From Pandemic to Practice: How COVID-19 Has Reshaped Haemostasis in Cardiac Surgery: A Narrative Review
Abstract
1. Introduction
2. Materials and Methods
3. CAC Pathophysiology
4. Sustained Hypercoagulability Following COVID-19 Infection and Vaccination: Implications for Cardiac Surgery
5. Mechanisms of Coagulopathy Development and Implications for Cardiac Surgery
5.1. Inflammatory Priming and CPB as a Second Hit to a ‘Primed’ System
5.2. Angiotensin Converting Enzyme 2 (ACE2)-Mediated Epithelial and Endothelial Injury
5.3. Hypoxithrombosis and Enzymatic Heparin Degradation
5.4. Vaccine-Associated Hypercoagulability
6. CAC Management Considerations Within Cardiac Surgery
6.1. Emphasis on Elevated Oxygen Delivery
6.2. Alternative Anticoagulants
6.3. Anticoagulation Monitoring
7. Conclusions and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
| ACE2 | Angiotensin-converting enzyme 2 |
| ACT | Activated clotting time |
| aPTT | Activated partial thromboplastin time |
| ARDS | Acute respiratory distress syndrome |
| CAC | COVID-19-associated coagulopathy |
| CPB | Cardiopulmonary bypass |
| DIC | Disseminated intravascular coagulation |
| ECMO | Extracorporeal membrane oxygenation |
| ICU | Intensive care unit |
| ISTH | International Society on Thrombosis and Haemostasis |
| NET | Neutrophil extracellular traps |
| PAI-1 | Plasminogen activator inhibitor 1 |
| PE | Pulmonary embolism |
| PF4 | Platelet factor 4 |
| ROTEM | Rotational thromboelastometry |
| TEG | Thromboelastogram |
| TNF | Tumur necrosis factor |
| SARS-CoV-2 | Severe acute respiratory syndrome coronavirus-2 |
| VTE | Venous thromboembolism |
| VITT | Vaccine-induced immune thrombotic thrombocytopenia |
References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef]
- Grasselli, G.; Zangrillo, A.; Zanella, A.; Antonelli, M.; Cabrini, L.; Castelli, A.; Cereda, D.; Coluccello, A.; Foti, G.; Fumagalli, R.; et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA 2020, 323, 1574–1581. [Google Scholar] [CrossRef]
- Gupta, A.; Madhavan, M.V.; Sehgal, K.; Nair, N.; Mahajan, S.; Sehrawat, T.S.; Bikdeli, B.; Ahluwalia, N.; Ausiello, J.C.; Wan, E.Y.; et al. Extrapulmonary manifestations of COVID-19. Nat. Med. 2020, 26, 1017–1032. [Google Scholar] [CrossRef] [PubMed]
- Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020, 18, 844–847. [Google Scholar] [CrossRef] [PubMed]
- Malas, M.B.; Naazie, I.N.; Elsayed, N.; Mathlouthi, A.; Marmor, R.; Clary, B. Thromboembolism risk of COVID-19 is high and associated with a higher risk of mortality: A systematic review and meta-analysis. EClinicalMedicine. 2020, 29, 100639. [Google Scholar] [CrossRef]
- Fogarty, H.; Townsend, L.; Morrin, H.; Ahmad, A.; Comerford, C.; Karampini, E.; Englert, H.; Byrne, M.; Bergin, C.; O’sUllivan, J.M.; et al. Persistent endotheliopathy in the pathogenesis of long COVID syndrome. J. Thromb. Haemost. 2021, 19, 2546–2553. [Google Scholar] [CrossRef]
- Zuo, Y.; Estes, S.K.; Ali, R.A.; Gandhi, A.A.; Yalavarthi, S.; Shi, H.; Sule, G.; Gockman, K.; Madison, J.A.; Zuo, M.; et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci. Transl. Med. 2020, 12, eabd3876. [Google Scholar] [CrossRef] [PubMed]
- Pavord, S.; Hunt, B.J.; Horner, D.; Bewley, S.; Karpusheff, J. Vaccine-induced immune thrombocytopenia and thrombosis: Summary of NICE guidance. BMJ 2021, 375, n2195. [Google Scholar] [CrossRef]
- Bikdeli, B.; Madhavan, M.V.; Jimenez, D.; Chuich, T.; Dreyfus, I.; Driggin, E.; Nigoghossian, C.; Ageno, W.; Madjid, M.; Guo, Y.; et al. COVID-19 and thrombotic or thromboembolic disease: Implications for prevention, antithrombotic therapy, and follow-up. J. Am. Coll. Cardiol. 2020, 75, 2950–2973. [Google Scholar] [CrossRef]
- Paparella, D.; Yau, T.M.; Young, E. Cardiopulmonary bypass induced inflammation: Pathophysiology and treatment. Eur. J. Cardiothorac. Surg. 2002, 21, 232–244. [Google Scholar] [CrossRef]
- Favaloro, E.J.; Lippi, G. Coagulopathy in COVID-19: Clinical and laboratory manifestations, challenges, and lessons learned. Clin. Chem. Lab. Med. 2021, 59, 353–361. [Google Scholar]
- Helms, J.; Tacquard, C.; Severac, F.; Leonard-Lorant, I.; Ohana, M.; Delabranche, X.; Merdji, H.; Clere-Jehl, R.; Schenck, M.; Gandet, F.F.; et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: A multicenter prospective cohort study. Intensive Care Med. 2020, 46, 1089–1098. [Google Scholar] [CrossRef]
- Beyerstedt, S.; Casaro, E.B.; Rangel, É.B. COVID-19: Angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 905–919. [Google Scholar] [CrossRef]
- Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka, F.; Moch, H. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020, 395, 1417–1418. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef] [PubMed]
- Middleton, E.A.; He, X.Y.; Denorme, F.; Campbell, R.A.; Ng, D.; Salvatore, S.P.; Mostyka, M.; Baxter-Stoltzfus, A.; Borczuk, A.C.; Loda, M.; et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood 2020, 136, 1169–1179. [Google Scholar] [CrossRef]
- Nopp, S.; Moik, F.; Jilma, B.; Pabinger, I.; Ay, C. Risk of venous thromboembolism in patients with COVID-19: A systematic review and meta-analysis. Res. Pract. Thromb. Haemost. 2020, 4, 1178–1191. [Google Scholar] [CrossRef]
- Feth, M.; Weaver, N.; Fanning, R.B.; Cho, S.; Griffee, M.J.; Panigada, M.; Zaaqoq, A.M.; Labib, A.; Whitman, G.J.R.; Arora, R.C.; et al. Hemorrhage and thrombosis in COVID-19-patients supported with extracorporeal membrane oxygenation: An international study based on the COVID-19 critical care consortium. J. Intensive Care 2024, 12, 18. [Google Scholar] [CrossRef]
- Helms, J.; Severac, F.; Merdji, H.; Schenck, M.; Clere-Jehl, R.; Baldacini, M.; Ohana, M.; Grunebaum, L.; Anglés-Cano, E.; Sattler, L.; et al. Delayed heparin therapy and risk of thrombosis in severe COVID-19 patients on ECMO support. Crit. Care 2020, 24, 512. [Google Scholar]
- Thachil, J.; Tang, N.; Gando, S.; Falanga, A.; Cattaneo, M.; Levi, M.; Clark, C.; Iba, T. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J. Thromb. Haemost. 2020, 18, 1023–1026. [Google Scholar] [CrossRef]
- Iba, T.; Levy, J.H.; Connors, J.M.; Warkentin, T.E.; Thachil, J.; Levi, M. The unique characteristics of COVID-19 coagulopathy. Crit. Care 2020, 24, 360. [Google Scholar] [CrossRef]
- Levi, M.; Thachil, J.; Iba, T.; Levy, J.H. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020, 7, e438–e440. [Google Scholar] [CrossRef]
- de Laat, B.; Stragier, H.; de Laat-Kremers, R.; Ninivaggi, M.; Mesotten, D.; Thiessen, S.; Van Pelt, K.; Roest, M.; Penders, J.; Vanelderen, P.; et al. Population-wide persistent hemostatic changes after vaccination with ChAdOx1-S. Front. Cardiovasc. Med. 2022, 9, 966028. [Google Scholar] [CrossRef]
- Rungjirajittranon, T.; Nakkinkun, Y.; Suwanawiboon, B.; Chinthammitr, Y.; Owattanapanich, W.; Ruchutrakool, T. Hemostatic changes following COVID-19 vaccination: Do they promote a pro-thrombotic state? Hum. Vaccin. Immunother. 2025, 21, 2439627. [Google Scholar] [CrossRef] [PubMed]
- Engelmann, B.; Massberg, S. Thrombosis as an intravascular effector of innate immunity. Nat. Rev. Immunol. 2013, 13, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Bonaventura, A.; Vecchié, A.; Dagna, L.; Martinod, K.; Dixon, D.L.; Van Tassell, B.W.; Dentali, F.; Montecucco, F.; Massberg, S.; Levi, M.; et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat. Rev. Immunol. 2021, 21, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Peluso, M.J.; Lu, S.; Tang, A.F.; Durstenfeld, M.S.; Ho, H.E.; Goldberg, S.A.; Forman, C.A.; Munter, S.E.; Hoh, R.; Tai, V.; et al. Markers of Immune Activation and Inflammation in Individuals With Postacute Sequelae of Severe Acute Respiratory Syndrome Coronavirus 2 Infection. J. Infect. Dis. 2021, 224, 1839–1848. [Google Scholar] [CrossRef]
- Phetsouphanh, C.; Darley, D.R.; Wilson, D.B.; Howe, A.; Munier, C.M.L.; Patel, S.K.; Juno, J.A.; Burrell, L.M.; Kent, S.J.; Dore, G.J.; et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat. Immunol. 2022, 23, 210–216. [Google Scholar] [CrossRef]
- Föhse, K.; Geckin, B.; Zoodsma, M.; Kilic, G.; Liu, Z.; Röring, R.J.; Overheul, G.J.; van de Maat, J.S.; Bulut, O.; Hoogerwerf, J.J.; et al. The BNT162b2 mRNA vaccine induces transient and long-lasting innate immune responses. Cell Rep. Med. 2021, 2, 100345. [Google Scholar]
- Ostrowski, S.R.; Søgaard, O.S.; Tolstrup, M.; Stærke, N.B.; Lundgren, J.; Østergaard, L.; Hvas, A.-M. Inflammation and Platelet Activation After COVID-19 Vaccines Possible Mechanisms Behind Vaccine-Induced Immune Thrombocytopenia and Thrombosis. Front. Immunol. 2021, 12, 779453. [Google Scholar] [CrossRef]
- Wan, S.; LeClerc, J.L.; Vincent, J.L. Inflammatory response to cardiopulmonary bypass: Mechanisms involved and possible therapeutic strategies. Ann. Thorac. Surg. 1997, 63, 121–126. [Google Scholar]
- Asimakopoulos, G.; Smith, P.L.; Ratnatunga, C.P.; Taylor, K.M. Lung injury after cardiopulmonary bypass: Evidence of a role for complement and endotoxin. Eur. J. Cardiothorac. Surg. 1999, 16, 95–105. [Google Scholar]
- Maas, C.; Renné, T. Coagulation factor XII in thrombosis and inflammation. J. Thromb. Haemost. 2011, 9, 2377–2386. [Google Scholar] [CrossRef]
- van Veen, J.J.; Laidlaw, S.; Swanevelder, J.; Harvey, N.; Watson, C.; Kitchen, S.; Makris, M. Contact factor deficiencies and cardiopulmonary bypass surgery: Detection of the defect and monitoring of heparin. Eur. J. Haematol. 2009, 82, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Ozolina, A.; Strike, E.; Jaunalksne, I.; Krumina, A.; Bjertnaes, L.J.; Vanags, I. PAI-1 and t-PA/PAI-1 complex potential markers of fibrinolytic bleeding after cardiac surgery employing cardiopulmonary bypass. BMC Anesthesiol. 2012, 12, 27. [Google Scholar] [CrossRef]
- Ranucci, M.; Ballotta, A.; Di Dedda, U.; Baryshnikova, E.; Dei Poli, M.; Resta, M.; Falco, M.; Albano, G.; Menicanti, L. The procoagulant patterof patients with COVID-19 acute respiratory distress syndrome. J. Thromb. Haemost. 2020, 18, 1747–1751. [Google Scholar] [CrossRef] [PubMed]
- Shore-Lesserson, L.; Baker, R.A.; Ferraris, V.A.; Greilich, P.E.; Fitzgerald, D.; Roman, P.; Hammon, J.W. The Society of Thoracic Surgeons, The Society of Cardiovascular Anesthesiologists, and The American Society of ExtraCorporeal Technology: Clinical Practice Guidelines—Anticoagulation During Cardiopulmonary Bypass. Anesth. Analg. 2018, 126, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Yalavarthi, S.; Shi, H.; Gockman, K.; Zuo, M.; Madison, J.A.; Blair, C.; Weber, A.; Barnes, B.J.; Egeblad, M.; et al. Neutrophil extracellular traps in COVID-19. JCI Insight 2020, 5, e138999. [Google Scholar] [CrossRef]
- Hayashi, R.; Takami, Y.; Fujigaki, H.; Amano, K.; Sakurai, Y.; Akita, K.; Yamana, K.; Maekawa, A.; Saito, K.; Takagi, Y. Effects of cardiopulmonary bypass on immunoglobulin G antibody titres after SARS-CoV-2 vaccination. Interact. Cardiovasc. Thorac. Surg. 2022, 35, ivac123. [Google Scholar] [CrossRef]
- Strobel, R.J.; Narahari, A.K.; Rotar, E.P.; Young, A.M.; Vergales, J.; Mehaffey, J.H.; Teman, N.R.; Kern, J.A.; Yarboro, L.T.; Kron, I.L.; et al. Effect of cardiopulmonary bypass on SARS-CoV-2 vaccination antibody levels. J. Am. Heart Assoc. 2023, 12, e029406. [Google Scholar] [CrossRef] [PubMed]
- Samavati, L.; Uhal, B.D. ACE2, much more than just a receptor for SARS-CoV-2. Front. Cell. Infect. Microbiol. 2020, 10, 317. [Google Scholar] [CrossRef]
- Pouremamali, A.; Babaei, A.; Malekshahi, S.S.; Abbasi, A.; Rafiee, N. Understanding the pivotal roles of ACE2 in SARS-CoV-2 infection: From structure/function to therapeutic implication. Egypt. J. Med. Hum. Genet. 2022, 23, 103. [Google Scholar] [CrossRef] [PubMed]
- Verdecchia, P.; Cavallini, C.; Spanevello, A.; Angeli, F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur. J. Intern. Med. 2020, 76, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.C. COVID-19 sepsis: Pathogenesis and endothelial molecular mechanisms based on “two-path unifying theory” of hemostasis and endotheliopathy-associated vascular microthrombotic disease. Vasc. Health Risk Manag. 2021, 17, 273–298. [Google Scholar] [CrossRef]
- Santoliquido, A.; Porfidia, A.; Nesci, A.; De Matteis, G.; Marrone, G.; Porceddu, E.; Cammà, G.; Giarretta, I.; Fantoni, M.; Landi, F.; et al. Incidence of deep vein thrombosis among non-ICU patients hospitalized for COVID-19 despite pharmacological thromboprophylaxis. J. Thromb. Haemost. 2020, 18, 2358–2363. [Google Scholar] [CrossRef]
- Zavanone, C.; Panebianco, M.; Yger, M.; Borden, A.; Restivo, D.; Angelini, C.; Pavone, A.; Grimod, G.; Rosso, C.; Dupont, S. Cerebral venous thrombosis at high altitude: A systematic review. Rev. Neurol. 2017, 173, 189–193. [Google Scholar] [CrossRef]
- Gupta, N.; Sen, S. Hypoxia-inducible factors and coagulation: Crosstalk in thromboinflammation. Thromb. Res. 2022, 213, 173–182. [Google Scholar]
- Brækkan, S.K.; Evensen, L.H.; Børvik, T.; Morelli, V.M.; Melbye, H.; Hansen, J.B. Impact of respiratory symptoms and oxygen saturation on the risk of incident venous thromboembolism—The Tromsø Study. Res. Pract. Thromb. Haemost. 2011, 5, 255–262. [Google Scholar]
- Klok, F.A.; Kruip, M.J.H.A.; van der Meer, N.J.M.; Arbous, M.S.; Gommers, D.A.M.P.J.; Kant, K.M.; Kaptein, F.H.J.; van Paassen, J.; Stals, M.A.M.; Huisman, M.V.; et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb. Res. 2020, 191, 145–147. [Google Scholar] [CrossRef]
- Guérin, C.; Reignier, J.; Richard, J.C.; Beuret, P.; Gacouin, A.; Boulain, T.; Mercier, E.; Badet, M.; Mercat, A.; Baudin, O.; et al. Prone positioning in severe acute respiratory distress syndrome. N. Engl. J. Med. 2013, 368, 2159–2168. [Google Scholar] [CrossRef]
- Nadir, Y.; Brenner, B.; Zetser, A.; Ilan, N.; Shafat, I.; Zcharia, E.; Goldshmidt, O.; Vlodavsky, I. Heparanase induces tissue factor expression in vascular endothelial and cancer cells. J. Thromb. Haemost. 2010, 8, 170–178. [Google Scholar] [CrossRef]
- Wu, W.; Pan, C.; Meng, K.; Zhao, L.; Du, L.; Liu, Q.; Lin, R. Hypoxia activates heparanase expression in an NF-κB dependent manner. Oncol. Rep. 2010, 23, 255–261. [Google Scholar] [CrossRef]
- Greinacher, A.; Thiele, T.; Warkentin, T.E. Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. N. Engl. J. Med. 2021, 384, 2092–2101. [Google Scholar] [CrossRef]
- Sekulovski, M.; Mileva, N.; Vasilev, G.V.; Miteva, D.; Gulinac, M.; Peshevska-Sekulovska, M.; Chervenkov, L.; Batselova, H.; Vasilev, G.H.; Tomov, L. Blood Coagulation and Thrombotic Disorders following SARS-CoV-2 Infection and COVID-19 Vaccination. Biomedicines 2023, 11, 2813. [Google Scholar] [CrossRef]
- Mabrey, F.L.; Morrell, E.D.; Wurfel, M.M. TLRs in COVID-19: How they drive immunopathology and the rationale for modulation. Innate Immun. 2021, 27, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, S.; Oliviero, B.; Varchetta, S.; Renieri, A.; Mondelli, M.U. TLRs: Innate immune sentries against SARS-CoV-2 infection. Int. J. Mol. Sci. 2023, 24, 8065. [Google Scholar] [CrossRef] [PubMed]
- Abdelouahed, M.; Yateem, D.; Fredericks, S. FcγRIIa-dependent platelet activation identified in COVID-19 vaccine-induced immune thrombotic thrombocytopenia. Front. Cardiovasc. Med. 2023, 10, 1282637. [Google Scholar]
- Appelbaum, J.; Arnold, D.M.; Kelton, J.G.; Gernsheimer, T.; Jevtic, S.D.; Ivetic, N.; Smith, J.W.; Nazy, I. SARS-CoV-2 spike-dependent platelet activation in COVID-19 vaccine-induced thrombocytopenia. Blood Adv. 2022, 6, 2250–2253. [Google Scholar] [CrossRef]
- Nicolson, P.L.R.; Abrams, S.T.; Amirthalingam, G.; Brown, K.; Buka, R.J.; Caulfield, M.J.; Gardner, J.; Goldblat, D.; Lovat, C.; Montague, S.J.; et al. Understanding mechanisms of thrombosis and thrombocytopenia with adenoviral SARS-CoV-2 vaccines: A comprehensive synopsis. Health Technol. Assess. 2025, 12, 7. [Google Scholar] [CrossRef]
- Combes, A.; Hajage, D.; Capellier, G.; Demoule, A.; Lavoué, S.; Guervilly, C.; Da Silva, D.; Zafrani, L.; Tirot, P.; Veber, B.; et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N. Engl. J. Med. 2018, 378, 1965–1975. [Google Scholar] [CrossRef]
- Alessandri, F.; Di Nardo, M.; Ramanathan, K.; Brodie, D.; MacLaren, G. Extracorporeal membrane oxygenation for COVID-19-related acute respiratory distress syndrome: A narrative review. J. Intensive Care 2023, 11, 5. [Google Scholar] [CrossRef]
- Wahba, A.; Kunst, G.; De Somer, F.; Kildahl, H.A.; Milne, B.; Kjellberg, G.; Bauer, A.; Beyersdorf, F.; Ravn, H.B.; Debeuckelaere, G. EACTS/EACTAIC/EBCP Guidelines on cardiopulmonary bypass in adult cardiac surgery. Eur. J. Cardiothorac. Surg. 2024, 67, ezae354. [Google Scholar] [CrossRef] [PubMed]
- International Perfusion Association Goal-Directed Perfusion Working Group. Intraoperative Goal-Directed Perfusion in Cardiac Surgery: Consensus and Practice Update. Perfusion 2024, 39, 123–134. [Google Scholar]
- Chiari, P.; Fellahi, J.-L. Myocardial protection and perfusion management in cardiac surgery: Contemporary strategies and future directions for DO2 optimisation. Front. Med. 2024, 11, 1424188. [Google Scholar]
- Li, B.; Dai, Y.; Cai, W.; Sun, M.; Sun, J. Monitoring of perioperative tissue perfusion and impact on patient outcomes: Implications for perfusion strategies and DO2-guided management. J. Cardiothorac. Surg. 2025, 20, 100. [Google Scholar] [CrossRef]
- Roberts, D.M.; Liu, X.; Parker, S.L.; Burke, A.; Peek, J.; Carland, J.E.; Murnion, B.; Seah, V.; Wallis, S.C.; Sumi, C.D.; et al. Population pharmacokinetic modelling of remdesivir and its metabolite GS-441524 in hospitalised patients with COVID-19. Clin. Pharmacokinet. 2025, 64, 743–756. [Google Scholar] [CrossRef]
- Elsayegh, M.T.; Ashour, H.E.; Almidany, A.A.E.H.; Siam, T.F.; Azzaz, G.A.E.N. Incidence of heparin resistance during cardiopulmonary bypass in adult cardiac surgery in the era of COVID-19. Ain Shams Med. J. 2024, 75, 603–612. [Google Scholar] [CrossRef]
- Montandrau, O.; Arana, H.; Ehooman, F.; Bouattour, K.; Cherruault, M.; Ouechani, W.; Hamdaoui, I.; Dufour, G.; Kattou, F.; Philip, I.; et al. Surgical revascularization with cardiopulmonary bypass in a patient with severe COVID-19: Perioperative challenges. Semin. Cardiothorac. Vasc. Anesth. 2021, 25, 46–50. [Google Scholar] [CrossRef]
- Sharma, G.; Hasija, S.; Kapoor, P.M. Perfusion strategies for bivalirudin anticoagulation: AIIMS protocol. J. Card. Crit. Care 2022, 6, 54–58. [Google Scholar] [CrossRef]
- Navaei, A.; Kostousov, V.; Teruya, J. Is it time to switch to bivalirudin for ECMO anticoagulation? Front. Med. 2023, 10, 1237601. [Google Scholar] [CrossRef] [PubMed]
- Schiavoni, L.; Mattei, A.; Cuccarelli, M.; Strumia, A.; Dominici, C.; Nenna, A.; Aceto, J.; Palazzo, G.; Pascarella, G.; Costa, F.; et al. Argatroban as rescue therapy in heparin-associated thrombocytopenia during ECMO in COVID-19 patients. J. Clin. Med. 2024, 13, 6984. [Google Scholar] [CrossRef]
- Connolly, S.J.; Ezekowitz, M.D.; Yusuf, S.; Eikelboom, J.; Oldgren, J.; Parekh, A.; Pogue, J.; Reilly, P.A.; Themeles, E.; Varrone, J.; et al. Dabigatran versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 2009, 361, 1139–1151. [Google Scholar] [CrossRef]
- Majeed, A.; Hwang, H.G.; Connolly, S.J.; Eikelboom, J.W.; Ezekowitz, M.D.; Wallentin, L.; Brueckmann, M.; Fraessdorf, M.; Yusuf, S.; Schulman, S. Management and outcomes of major bleeding during treatment with dabigatran or warfarin. Circulation 2013, 128, 2325–2332. [Google Scholar] [CrossRef] [PubMed]
- Salomon, O.; Steinberg, D.M.; Koren-Morag, N.; Tanne, D.; Seligsohn, U. Reduced incidence of ischemic stroke in patients with severe factor XI deficiency. N. Engl. J. Med. 2008, 358, 158–160. [Google Scholar] [CrossRef]
- Gailani, D.; Renné, T. Intrinsic pathway of coagulation and arterial thrombosis. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 2507–2513. [Google Scholar] [CrossRef]
- Zhuang, X.; Xing, J.; Qiu, Y.; Xu, Y.J.; Ren, B.; Xu, Q.; Yang, F.; Dai, L.; Li, Q.; Li, R. Discovery of potent and selective factor XIa inhibitors incorporating triazole-based benzoic acid as novel P2′ fragments. Eur. J. Med. Chem. 2025, 262, 115719. [Google Scholar]
- ClinicalTrials.gov. COVID-ThromboprophylaXIs Study of Novel FXIa Inhibitor Frunexian (EP-7041) in ICU Patients. ClinicalTrials.gov Identifier: NCT05040776. Updated 2023. Available online: https://clinicaltrials.gov/study/NCT05040776 (accessed on 12 November 2025).
- Fareed, J.; Sonevytsky, A.; Iqbal, O.; Jeske, W.P.; Iacobelli, M.; Hoppensteadt, D. Inhibition of heparinase I by defibrotide with potential clinical implications. Blood 2006, 108, 1626. [Google Scholar] [CrossRef]
- Richardson, P.; Smith, A.; Kazmi, M. Defibrotide for the treatment of hepatic veno-occlusive disease: Results of a pivotal Phase II/III trial. Br. J. Haematol. 2017, 178, 477–485. [Google Scholar]
- Xiang, J.; Lu, M.; Shi, M.; Cheng, X.; Kwakwa, K.A.; Davis, J.L.; Sanderson, R.D. Heparanase blockade suppresses SARS-CoV-2 infectivity and cytokine release from macrophages. Cell Rep. Med. 2022, 3, 100781. [Google Scholar]
- Grewal, N.; Yousef, D.; Palmen, M.; Klautz, R.; Eikenboom, J.; Wink, J. Accuracy of point-of-care coagulation testing during cardiopulmonary bypass in a patient post COVID-19 infection. J. Cardiothorac. Surg. 2022, 17, 108. [Google Scholar] [CrossRef] [PubMed]
- Hunt, B.J.; Retter, A.; McClintock, C. Practical guidance for the prevention of thrombosis and management of coagulopathy and disseminated intravascular coagulation in patients infected with COVID-19. Br. J. Haematol. 2020, 189, 846–847. [Google Scholar]
- Stradleigh, R.K.; Emerson, D.; Yaung, J.; Catarino, P.; Chan, A.; Dragomer, D.; Friedman, O.; Granflor, E.A.; Infantado, K.; Megna, D.; et al. Comparisons of TEG versus standard heparin monitoring assays in COVID-19 positive VV-ECMO. Am. J. Respir. Crit. Care Med. 2022, 205, A2957. [Google Scholar]
- Hou, X. Anticoagulation monitoring in extracorporeal membrane oxygenation. Perfusion 2021, 36, 438–439. [Google Scholar] [CrossRef]
- Willems, A.; Roeleveld, P.P.; Labarinas, S.; Cyrus, J.W.; Muszynski, J.A.; Nellis, M.E.; Karam, O. Anti-Xa versus time-guided anticoagulation strategies in extracorporeal membrane oxygenation: A systematic review and meta-analysis. Perfusion 2020, 36, 501–512. [Google Scholar] [CrossRef]
- Panigada, M.; Bottino, N.; Tagliabue, P.; Grasselli, G.; Novembrino, C.; Chantarangkul, V.; Pesenti, A.; Peyvandi, F.; Tripodi, A. Hypercoagulability of COVID-19 patients in intensive care unit: A report of thromboelastography findings and other parameters of hemostasis. J. Thromb. Haemost. 2020, 18, 1738–1742. [Google Scholar] [CrossRef] [PubMed]
- Chandel, A.; Patolia, S.; Brown, A.W.; Collins, A.C.; Sahjwani, D.; Khangoora, V.; Desai, M.; Kasarabada, A.; Kilcullen, J.K.; King, C.S.; et al. Association of D-dimer and fibrinogen with hypercoagulability assessed by thromboelastography in critically ill COVID-19 patients. J. Intensive Care Med. 2021, 36, 534–541. [Google Scholar] [CrossRef]
- Althaus, K.; Marini, I.; Zlamal, J.; Pelzl, L.; Singh, A.; Häberle, H.; Mehrländer, M.; Hammer, S.; Schulze, H.; Bitzer, M.; et al. Antibody-induced procoagulant platelets in severe COVID-19 infection. Blood 2021, 137, 1061–1071. [Google Scholar] [CrossRef]
- Zhang, D.; Li, L.; Chen, Y.; Ma, J.; Yang, Y.; Aodeng, S.; Cui, Q.; Wen, K.; Xiao, M.; Xie, J.; et al. Syndecan-1, an indicator of endothelial glycocalyx degradation, predicts outcome of patients admitted to an ICU with COVID-19. Mol. Med. 2021, 27, 151. [Google Scholar] [CrossRef]
- Maldonado, F.; Morales, D.; Díaz-Papapietro, C.; Valdés, C.; Fernandez, C.; Valls, N.; Lazo, M.; Espinoza, C.; González, R.; Gutiérrez, R.; et al. Relationship between endothelial and angiogenesis biomarkers envisages mortality in a prospective cohort of COVID-19 patients requiring respiratory support. Front. Med. 2022, 9, 826218. [Google Scholar] [CrossRef]
- Fraser, D.D.; Patterson, E.K.; Slessarev, M.; Gill, S.E.; Martin, C.; Daley, M.; Miller, M.R.; Patel, M.A.; Dos Santos, C.C.; Bosma, K.J.; et al. Endothelial injury and glycocalyx degradation in critically ill coronavirus disease 2019 patients: Implications for microvascular platelet aggregation. Crit. Care Explor. 2020, 2, e0194. [Google Scholar] [CrossRef] [PubMed]
| Haematological Parameter | Normal Range in Adults | Disseminated Intravascular Coagulation | COVID-19-Associated Coagulopathy | References |
|---|---|---|---|---|
| Platelet count (×109/L) | 150–400 | ↓ | Normal range or mildly ↓ | [21,22] |
| Fibrinogen (g/L) | 2.0–4.0 | ↓ | ↑ (often >5.0) | [20,21] |
| PT prolongation (s) | <3 above control | ↑ | Normal range or mildly ↑ | [12,21] |
| D-dimer (ng/L FEU) | <500 | ↑↑ (often >1000) | ↑↑↑ (often >3000; severe cases >5000) | [19,22] |
| Pathophysiological Driver | Mechanism | Manifestation in Coagulopathy | References |
|---|---|---|---|
| Inflammatory priming and CPB as a second hit to a ‘primed’ system | Cytokine storm induces neutrophil extracellular trap (NET) formation, platelet hyperactivity, and monocyte–platelet aggregation; IL-6 and TNF-α upregulate tissue factor and suppress fibrinolysis. | Arterial and venous thrombosis; platelet and coagulation factor consumption may lead to secondary haemorrhage. | [15,22,25,26,27,28,29] |
| Angiotensin converting enzyme 2 (ACE2)-mediated epithelial and endothelial injury | SARS-CoV-2 binds to ACE2 receptors on pulmonary epithelial and endothelial cells, triggering endotheliopathy and activation of microthrombotic and inflammatory pathways. | Platelet activation and exocytosis of ultralarge von Willebrand factor (ULVWF) multimers; ULVWF–platelet complexes anchor to injured endothelium, promoting microvascular thrombosis and DIC. | [13,42,43,44,45] |
| Hypoxithrombosis and enzymatic heparin degradation | Hypoxia upregulates hypoxia-inducible transcription factors (HIFs), promoting expression of prothrombotic mediators (e.g., PAI-1, tissue factor); also induces heparinase and heparanase activity. | Elevated D-dimer and fibrinogen; polycythaemia; widespread microthrombi; reduced efficacy of heparin due to enzymatic degradation, contributing to anticoagulation resistance. | [11,46,47,48,49,50,51,52,53] |
| Vaccine-associated hypercoagulability | mRNA and adenoviral vector vaccines activate innate immune pathways (TLR7/8, TLR9, type I interferon, NF-κB), elevating fibrinogen, factor VIII, vWF, and PAI-1. Platelet activation is enhanced via P-selectin, PF4 release, polyphosphates, and extracellular vesicles. NETs provide a scaffold for coagulation enzymes and fibrin. Rarely, adenoviral vaccines trigger VITT through anti-PF4 IgG immune complexes activating platelets via FcγRIIa. | Transient hypercoagulability with increased thrombin generation, impaired fibrinolysis, and perioperative heparin resistance. VITT may manifest as thrombocytopenia with cerebral or splanchnic thrombosis. | [8,54,55,56,57,58,59,60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilkinson, L.; Arjomandi Rad, A.; Oliver, J.; Kourliouros, A. From Pandemic to Practice: How COVID-19 Has Reshaped Haemostasis in Cardiac Surgery: A Narrative Review. J. Clin. Med. 2025, 14, 8109. https://doi.org/10.3390/jcm14228109
Wilkinson L, Arjomandi Rad A, Oliver J, Kourliouros A. From Pandemic to Practice: How COVID-19 Has Reshaped Haemostasis in Cardiac Surgery: A Narrative Review. Journal of Clinical Medicine. 2025; 14(22):8109. https://doi.org/10.3390/jcm14228109
Chicago/Turabian StyleWilkinson, Lydia, Arian Arjomandi Rad, Joshua Oliver, and Antonios Kourliouros. 2025. "From Pandemic to Practice: How COVID-19 Has Reshaped Haemostasis in Cardiac Surgery: A Narrative Review" Journal of Clinical Medicine 14, no. 22: 8109. https://doi.org/10.3390/jcm14228109
APA StyleWilkinson, L., Arjomandi Rad, A., Oliver, J., & Kourliouros, A. (2025). From Pandemic to Practice: How COVID-19 Has Reshaped Haemostasis in Cardiac Surgery: A Narrative Review. Journal of Clinical Medicine, 14(22), 8109. https://doi.org/10.3390/jcm14228109

