kwon, B.K.; et al. Prophylactic postoperative measures to minimize surgical site infections in spine surgery: Systematic review and evidence summary. Spine J. 2020, 20, 435–447. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.K.; Donnelley, C.A.; Tiee, M.; Roberts, H.J.; Von Kaeppler, E.; Shearer, D.; Morshed, S. Prophylactic Topical Antibiotics in Fracture Repair and Spinal Fusion. Adv Orthop. 2021, 2021, 1949877. [Google Scholar] [CrossRef]
- Elezbawy, B.; Abaza, N.; Fasseeh, M.; Elshahawy, R.; Mahmoud, Y.S.; Hendawy, H.; Konstantinov, S.R.; Ruiz-Guiñazú, J.; Willame, C.; Geurtsen, J.; et al. Incidence of Staphylococcus aureus Infections after Surgical Interventions: A Systematic Review and Meta-Analysis. Expert Rev. Anti Infect. Ther. 2025; Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Leary, O.P.; Setty, A.; Gong, J.H.; Ali, R.; Fridley, J.S.; Fisher, C.G.; Sahgal, A.; Rhines, L.D.; Reynolds, J.J.; Lazáry, Á.; et al. Prevention and Management of Posterior Wound Complications Following Oncologic Spine Surgery: Narrative Review of Available Evidence and Proposed Clinical Decision-Making Algorithm. Glob. Spine J. 2025, 15, 143S–156S. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.I.; Babu, R.; Sharma, R.; Karikari, I.O.; Grunch, B.H.; Owens, T.R.; Agarwal, V.J.; Sampson, J.H.; Lad, S.P.; Friedman, A.H.; et al. Thickness of subcutaneous fat as a risk factor for infection in cervical spine fusion surgery. J. Bone Jt. Surg. Am. 2013, 95, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Masarwa, R.; Uri, O.; Athamna, A.; Freimann, S.; Yassin, A.; Najjar, E.; Muscogliati, R.; Nocun, W.; Behrbalk, E. Assessing the Effectiveness of Antibiotic Irrigation to Reduce Bacterial Load at the Spinal Surgical Site: An In-Vitro Study. Cureus 2025, 17, e81519. [Google Scholar] [CrossRef]
- Riedlinger, D.; Holert, F.; Gastmeier, P.; Kola, A.; Slagman, A.; Möckel, M. Risk factors for Staphylococcus aureuscolonization in a general emergency department patient cohort—Results of an observational cohort study. Biomarkers 2025, 30, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, E.A.; Mazur-Hart, D.J.; Yoo, J.; Orina, J.N. Surgical site infection in thoracic and lumbar fractures: Incidence and risk factors in 11,401 patients from a nationwide administrative database. Spine J. 2023, 23, 281–286. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, T.; Liu, H. Metal-Based Heterojunction for NPWT in MDR Bacteria in Spinal Wounds In Vivo. ACS Appl. Mater. Interfaces 2025, 17, 38859–38873. [Google Scholar] [CrossRef]
- Bagherzadeh, S.; Moghadam, N.; Rostami-Ravari, M.; Nazemi, P.; Koohpayezadeh-Esfahani, Z.; Rostami, M.; Fontes, R.B.V.; Rostami, M.; Johansen, P.M.; Bauer, S.; et al. Comparative Effectiveness of Gram-Positive versus Mixed Antibiotic Prophylaxis on Surgical Site Infection Rates Following Three-Column Osteotomy for Adult Spinal Deformity. Clin. Neurol. Neurosurg. 2025, 258, 109173. [Google Scholar] [CrossRef]
- Gens, K.D.; Gagnon, B.R.; Claeys, K.C.; Wankum, M.A.; Hirsch, E.B. Evaluation of Cefazolin <3 g vs. 3 g Treatment Doses for Cellulitis in Patients Who Weigh ≥120 kg within a Large, Community Health System via Modified Desirability of Outcomes Ranking (DOOR) Methodology. J. Infect. Chemother. 2025, 31, 102833. [Google Scholar] [CrossRef]
- Bates, T.J.; Burgess, M.B.; Garcia, G.R.; Akers, K.S.; Mangum, L.C.; Lynch, T.B.; Wenke, J.C.; Pierrie, S.N. Intravenous Cefazolin Achieves Sustained High Interstitial Concentrations in Open Lower Extremity Fractures. Clin. Orthop. Relat. Res. 2024, 482, 375–383. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Onita, T.; Ikawa, K.; Ishihara, N.; Tamaki, H.; Yano, T. Cerebrospinal Pharmacokinetic Modeling and Pharmacodynamic Simulation of High-Dose Cefazolin for Meningitis Caused by Methicillin-Susceptible Staphylococcus aureus. Antibiotics 2025, 14, 1008. [Google Scholar] [CrossRef] [PubMed]
- Barbato, R.; Ferraresi, B.; Chello, M.; Strumia, A.; Gagliardi, I.; Loreni, F.; Mattei, A.; Santarpino, G.; Carassiti, M.; Grigioni, F.; et al. Length and Type of Antibiotic Prophylaxis for Infection Prevention in Adults Patient in the Cardiac Surgery Intensive Care Unit: A Narrative Review. Antibiotics 2025, 14, 934. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rybaczek, M.; Kowalski, P.; Mariak, Z.; Grabala, M.; Suszczyńska, J.; Łysoń, T.; Grabala, P. Safety in Spine Surgery: Risk Factors for Intraoperative Blood Loss and Management Strategies. Life 2025, 15, 1615. [Google Scholar] [CrossRef] [PubMed]
- Draenert, R.; Weber, A.; Jung, J.; Arenz, L. Perioperative Antibiotikaprophylaxe—Die neue S3-Leitlinie [Perioperative antibiotic prophylaxis-The new German S3 guideline]. Anaesthesiologie 2025, 74, 627–633. (In German) [Google Scholar] [CrossRef] [PubMed]
- Saccomanno, F.R.; Gates, J.; Jacobs, L.; Kuti, J.; Ricaurte, D.; Keating, J. Infection and Antibiotic Agents in Bleeding Trauma Patients: A Review of Available Literature. Surg. Infect. 2022, 23, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Waltz, P.K.; Zuckerbraun, B.S. Surgical Site Infections and Associated Operative Characteristics. Surg. Infect. 2017, 18, 447–450. [Google Scholar] [CrossRef] [PubMed]
- Cies, J.J.; Moore, W.S.; Parker, J.; Stevens, R.; Al-Qaqaa, Y.; Enache, A.; Chopra, A. Pharmacokinetics of cefazolin delivery via the cardiopulmonary bypass circuit priming solution in infants and children. J. Antimicrob. Chemother. 2019, 74, 1342–1347. [Google Scholar] [CrossRef] [PubMed]
- Blum, S.; Cunha, C.B.; Cunha, B.A. Lack of Pharmacokinetic Basis of Weight-Based Dosing and Intra-Operative Re-Dosing with Cefazolin Surgical Prophylaxis in Obese Patients: Implications for Antibiotic Stewardship. Surg. Infect. 2019, 20, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Olatunbosun, S.; Hollenbeck, B.L. Extended Post-Operative Antibiotic Usage Does Not Reduce Surgical Site Infections after Spinal Surgery. Surg. Infect. 2025, 26, 331–335. [Google Scholar] [CrossRef]
- De la Garza-Ramos, R.; Abt, N.B.; Kerezoudis, P.; McCutcheon, B.A.; Bydon, A.; Gokaslan, Z.; Bydon, M. Deep-wound and organ-space infection after surgery for degenerative spine disease: An analysis from 2006 to 2012. Neurol. Res. 2016, 38, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Kunakornsawat, S.; Sirikajohnirun, S.; Piyaskulkaew, C.; Pruttikul, P.; Kittithamvongs, P.; Pongpinyopap, W.; Pluemvitayaporn, T. Comparison between 1 g and 2 g of Intrawound Vancomycin Powder Application for Prophylaxis in Posterior Instrumented Thoracic or Lumbosacral Spine Surgery: A Preliminary Report. Asian J. Neurosurg. 2019, 14, 710–714. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xie, C.; Zhang, L.; Zhang, D.; Tao, L.; Zhao, Y.; Luo, H. Efficacy and safety of vancomycin for local application in the prevention of surgical site infection after joint arthroplasty: A systematic review and meta-analysis. EFORT Open Rev. 2024, 9, 953–968. [Google Scholar] [CrossRef]
- Shan, S.; Tu, L.; Gu, W.; Aikenmu, K.; Zhao, J. A meta-analysis of the local application of vancomycin powder to prevent surgical site infection after spinal surgeries. J. Int. Med. Res. 2020, 48, 300060520920057. [Google Scholar] [CrossRef]
- Sathish, M.; Girinivasan, C. Is Use of Topical Vancomycin in Pediatric Spine Surgeries a Safe Option in the Prevention of Surgical Site Infections? A Meta-analysis and Systematic Review of the Literature. Glob. Spine J. 2021, 11, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Kowalewski, M.; Pasierski, M.; Makhoul, M.; Comanici, M.; Dąbrowski, E.J.; Matteucci, M.; Litwinowicz, R.; Kowalówka, A.; Wańha, W.; Jiritano, F.; et al. Topical vancomycin for sternal wound infection prophylaxis. A systematic review and updated meta-analysis of over 40,000 cardiac surgery patients. Surgery 2023, 174, 1102–1111. [Google Scholar] [CrossRef] [PubMed]
- Shu, L.; Muheremu, A.; Shoukeer, K.; Ji, Y. Prophylactic Application of Vancomycin Powder in Preventing Surgical Site Infections After Spinal Surgery. World Neurosurg. 2023, 171, e542–e553. [Google Scholar] [CrossRef] [PubMed]
- Bakhsheshian, J.; Dahdaleh, N.S.; Lam, S.K.; Savage, J.W.; Smith, Z.A. The use of vancomycin powder in modern spine surgery: Systematic review and meta-analysis of the clinical evidence. World Neurosurg. 2015, 83, 816–823. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Li, J.; Xu, Y.; Ling, C.; Qiu, Y.; Zhu, Z.; Liu, Z. Topical vancomycin powder for the prevention of surgical site infections in spinal deformity surgery: A systematic review and meta-analysis. Eur. Spine J. 2024, 33, 4653–4663. [Google Scholar] [CrossRef]
- Daher, M.; Nassar, J.E.; McDonald, C.L.; Diebo, B.G.; Daniels, A.H. Does the Application of Topical Vancomycin Reduce Surgical Site Infections in Spine Surgery? A Meta-analysis of Randomized Controlled Trials. Clin. Orthop. Relat. Res. 2024, 482, 2212–2219. [Google Scholar] [CrossRef]
- Imperatori, A.; Rovera, F.; Rotolo, N.; Nardecchia, E.; Conti, V.; Dominioni, L. Prospective study of infection risk factors in 988 lung resections. Surg. Infect. 2006, 7 (Suppl. 2), S57–S60. [Google Scholar] [CrossRef]
- Kuvendjiska, J.; Marjanovic, G.; Glatz, T.; Kulemann, B.; Hoeppner, J. Hybrid Minimally Invasive Esophagectomy-Surgical Technique and Results. J. Clin. Med. 2019, 8, 978. [Google Scholar] [CrossRef]
- Vander Salm, T.J.; Okike, O.N.; Pasque, M.K.; Pezzella, A.T.; Lew, R.; Traina, V.; Mathieu, R. Reduction of sternal infection by application of topical vancomycin. J. Thorac. Cardiovasc. Surg. 1989, 98, 618–622. [Google Scholar] [CrossRef] [PubMed]
- Iarussi, T.; Marolla, A.; Pardolesi, A.; Patea, R.L.; Camplese, P.; Sacco, R. Sternectomy and sternum reconstruction for infection after cardiac surgery. Ann. Thorac. Surg. 2008, 86, 1680–1681. [Google Scholar] [CrossRef] [PubMed]
- Sweet, F.A.; Roh, M.; Sliva, C. Intrawound application of vancomycin for prophylaxis in instrumented thoracolumbar fusions: Efficacy, drug levels, and patient outcomes. Spine 2011, 36, 2084–2088. [Google Scholar] [CrossRef] [PubMed]
- Lazar, H.L.; Ketchedjian, A.; Haime, M.; Karlson, K.; Cabral, H. Topical vancomycin in combination with perioperative antibiotics and tight glycemic control helps to eliminate sternal wound infections. J. Thorac. Cardiovasc. Surg. 2014, 148, 1035–1040. [Google Scholar] [CrossRef] [PubMed]
- Ghobrial, G.M.; Cadotte, D.W.; Williams, K., Jr.; Fehlings, M.G.; Harrop, J.S. Complications from the use of intrawound vancomycin in lumbar spinal surgery: A systematic review. Neurosurg. Focus 2015, 39, E11. [Google Scholar] [CrossRef] [PubMed]
- Deora, H.; Nagesh, M.; Garg, K.; Singh, M.; Chandra, S.P.; Kale, S.S. Topical Vancomycin for Prevention of Surgical Site Infection in Cranial Surgeries: Results of an Updated Systematic Review, Meta-Analysis and Meta-Regression. Neurol. India 2023, 71, 875–883. [Google Scholar] [CrossRef]
- Zale, C.; Nicholes, M.; Hu, S.; Cage, J. Surgical site infection prophylaxis with intra-wound vancomycin powder for uninstrumented spine surgeries: A meta-analysis. Eur. Spine J. 2023, 32, 4259–4264. [Google Scholar] [CrossRef]
- Gande, A.; Rosinski, A.; Cunningham, T.; Bhatia, N.; Lee, Y.P. Selection pressures of vancomycin powder use in spine surgery: A meta-analysis. Spine J. 2019, 19, 1076–1084. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.R.; Thompson, C.J.; DeCuypere, M.; Angotti, J.M.; Kalobwe, E.; Muhlbauer, M.S.; Camillo, F.X.; Klimo, P., Jr. A meta-analysis of spinal surgical site infection and vancomycin powder. J. Neurosurg. Spine 2014, 21, 974–983. [Google Scholar] [CrossRef] [PubMed]
- Tomov, M.; Mitsunaga, L.; Durbin-Johnson, B.; Nallur, D.; Roberto, R. Reducing surgical site infection in spinal surgery with betadine irrigation and intrawound vancomycin powder. Spine 2015, 40, 491–499. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mu, X.; Wei, X.; Li, Z.; Wei, M.; Wei, J. Does intraoperative wound irrigation with diluted povidone-iodine prevent surgical site infection in spine surgery? EFORT Open Rev. 2024, 9, 1087–1096. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fletcher, J.; Liu, X.C.; Thometz, J.G. Analysis of Adolescent Idiopathic Scoliosis Population for Surgical Site Infection Risk Factors. J. Orthop. 2024, 62, 66–69. [Google Scholar] [CrossRef]
- Sun, Y.; Ramapuram, H.; Tracz, J.; Howell, S.; Laskay, N.M.B.; Mooney, J.; Ilyas, A.; Godzik, J. Intraoperative vancomycin for preventing infection after open spine surgery: A systematic review and meta-analysis of randomized controlled trials. J. Neurosurg. Spine 2025, 43, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Peppard, W.J.; Eberle, D.G.; Kugler, N.W.; Mabrey, D.M.; Weigelt, J.A. Association between Pre-Operative Cefazolin Dose and Surgical Site Infection in Obese Patients. Surg. Infect. 2017, 18, 485–490. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Magro, P.L.; Sousa Uva, M. Does routine topical antimicrobial administration prevent sternal wound infection after cardiac surgery? Interact. Cardiovasc. Thorac. Surg. 2021, 32, 452–456. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lemans, J.V.C.; Öner, F.C.; Wijdicks, S.P.J.; Ekkelenkamp, M.B.; Vogely, H.C.; Kruyt, M.C. The efficacy of intrawound vancomycin powder and povidone-iodine irrigation to prevent surgical site infections in complex instrumented spine surgery. Spine J. 2019, 19, 1648–1656. [Google Scholar] [CrossRef] [PubMed]
- Atesok, K.; Papavassiliou, E.; Heffernan, M.J.; Tunmire, D.; Sitnikov, I.; Tanaka, N.; Rajaram, S.; Pittman, J.; Gokaslan, Z.L.; Vaccaro, A.; et al. Current Strategies in Prevention of Postoperative Infections in Spine Surgery. Glob. Spine J. 2020, 10, 183–194. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schär, R.T.; Branca, M.; Fischer, U.; Zimmerli, S.; Söll, N. Intrawound vancomycin powder for prevention of surgical site infections after open instrumented posterior spinal fusion (VANCO Trial)-methodology of a randomized, controlled, multicenter study. Trials 2025, 26, 344. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Y.; Song, K.; Cai, S.; Wu, W. A meta-analysis of the efficacy of topical antibiotics in spinal surgery for the prevention of surgical site infection. Medicine 2025, 104, e42818. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bagga, R.S.; Shetty, A.P.; Sharma, V.; Vijayanand, K.S.S.; Kanna, R.M.; Rajasekaran, S. Does preventive care bundle have an impact on surgical site infections following spine surgery? An analysis of 9607 patients. Spine Deform. 2020, 8, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Khalid, S.; Khan, S.A.; Nasir, A.; Muhammad, G.; Faiza Alam, M.A.; Javed, Z.; Khan, A.M.; Rahim, T.; Aurangzeb, A. Efficacy of Prophylactic Intrawound Application Of Vancomycin Powder In Preventing Surgical Site Infections In Spinal Instrumentation Surgery. J. Ayub Med. Coll. Abbottabad 2023, 35, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.D.; Hsu, W.K.; De Oliveira, G.S., Jr.; Saha, S.; Kim, J.Y. Operative duration as an independent risk factor for postoperative complications in single-level lumbar fusion: An analysis of 4588 surgical cases. Spine 2014, 39, 510–520. [Google Scholar] [CrossRef] [PubMed]
- Yao, R.; Zhou, H.; Choma, T.J.; Kwon, B.K.; Street, J. Surgical Site Infection in Spine Surgery: Who Is at Risk? Glob. Spine J. 2018, 8 (Suppl. 4), 5S–30S. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kobayashi, Y.; Inose, H.; Ushio, S.; Yuasa, M.; Hirai, T.; Yoshii, T.; Okawa, A. Body Mass Index and Modified Glasgow Prognostic Score Are Useful Predictors of Surgical Site Infection After Spinal Instrumentation Surgery: A Consecutive Series. Spine 2020, 45, E148–E154. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Han, K.; Xie, Y.; Hu, Y.; Tang, S.; Xuan, A.; Zhang, Z.; Zhao, Y.; Yu, H.; Wang, H. Risk factors for surgical site infection after open transforaminal lumbar interbody fusion in treating degenerative lumbar diseases. Medicine 2025, 104, e44082. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grabala, P.; Gregorczyk, J.; Fani, N.; Galgano, M.A.; Grabala, M. Surgical Treatment Strategies for Severe and Neglected Spinal Deformities in Children and Adolescents without the Use of Radical Three-Column Osteotomies. J. Clin. Med. 2024, 13, 4824. [Google Scholar] [CrossRef]
- Glowka, P.; Grabala, P.; Gupta, M.C.; Pereira, D.E.; Latalski, M.; Danielewicz, A.; Grabala, M.; Tomaszewski, M.; Kotwicki, T. Complications and Health-Related Quality of Life in Children with Various Etiologies of Early-Onset Scoliosis Treated with Magnetically Controlled Growing Rods—A Multicenter Study. J. Clin. Med. 2024, 13, 4068. [Google Scholar] [CrossRef]
- Spatenkova, V.; Bradac, O.; Jindrisek, Z.; Hradil, J.; Fackova, D.; Halacova, M. Risk factors associated with surgical site infections after thoracic or lumbar surgery: A 6-year single centre prospective cohort study. J. Orthop. Surg. Res. 2021, 16, 265. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, X.; Liu, P.; You, J. Risk factors for surgical site infection following spinal surgery: A meta-analysis. Medicine 2022, 101, e28836. [Google Scholar] [CrossRef]
- Ogihara, S.; Yamazaki, T.; Shiibashi, M.; Chikuda, H.; Maruyama, T.; Miyoshi, K.; Inanami, H.; Oshima, Y.; Azuma, S.; Kawamura, N.; et al. Risk factors for deep surgical site infection after posterior cervical spine surgery in adults: A multicentre observational cohort study. Sci. Rep. 2021, 11, 7519. [Google Scholar] [CrossRef]
- Nunna, R.S.; Khalid, S.; Chiu, R.G.; Parola, R.; Fessler, R.G.; Adogwa, O.; Mehta, A.I. Anterior vs Posterior Approach in Multilevel Cervical Spondylotic Myelopathy: A Nationwide Propensity-Matched Analysis of Complications, Outcomes, and Narcotic Use. Int. J. Spine Surg. 2022, 16, 88–94. [Google Scholar] [CrossRef]
- Lak, A.M.; Abunimer, A.M.; Rahimi, A.; Tafel, I.; Chi, J.; Lu, Y.; Groff, M.; Zaidi, H.A. Outcomes of Minimally Invasive versus Open Surgery for Intermediate to High-grade Spondylolisthesis: A 10-Year Retrospective, Multicenter Experience. Spine 2020, 45, 1451–1458. [Google Scholar] [CrossRef]
- Price, J.P.; Dawson, J.M.; Schwender, J.D.; Schellhas, K.P. Clinical and Radiologic Comparison of Minimally Invasive Surgery with Traditional Open Transforaminal Lumbar Interbody Fusion: A Review of 452 Patients From a Single Center. Clin. Spine Surg. 2018, 31, E121–E126. [Google Scholar] [CrossRef]
- Araghi, K.; Subramanian, T.; Hirase, T.; Asada, T.; Simon, C.Z.; Tuma, O.C.; Amen, T.B.; Kaidi, A.C.; Kazarian, G.S.; Jordan, Y.; et al. Surgical Site Infection After Posterior Lumbar Instrumented Fusions. HSS J. 2025, 15563316251348440. [Google Scholar] [CrossRef] [PubMed]
- Ng, M.K.; Kobryn, A.; Baidya, J.; Nian, P.; Emara, A.K.; Ahn, N.U.; Houten, J.K.; Saleh, A.; Razi, A.E. Multi-Level Posterior Cervical Foraminotomy Associated with Increased Post-operative Infection Rates and Overall Re-Operation Relative to Anterior Cervical Discectomy with Fusion or Cervical Disc Arthroplasty. Glob. Spine J. 2024, 14, 869–877. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cole, T.; Veeravagu, A.; Zhang, M.; Azad, T.D.; Desai, A.; Ratliff, J.K. Anterior Versus Posterior Approach for Multilevel Degenerative Cervical Disease: A Retrospective Propensity Score-Matched Study of the MarketScan Database. Spine 2015, 40, 1033–1038. [Google Scholar] [CrossRef] [PubMed]
- Caseris, M.; Ilharreborde, B.; Doit, C.; Simon, A.L.; Vitoux, C.; Poey, N.; Bonacorsi, S.; Mallet, C. Is Cutibacterium acnes early surgical site infection rate related to the duration of antibiotic prophylaxis in adolescent idiopathic scoliosis surgery? Eur. Spine J. 2020, 29, 1499–1504. [Google Scholar] [CrossRef]
- Freystaetter, K.; Waterhouse, B.R.; Chilvers, N.; Trevis, J.; Ferguson, J.; Paul, I.; Dunning, J. The Importance of Culture Change Associated With Novel Surgical Approaches and Innovation: Does Perioperative Care Transcend Technical Considerations for Pulmonary Lobectomy? Front. Surg. 2021, 8, 597410. [Google Scholar] [CrossRef]
- Akiyama, T.; Yano, M.; Numanami, H.; Yamaji, M.; Taguchi, R.; Furuta, C.; Kitagawa, Y.; Imazu, R.; Haniuda, M. Surgical site infection at chest tube drainage site following pulmonary resection for malignant lesions. J. Thorac. Dis. 2021, 13, 1445–1454. [Google Scholar] [CrossRef]
- Subramanian, M.P.; Liu, J.; Chapman, W.C., Jr.; Olsen, M.A.; Yan, Y.; Liu, Y.; Semenkovich, T.R.; Meyers, B.F.; Puri, V.; Kozower, B.D. Utilization Trends, Outcomes, and Cost in Minimally Invasive Lobectomy. Ann. Thorac. Surg. 2019, 108, 1648–1655. [Google Scholar] [CrossRef]
- Cheng, K.; Yuan, M.; Xu, C.; Yang, G.; Liu, M. A chest tube may not necessary in children thoracoscopic lobectomy. Medicine 2019, 98, e15857. [Google Scholar] [CrossRef]
- Tohmasi, S.; Xu, Y.; Liu, J.; Rossetti, N.E.; Brandt, W.S.; Meyers, B.F.; Puri, V.; Kozower, B.D. Comparison of utilization trends, outcomes, and costs between open and minimally invasive esophagectomy. Surg. Endosc. 2025; in press. [Google Scholar] [CrossRef]
- Shlobin, N.A.; Cloney, M.B.; Hopkins, B.S.; Kesavabhotla, K.; Goergen, J.A.; Driscoll, C.; Svet, M.; Kelsten, M.F.; Koski, T.; Dahdaleh, N.S. Surgical Site Infection, Readmission, and Reoperation After Posterior Long Segment Fusion. Spine 2021, 46, 624–629. [Google Scholar] [CrossRef] [PubMed]
- Jadresic, M.C.; Baker, J.F. Predicting complications of spine surgery: External validation of three models. Spine J. 2022, 22, 1801–1810. [Google Scholar] [CrossRef]
- Coia, M.; Baker, J.F. Development of a Prediction Model for Significant Adverse Outcome After Spine Surgery. Glob. Spine J. 2024, 14, 485–493. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, M.J.; Cizik, A.M.; Hamilton, D.; Chapman, J.R. Predicting surgical site infection after spine surgery: A validated model using a prospective surgical registry. Spine J. 2014, 14, 2112–2117. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Luo, B.; Zhang, Y. Is Prior Spine Surgery a Risk for Wound Infection During Reoperations? A Meta-Analysis. J. Cardiothorac. Vasc. Anesth. 2025, 39, 3163–3172. [Google Scholar] [CrossRef]
- Imtiaz, H.; Ali, C.; Noordeen, H.; Anwar, H. PICO™ (Closed-Incision Negative-Pressure Wound Therapy) Dressing Use as Postoperative Prophylaxis for Preventing Surgical Site Infections in Spinal Surgery: A Retrospective Single-Centre Study. Cureus 2024, 16, e69214. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Woldesenbet, A.; McGinley, C.; Fossett, D. Negative Pressure Wound Therapy: An Analysis of Its Effectiveness on the Reduction of Postoperative Infection in Posterior Spine Surgery. World Neurosurg. 2025, 183, 119–128. [Google Scholar] [CrossRef]
- Hayakawa, C.; Okano, I.; Tsuchiya, K.; Yamamura, R. Upper Thoracic Pyogenic Spondylitis with a Paravertebral Abscess Treated with Minimally Invasive Spinal Instrumentation and NPWT: A Case Report. Cureus 2024, 16, e50793. [Google Scholar] [CrossRef]
- Martin, R.; Patel, A.; Singh, K. Clinical Evaluation of a Chemically-Generated, Single-Use NPWT System for Spinal Surgery Incisions. Cureus 2025, 17, e86148. [Google Scholar] [CrossRef]
- Duprée, A.; Müller, T.; Klein, P. Impact of Vacuum-Assisted Wound Therapy on Wound Complications in Spinal Tumor Surgery: A Retrospective Analysis. Langenbeck’s Arch. Surg. 2025, 410, 277. [Google Scholar] [CrossRef]
- Naylor, R.M.; Gilder, H.E.; Gupta, N.; Hydrick, T.C.; Labott, J.R.; Mauler, D.J.; Trentadue, T.P.; Ghislain, B.; Elder, B.D.; Fogelson, J.L. Effects of Negative Pressure Wound Therapy on Wound Dehiscence and Surgical Site Infection Following Instrumented Spinal Fusion Surgery—A Single Surgeon’s Experience. World Neurosurg. 2020, 137, e257–e262. [Google Scholar] [CrossRef]
- Kramer, D.E.; Bharthi, R.; Myers, D.; Chang, P.; Dabecco, R.; Xu, C.; Yu, A. Prophylactic Closed-Incisional Negative Pressure Wound Therapy Following Posterior Instrumented Spinal Fusion: A Single Surgeon’s Experience and Cost–Benefit Analysis. Neurosurg. Rev. 2024, 47, 847. [Google Scholar] [CrossRef]
- Ren, S.; Liu, H.; Chang, Z. Effectiveness of Negative Pressure Wound Therapy in Treating Deep Surgical Site Infections after Spine Surgery: A Meta-Analysis of Single-Arm Studies. J. Orthop. Surg. Res. 2025, 20, 44. [Google Scholar] [CrossRef]
- Jeong, J.W.; Lee, S.; Park, J.H. Closed-Incision Negative Pressure Wound Therapy (NPWT) in Elderly Patients Following Sacral Pressure Sore Reconstruction. BMC Geriatr. 2024, 24, 906. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, J.; Yao, Z.; Song, C.; Liu, W. Can prophylactic negative pressure wound therapy improve clinical outcomes in spinal fusion surgery? A meta-analysis. Eur. Spine J. 2022, 31, 1546–1552. [Google Scholar] [CrossRef] [PubMed]
- Adogwa, O.; Fatemi, P.; Perez, E.; Moreno, J.; Gazcon, G.C.; Gokaslan, Z.L.; Cheng, J.; Gottfried, O.; Bagley, C.A. Negative pressure wound therapy reduces incidence of postoperative wound infection and dehiscence after long-segment thoracolumbar spinal fusion: A single institutional experience. Spine J. 2014, 14, 2911–2917. [Google Scholar] [CrossRef] [PubMed]
- Lambrechts, M.J.; D’Antonio, N.D.; Issa, T.Z.; Levy, H.A.; Yalla, G.R.; Berthiaume, E.; Ciesielka, K.A.; Kepler, C.K.; Canseco, J.A. The Usefulness of Closed Incision Negative Pressure Wound Therapy After Spinal Fusion: A Systematic Review and Meta-Analysis. World Neurosurg. 2022, 168, 258–267.e1. [Google Scholar] [CrossRef] [PubMed]
- Mesfin, A.; Botros, M.; Benn, L.; Kulp, A. Risk Factors for Surgical Site Infections and the Effects of Betadine Irrigation and Intrawound Vancomycin Powder on Infection Rates in Spine Tumor Surgery. Cureus 2024, 16, e64591. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Costici, P.F. Impact of Dual Antibiotic Prophylaxis on 90-Day Surgical Site Infection Rates Following Posterior Spinal Fusion for Juvenile Scoliosis: A Single-Center Study of 296 Cases. Medicina 2025, 61, 1046. [Google Scholar] [CrossRef] [PubMed]
- Waheed, M.; Henry, B.; Ehsan, A.; Geamanu, A.; Chen, C.; Vaidya, R.; Sethi, A. Preoperative Epidural Steroid Injections and Surgical Site Infection Risk in Lumbar Spine Surgery: A Retrospective Cohort Study. Cureus 2025, 17, e84892. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Feier, C.V.I.; Gaborean, V.; Faur, I.F.; Vonica, R.C.; Faur, A.M.; Rus, V.I.; Dragan, B.S.; Muntean, C. A Systematic Review of Closed-Incision Negative-Pressure Wound Therapy for Hepato-Pancreato-Biliary Surgery: Updated Evidence, Context, and Clinical Implications. J. Clin. Med. 2025, 14, 5191. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abukhodair, A.; Alqarni, M.S.; Alzahrani, A.; Bukhari, Z.M.; Kadi, A.; Baabbad, F.M.; Algarni, A.; Jamalallail, S.; Almohammadi, M.; Bennett, S.R. Risk Factors for Postoperative Infections in Cardiac Surgery Patients: A Retrospective Study. Cureus 2023, 15, e43614. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, J.; Xu, X.; Lv, X.; Shen, G. Correlation between surgical site infection and time-dependent blood platelet count in immunocompromised patients after femoral neck fracture. J. Int. Med. Res. 2022, 50, 3000605211068689. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Coccolini, F.; Improta, M.; Cicuttin, E.; Catena, F.; Sartelli, M.; Bova, R.; De’ Angelis, N.; Gitto, S.; Tartaglia, D.; Cremonini, C.; et al. Surgical site infection prevention and management in immunocompromised patients: A systematic review of the literature. World J. Emerg. Surg. 2021, 16, 33. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alpantaki, K.; Tsioupros, A.; Koutserimpas, C.; Chaniotakis, C.; Hadjipavlou, A. Surgical Site Infections Following Spinal Instrumentation: A Review of Risk Factors and Treatment Options. J. Long Term Eff. Med. Implants 2025, 35, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Norman, G.; Atkinson, R.A.; Smith, T.A.; Rowlands, C.; Rithalia, A.D.; Crosbie, E.J.; Dumville, J.C. Intracavity lavage and wound irrigation for prevention of surgical site infection. Cochrane Database Syst. Rev. 2017, 10, CD012234. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, Z.; Dumville, J.C.; Norman, G.; Westby, M.J.; Blazeby, J.; McFarlane, E.; Welton, N.J.; O’Connor, L.; Cawthorne, J.; George, R.P.; et al. Intraoperative interventions for preventing surgical site infection: An overview of Cochrane Reviews. Cochrane Database Syst. Rev. 2018, 2, CD012653. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Prokopienko, M.; Sobstyl, M. Biological and hardware-related spinal cord stimulation complications and their management: A single-center retrospective analysis of the implantation of nonrechargeable implantable pulse generators in different pain conditions. Surg. Neurol. Int. 2024, 15, 402. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wei, J.; Brown, C.; Moore, T.; Graham, N.; Davis, M.; Gatehouse, S.; Nourse, C. Implant-associated Infection After Pediatric Spine Deformity Surgery: Is Removal of Hardware Indicated? Pediatr. Infect. Dis. J. 2024, 43, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, B.T.; Abousamra, O.; Puvanesarajah, V.; Jain, A.; Hadad, M.J.; Milstone, A.M.; Sponseller, P.D. Deep Infections After Pediatric Spinal Arthrodesis: Differences Exist with Idiopathic, Neuromuscular, or Genetic and Syndromic Cause of Deformity. J. Bone Jt. Surg. Am. 2019, 101, 2219–2225. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.; Skaggs, D.L.; Weiss, J.M.; Tolo, V.T. Management of infection after instrumented posterior spine fusion in pediatric scoliosis. Spine 2007, 32, 2739–2744. [Google Scholar] [CrossRef] [PubMed]
- Mok, J.M.; Guillaume, T.J.; Talu, U.; Berven, S.H.; Deviren, V.; Kroeber, M.; Bradford, D.S.; Hu, S.S. Clinical outcome of deep wound infection after instrumented posterior spinal fusion: A matched cohort analysis. Spine 2009, 34, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Grabala, P.; Grabala, M.; Kossakowski, D. Three-Dimensional Correction for Idiopathic Scoliosis with Posterior Spinal Fusion and the Risk of Neurological Complications. Pol. Ann. Med. 2016, 23, 97–101. [Google Scholar] [CrossRef]
- Yang, H.; Li, Z.; Hai, Y.; Pan, A.; Guan, L.; Liu, Y. Comparison of complications, revisions, spinopelvic parameters, and health-related quality of life after posterior spinal fusion using multiple-rod constructs or two-rod constructs for adult spinal deformity: A systematic review and meta-analysis. Eur. Spine J. 2023, 32, 3634–3650. [Google Scholar] [CrossRef] [PubMed]
- Yudistira, A.; Asmiragani, S.; Imran, A.W.; Sugiarto, M.A. Surgical Site Infection Management following Spinal Instrumentation Surgery: Implant Removal vs. Implant Retention: An Updated Systematical Review. Acta Inform. Med. 2022, 30, 115–120. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kong, C.G.; Park, J.B. Postoperative Infection After Esophageal Injury in Anterior Cervical Spine Surgery: A Comprehensive Review of Diagnosis, Management, and Outcomes. J. Clin. Med. 2025, 14, 3244. [Google Scholar] [CrossRef] [PubMed]
- Finoco, M.; Ould-Slimane, M.; Marie-Hardy, L.; De Seze, M.; Chaleat-Valayer, E.; Courtois, I.; Bouyer, B.; Charles, Y.P.; Rannou, F.; Guigui, P.; et al. Comparison of quality of life between operated and non-operated adults with painful degenerative scoliosis: A 2-year prospective multicentered observational study. Eur. Spine J. 2025; Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Helenius, L.; Gerdhem, P.; Ahonen, M.; Syvänen, J.; Jalkanen, J.; Nietosvaara, Y.; Helenius, I. The impact of closed suction wound drainage on chronic pain and health-related quality of life after posterior spinal fusion in patients with adolescent idiopathic scoliosis. Bone Jt. J. 2024, 106, 1176–1181. [Google Scholar] [CrossRef] [PubMed]
- Said, T.; Mahmood, M.; Butt, B.; Krishnaney, A.; Manlapaz, M.; Pelle, D.; Savage, J.W. Enhanced Recovery After Surgery and Perioperative Optimization in Adult Cervical Deformity Surgery. Clin. Spine Surg. 2025, 38, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Huaman, R.J.; Mancha, F.; Anderson, E.L.; April, M.D.; Bebarta, V.S.; Castaneto, M.S.; Christians, U.; Darlington, D.N.; Douin, D.J.; Glenn, K.R.; et al. Antibiotic Concentrations After Massive Transfusion (ACME) Study: A Review of the Literature on Antibiotic Dosing During Transfusion and Study Protocol. J. Spec. Oper. Med. 2025, 25, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Jadresic, M.C.; Baker, J.F. Prediction Tools in Spine Surgery: A Narrative Review. Spine Surg. Relat. Res. 2024, 9, 1–10. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bandiera, S.; Noli, L.E.; Griffoni, C.; Tosini, G.; Carretta, E.; Pasini, S.; Pesce, E.; Ruinato, A.D.; Barbanti Brodano, G.; Tedesco, G.; et al. Complications and Risk Factors in En Bloc Resection of Spinal Tumors: A Retrospective Analysis on 298 Patients Treated in a Single Institution. Curr. Oncol. 2022, 29, 7842–7857. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sebastian, A.; Huddleston, P., 3rd; Kakar, S.; Habermann, E.; Wagie, A.; Nassr, A. Risk factors for surgical site infection after posterior cervical spine surgery: An analysis of 5441 patients from the ACS NSQIP 2005–2012. Spine J. 2016, 16, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Okuyama, K.; Toki, Y.; Funayama, T.; Noguchi, H.; Miura, K.; Gamada, H.; Okuwaki, S.; Ogata, Y.; Sakashita, K.; et al. Efficacy and Limitations of Continuous Local Antibiotic Perfusion in Treating Surgical Site Infections Following Instrumented Spinal Surgery: A Retrospective Multicenter Study. Infect. Dis. Ther. 2025, 14, 421–431. [Google Scholar] [CrossRef]
- Laursen, L.Ø.; Petersen, R.H.; Hansen, H.J.; Jensen, T.K.; Ravn, J.; Konge, L. Video-assisted thoracoscopic surgery lobectomy for lung cancer is associated with a lower 30-day morbidity compared with lobectomy by thoracotomy. Eur. J. Cardiothorac. Surg. 2016, 49, 870–875. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Sun, T.; Wang, J.; Li, G.; Fei, Q. Application of Vancomycin Powder to Reduce Surgical Infection and Deep Surgical Infection in Spinal Surgery: A Meta-analysis. Clin. Spine Surg. 2019, 32, 150–163. [Google Scholar] [CrossRef] [PubMed]
- Gonfiotti, A.; Viggiano, D.; Voltolini, L.; Bertani, A.; Bertolaccini, L.; Crisci, R.; Droghetti, A. Enhanced recovery after surgery and video-assisted thoracic surgery lobectomy: The Italian VATS Group surgical protocol. J. Thorac. Dis. 2018, 10 (Suppl. 4), S564–S570. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheng, C.W.; Cizik, A.M.; Dagal, A.H.C.; Lewis, L.; Lynch, J.; Bellabarba, C.; Bransford, R.J.; Zhou, H. Body mass index and the risk of deep surgical site infection following posterior cervical instrumented fusion. Spine J. 2019, 19, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Potter, B.K. From Bench to Bedside: A Little Dab Will Do You Good? Topical Prevention of Surgical Site Infections. Clin. Orthop. Relat. Res. 2018, 476, 2325–2327. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
| Patient Condition | Suggested Topical Vancomycin Dose |
|---|---|
| Normal renal function | 1–2 g |
| Mild-to-moderate renal insufficiency | 0.5–1 g |
| Severe renal insufficiency (GFR < 30) | ≤0.5 g or avoid if IV vancomycin is used |
| Pediatric (<12 years) | Weight-based dosing not standardized; caution advised |
| Risk Factor Category | Factor | Definition/Threshold |
|---|---|---|
| Patient Factors—Major | BMI ≥ 35 kg/m2 | Severe obesity |
| Uncontrolled diabetes | HbA1c ≥ 8.0% | |
| Active smoking | Within 4 weeks of surgery | |
| Immunosuppression | Steroids >10 mg/day or immunosuppressive drugs | |
| Previous SSI | History of surgical site infection | |
| Malnutrition | Albumin <3.5 g/dL or weight loss >10% | |
| Patient Factors—Moderate | BMI 30–34.9 kg/m2 | Moderate obesity |
| Controlled diabetes | HbA1c 7.0–7.9% | |
| Age ≥ 65 years | Elderly patient | |
| Chronic kidney disease | eGFR < 60 mL/min/1.73 m2 | |
| COPD | Chronic obstructive pulmonary disease | |
| Peripheral vascular disease | Documented PAD | |
| Surgical Factors | Single-level spine | 1 vertebral level |
| 2–4 level spine | 2–4 vertebral levels | |
| >4 level spine/complex deformity | >4 levels or scoliosis correction | |
| Thoracic surgery (standard) | Lobectomy, segmentectomy | |
| Complex thoracic surgery | Bilobectomy, pneumonectomy | |
| Operative time >5 h | Extended procedure duration | |
| Revision surgery | Repeat operation | |
| Combined approach | Anterior–posterior spine surgery |
| Risk Stratification | Preventive Strategy |
|---|---|
| Mild immunosuppression (e.g., low-dose steroids) | Standard systemic antibiotics + TVP |
| Moderate risk (e.g., methotrexate, biologics) | TVP + NPWT + extended antibiotics (48 h) |
| High risk (e.g., transplant patients, chemotherapy) | Full combination: TVP + NPWT + tailored extended antibiotic protocol (48–72 h) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suszczyńska, J.; Grabala, M.; Grabala, P. Modulation of Surgical Site Infection Risk in Spinal and Thoracic Surgeries Through Operative Parameters: A Narrative Review. J. Clin. Med. 2025, 14, 8124. https://doi.org/10.3390/jcm14228124
Suszczyńska J, Grabala M, Grabala P. Modulation of Surgical Site Infection Risk in Spinal and Thoracic Surgeries Through Operative Parameters: A Narrative Review. Journal of Clinical Medicine. 2025; 14(22):8124. https://doi.org/10.3390/jcm14228124
Chicago/Turabian StyleSuszczyńska, Joanna, Michał Grabala, and Paweł Grabala. 2025. "Modulation of Surgical Site Infection Risk in Spinal and Thoracic Surgeries Through Operative Parameters: A Narrative Review" Journal of Clinical Medicine 14, no. 22: 8124. https://doi.org/10.3390/jcm14228124
APA StyleSuszczyńska, J., Grabala, M., & Grabala, P. (2025). Modulation of Surgical Site Infection Risk in Spinal and Thoracic Surgeries Through Operative Parameters: A Narrative Review. Journal of Clinical Medicine, 14(22), 8124. https://doi.org/10.3390/jcm14228124

