Low-Dose Vitamin D3 Supplementation: Associations with Vertebral Fragility and Pedicle Screw Loosening
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Definitions of Path-VF and Early PSL
- (1)
- cases requiring balloon kyphoplasty for path-VF,
- (2)
- intraoperative use of cement-augmented pedicle screws during the first PISF, or
- (3)
- occurrence of non-traumatic PSL within 6 months after the initial PISF in the absence of prior screw reinforcement.
2.3. Grouping
2.4. Categorisation of Vit.D3 Dosage
2.5. Measurement of Vertebral Hounsfield Units (HU)
2.6. Statistical Analysis
3. Results
3.1. Demographics of the Study Cohort
3.2. HU Values in the Path-VF and Control Groups
3.3. Differences in Daily Doses of Vit.D3 Between the Path-VF and Control Groups
3.4. ORs of Oral Vit.D3 Dosages for Path-VF Risk
3.5. Effects of Different Vit.D3 Daily Doses on HU Values
4. Discussion
4.1. Clinical Relevance in Spinal Surgery
4.2. Global Variability and Clinical Uncertainty
4.3. Dose–Response Relationship in the Present Study
4.4. Interpretation of Zero-Dose Patient Outcomes
4.5. Effect of Vit.D3 on HU Values of Vertebrae
4.6. Potential Mechanisms of Vit.D in Preventing Path-VF Risk
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 25(OH)D | 25-hydroxyvitamin-D |
| AUC | Area under the curve |
| BMD | Bone mineral density |
| CI | Confidence intervals |
| CT | Computed tomography |
| DEXA | Dual-energy X-ray absorptiometry |
| FF | Fragility fractures |
| HU | Hounsfield units |
| ODI | Oswestry disability index |
| OR | Odds Ratio |
| Path-VF | Pathological vertebral fragility |
| PISF | Posterior instrumented spinal fusion |
| PSL | Pedicle screw loosening |
| ROC | Receiver operating characteristic curve |
| SD | Standard deviation |
| SE | Standard error |
| VF | Vertebral fragility |
| VIF | Variance inflation factors |
| Vit.D | Vitamin D |
| Vit.D2 | Vitamin D2 |
| Vit.D3 | Vitamin D3 |
References
- Maier, G.S.; Seeger, J.B.; Horas, K.; Roth, K.E.; Kurth, A.A.; Maus, U. The prevalence of vitamin D deficiency in patients with vertebral fragility fractures. Bone Jt. J. 2015, 97, 89–93. [Google Scholar] [CrossRef]
- Xu, H.W.; Shen, B.; Hu, T.; Zhao, W.-D.; Wu, D.-S.; Wang, S.-J. Preoperative vitamin D status and its effects on short-term clinical outcomes in lumbar spine surgery. J. Orthop. Sci. 2020, 25, 787–792. [Google Scholar] [CrossRef]
- Hu, M.H.; Tseng, Y.-K.; Chung, Y.-H.; Wu, N.-Y.; Li, C.-H.; Lee, P.-Y. The efficacy of oral vitamin D supplements on fusion outcome in patients receiving elective lumbar spinal fusion-a randomized control trial. BMC Musculoskelet. Disord. 2022, 23, 996. [Google Scholar] [CrossRef]
- Dipaola, C.P.; Bible, J.E.; Biswas, D.; Dipaola, M.; Grauer, J.N.; Rechtine, G.R. Survey of spine surgeons on attitudes regarding osteoporosis and osteomalacia screening and treatment for fractures, fusion surgery, and pseudoarthrosis. Spine J. 2009, 9, 537–544. [Google Scholar] [CrossRef]
- Donnally, C.J.; Sheu, J.I.; Bondar, K.J.; Mouhanna, J.N.; Li, D.J.; Butler, A.J.; Rush, A.J.; Gjolaj, J.P. Is There a Correlation Between Preoperative or Postoperative Vitamin D Levels with Pseudarthrosis, Hardware Failure, and Revisions After Lumbar Spine Fusion. World Neurosurg. 2019, 130, e431–e437. [Google Scholar] [CrossRef]
- Slobogean, G.P.; Bzovsky, S.; O’HAra, N.N.; Marchand, L.S.; Hannan, Z.D.; Demyanovich, H.K.; Connelly, D.W.; Adachi, J.D.; Thabane, L.; Sprague, S.; et al. Effect of Vitamin D3 Supplementation on Acute Fracture Healing: A Phase II Screening Randomized Double-Blind Controlled Trial. JBMR Plus 2023, 7, e10705. [Google Scholar] [CrossRef] [PubMed]
- Gatt, T.; Grech, A.; Arshad, H. The Effect of Vitamin D Supplementation for Bone Healing in Fracture Patients: A Systematic Review. Adv. Orthop. 2023, 2023, 6236045. [Google Scholar] [CrossRef] [PubMed]
- Mayo, B.C.; Massel, D.H.; Yacob, A.; Narain, A.S.; Hijji, F.Y.; Jenkins, N.W.; Parrish, J.M.; Modi, K.D.; Long, W.W.; Hrynewycz, N.M.; et al. A Review of Vitamin D in Spinal Surgery: Deficiency Screening, Treatment, and Outcomes. Int. J. Spine Surg. 2020, 14, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Sarma, D.K.; Verma, V.; Nagpal, R.; Kumar, M. From Cells to Environment: Exploring the Interplay between Factors Shaping Bone Health and Disease. Medicina 2023, 59, 1546. [Google Scholar] [CrossRef]
- Castañeda, S.; Ceballos, C.N.; Jaeger, J.U.; Benadiba, C.d.M.; Martín, E.G.; Díaz-Guerra, G.M.; Alvarez-Galovich, L. Management of Vertebral Fragility Fracture in Older People: Recommendations from a Spanish Consensus of Experts. Geriatrics 2024, 9, 24. [Google Scholar] [CrossRef]
- Al-Bari, A.A.; Al Mamun, A. Current advances in regulation of bone homeostasis. FASEB Bioadv. 2020, 2, 668–679. [Google Scholar] [CrossRef]
- Demontiero, O.; Vidal, C.; Duque, G. Aging and bone loss: New insights for the clinician. Ther. Adv. Musculoskelet. Dis. 2012, 4, 61–76. [Google Scholar] [CrossRef] [PubMed]
- Sornay-Rendu, E.; Duboeuf, F.; Chapurlat, R.D. Postmenopausal women with normal BMD who have fractures have deteriorated bone microarchitecture: A prospective analysis from The OFELY study. Bone 2024, 182, 117072. [Google Scholar] [CrossRef]
- van den Heuvel, E.G.; Lips, P.; Schoonmade, L.J.; Lanham-New, S.A.; van Schoor, N.M. Comparison of the Effect of Daily Vitamin D2 and Vitamin D3 Supplementation on Serum 25-Hydroxyvitamin D Concentration (Total 25(OH)D, 25(OH)D2, and 25(OH)D3) and Importance of Body Mass Index: A Systematic Review and Meta-Analysis. Adv. Nutr. 2024, 15, 100133. [Google Scholar] [CrossRef]
- Demay, M.B.; Pittas, A.G.; Bikle, D.D.; Diab, D.L.; Kiely, M.E.; Lazaretti-Castro, M.; Lips, P.; Mitchell, D.M.; Murad, M.H.; Powers, S.; et al. Vitamin D for the Prevention of Disease: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2024, 109, 1907–1947. [Google Scholar] [CrossRef]
- Gesellschafte, D.W.O. DVO-Leitlinie (2023) Leitlinie des Dachverbands der Deutschsprachigen Wissenschaftlichen Osteologischen Gesellschaften 2023—Prophylaxe, Diagnostik und Therapie der Osteoporose. Available online: https://register.awmf.org/assets/guidelines/183-001l_S3_Prophylaxe-Diagnostik-Therapie-der-Osteoporose_2023-11.pdf (accessed on 9 August 2025).
- EFSA Panel on Nutrition; Novel Foods and FoodAllergens (NDA); Turck, D.; Bohn, T.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.-I.; Knutsen, H.K.; Maciuk, A.; Mangelsdorf, I.; et al. Scientific opinion on the tolerable upper intake level for vitamin D, including the derivation of a conversion factor for calcidiol monohydrate. EFSA J. 2023, 21, e08145. [Google Scholar] [CrossRef]
- National Institutes of Health; National Institute of Occupational Health. Vitamins and Minerals—Vitamin D. 2025. Available online: https://www.nhs.uk/conditions/vitamins-and-minerals/vitamin-d/ (accessed on 9 August 2025).
- Kim, J.H.; Park, H.S.; Pae, M.; Park, K.H.; Kwon, O. Evidence and suggestions for establishing vitamin D intake standards in Koreans for the prevention of chronic diseases. Nutr. Res. Pract. 2022, 16, S57–S69. [Google Scholar] [CrossRef]
- Li, J.; Strahl, A.; Kunze, B.; Krebs, S.; Stangenberg, M.; Viezens, L.; Strube, P.; Dreimann, M. Ageing and BMI in Focus: Rethinking Risk Assessment for Vertebral Fragility and Pedicle Screw Loosening in Older Adults. J. Clin. Med. 2025, 14, 5296. [Google Scholar] [CrossRef] [PubMed]
- Boucas, P.; Mamdouhi, T.; Rizzo, S.E.; Megas, A. Cement Augmentation of Pedicle Screw Instrumentation: A Literature Review. Asian Spine J. 2023, 17, 939–948. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Zhou, Q.; Jin, X.; Zhang, J. Cement-augmented pedicle screw for thoracolumbar degenerative diseases with osteoporosis: A systematic review and meta-analysis. J. Orthop. Surg. Res. 2023, 18, 631. [Google Scholar] [CrossRef] [PubMed]
- Weiser, L.; Huber, G.; Sellenschloh, K.; Viezens, L.; Püschel, K.; Morlock, M.M.; Lehmann, W. Insufficient stability of pedicle screws in osteoporotic vertebrae: Biomechanical correlation of bone mineral density and pedicle screw fixation strength. Eur. Spine J. 2017, 26, 2891–2897. [Google Scholar] [CrossRef]
- Leitner, L.; Malaj, I.; Sadoghi, P.; Amerstorfer, F.; Glehr, M.; Vander, K.; Leithner, A.; Radl, R. Pedicle screw loosening is correlated to chronic subclinical deep implant infection: A retrospective database analysis. Eur. Spine J. 2018, 27, 2529–2535. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.B.; Park, S.-W.; Lee, Y.-S.; Nam, T.-K.; Park, Y.-S.; Kim, Y.-B. The Effects of Spinopelvic Parameters and Paraspinal Muscle Degeneration on S1 Screw Loosening. J. Korean Neurosurg. Soc. 2015, 58, 357–362. [Google Scholar] [CrossRef]
- Marie-Hardy, L.; Pascal-Moussellard, H.; Barnaba, A.; Bonaccorsi, R.; Scemama, C. Screw Loosening in Posterior Spine Fusion: Prevalence and Risk Factors. Glob. Spine J. 2020, 10, 598–602. [Google Scholar] [CrossRef] [PubMed]
- Galbusera, F.; Volkheimer, D.; Reitmaier, S.; Berger-Roscher, N.; Kienle, A.; Wilke, H.-J. Pedicle screw loosening: A clinically relevant complication. Eur. Spine J. 2015, 24, 1005–1016. [Google Scholar] [CrossRef]
- Bajaj, A.; Shah, R.M.; Goodwin, A.M.; Kurapaty, S.; Patel, A.A.; Divi, S.N. The Role of Preoperative Vitamin D in Spine Surgery. Curr. Rev. Musculoskelet. Med. 2023, 16, 48–54. [Google Scholar] [CrossRef]
- Khodabakhshi, A.; Davoodi, S.H.; Vahid, F. Vitamin D status, including serum levels and sun exposure are associated or correlated with bone mass measurements diagnosis, and bone density of the spine. BMC Nutr. 2023, 9, 48. [Google Scholar] [CrossRef]
- Stoker, G.E.; Buchowski, J.M.; Bridwell, K.H.; Lenke, L.G.; Riew, K.D.; Zebala, L.P. Preoperative vitamin D status of adults undergoing surgical spinal fusion. Spine 2013, 38, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, W.J.; Gromelski, J. Vitamin d status and spine surgery outcomes. ISRN Orthop. 2013, 2013, 471695. [Google Scholar] [CrossRef]
- Schmidt, T.; Ebert, K.; Rolvien, T.; Oehler, N.; Lohmann, J.; Papavero, L.; Kothe, R.; Amling, M.; Barvencik, F.; Mussawy, H. A retrospective analysis of bone mineral status in patients requiring spinal surgery. BMC Musculoskelet. Disord. 2018, 19, 53. [Google Scholar] [CrossRef]
- Waikakul, S. Serum 25-hydroxy-calciferol level and failed back surgery syndrome. J. Orthop. Surg. 2012, 20, 18–22. [Google Scholar] [CrossRef]
- Kim, T.H.; Yoon, J.Y.; Lee, B.H.; Jung, H.-S.; Park, M.S.; Park, J.-O.; Moon, E.-S.; Kim, H.-S.; Lee, H.-M.; Moon, S.-H. Changes in vitamin D status after surgery in female patients with lumbar spinal stenosis and its clinical significance. Spine 2012, 37, E1326–E1330. [Google Scholar] [CrossRef]
- Ko, S.; Chae, S.; Choi, W.; Kwon, J.; Choi, J.Y. The effectiveness of vitamin D supplementation in functional outcome and quality of life (QoL) of lumbar spinal stenosis (LSS) requiring surgery. J. Orthop. Surg. Res. 2020, 15, 117. [Google Scholar] [CrossRef]
- Ravindra, V.M.; Godzik, J.; Guan, J.; Dailey, A.T.; Schmidt, M.H.; Bisson, E.F.; Hood, R.S.; Ray, W.Z. Prevalence of Vitamin D Deficiency in Patients Undergoing Elective Spine Surgery: A Cross-Sectional Analysis. World Neurosurg. 2015, 83, 1114–1119. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, M.; Liu, H.; Zhang, Q.; Hu, Z.; Zhang, N.; Ren, Y. Effect of 1,25-dihydroxyvitamin D3 on posterior transforaminal lumbar interbody fusion in patients with osteoporosis and lumbar disc degenerative disease. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2014, 28, 969–972. [Google Scholar]
- Bolland, M.J.; Grey, A.; Avenell, A. Effects of vitamin D supplementation on musculoskeletal health: A systematic review, meta-analysis, and trial sequential analysis. Lancet Diabetes Endocrinol. 2018, 6, 847–858. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health, Labour and Welfare, Japan. Dietary Reference Intakes for Japanese. 2025. Available online: https://www.dobun.co.jp/scbookdata/stofcj2025.pdf (accessed on 9 August 2025). (In Japanese)
- Albrecht, B.M.; Stalling, I.; Foettinger, L.; Recke, C.; Bammann, K. Adherence to Lifestyle Recommendations for Bone Health in Older Adults with and without Osteoporosis: Cross-Sectional Results of the OUTDOOR ACTIVE Study. Nutrients 2022, 14, 2463. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, M.B.; Oliveira, J.; Bauman, A.; Fairhall, N.; Kwok, W.; Sherrington, C. Evidence on physical activity and osteoporosis prevention for people aged 65+ years: A systematic review to inform the WHO guidelines on physical activity and sedentary behaviour. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 150. [Google Scholar] [CrossRef]
- Wagnac, E.; Aubin, C.; Chaumoître, K.; Mac-Thiong, J.-M.; Ménard, A.-L.; Petit, Y.; Garo, A.; Arnoux, P.-J. Substantial vertebral body osteophytes protect against severe vertebral fractures in compression. PLoS ONE 2017, 12, e0186779. [Google Scholar] [CrossRef]
- Liu, J.; Huang, B.; Hao, L.; Shan, Z.; Zhang, X.; Chen, J.; Fan, S.; Zhao, F. Association between Modic changes and endplate sclerosis: Evidence from a clinical radiology study and a rabbit model. J. Orthop. Translat 2019, 16, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ding, W.; Yang, D.; Wu, H.; Hao, L.; Hu, Z.; Fan, S.; Zhao, F. Modic Changes (MCs) Associated with Endplate Sclerosis Can Prevent Cage Subsidence in Oblique Lumbar Interbody Fusion (OLIF) Stand-Alone. World Neurosurg. 2020, 138, e160–e168. [Google Scholar] [CrossRef]
- Zaidi, Q.; MacNeille, R.; Ramos, O.; Wycliffe, N.; Danisa, O.; İnCeoğlu, S.; Cheng, W. Predicting Pedicle Screw Pullout and Fatigue Performance: Comparing Lateral Dual-Energy X-Ray Absorptiometry, Anterior to Posterior Dual-Energy X-Ray Absorptiometry, and Computed Tomography Hounsfield Units. Int. J. Spine Surg. 2023, 17, 43–50. [Google Scholar] [CrossRef]
- Reid, I.R.; Bolland, M.J.; Grey, A. Effects of vitamin D supplements on bone mineral density: A systematic review and meta-analysis. Lancet 2014, 383, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.D.; LaCroix, A.Z.; Gass, M.; Wallace, R.B.; Robbins, J.; Lewis, C.E.; Bassford, T.; Beresford, S.A.; Black, H.R.; Blanchette, P.; et al. Calcium plus vitamin D supplementation and the risk of fractures. N. Engl. J. Med. 2006, 354, 669–683. [Google Scholar] [CrossRef]
- LeBoff, M.S.; Chou, S.H.; Murata, E.M.; Donlon, C.M.; Cook, N.R.; Mora, S.; Lee, I.-M.; Kotler, G.; Bubes, V.; Buring, J.E.; et al. Effects of Supplemental Vitamin D on Bone Health Outcomes in Women and Men in the VITamin D and OmegA-3 TriaL (VITAL). J. Bone Miner. Res. 2020, 35, 883–893. [Google Scholar] [CrossRef]
- Ellison, D.L.; Moran, H.R. Vitamin D: Vitamin or Hormone. Nurs. Clin. N. Am. 2021, 56, 47–57. [Google Scholar] [CrossRef]
- Bouillon, R.; Marcocci, C.; Carmeliet, G.; Bikle, D.; White, J.H.; Dawson-Hughes, B.; Lips, P.; Munns, C.F.; Lazaretti-Castro, M.; Giustina, A.; et al. Skeletal and Extraskeletal Actions of Vitamin D: Current Evidence and Outstanding Questions. Endocr. Rev. 2019, 40, 1109–1151. [Google Scholar] [CrossRef] [PubMed]
- Glerup, H.; Mikkelsen, K.; Poulsen, L.; Hass, E.; Overbeck, S.; Andersen, H.; Charles, P.; Eriksen, E.F. Hypovitaminosis D myopathy without biochemical signs of osteomalacic bone involvement. Calcif. Tissue Int. 2000, 66, 419–424. [Google Scholar] [CrossRef]
- Bischoff-Ferrari, H.A.; Dawson-Hughes, B.; Staehelin, H.B.; Orav, J.E.; E Stuck, A.; Theiler, R.; Wong, J.B.; Egli, A.; Kiel, D.P.; Henschkowski, J. Fall prevention with supplemental and active forms of vitamin D: A meta-analysis of randomised controlled trials. BMJ 2009, 339, b3692. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, M.; Begerow, B.; Minne, H.W.; Abrams, C.; Nachtigall, D.; Hansen, C. Effects of a short-term vitamin D and calcium supplementation on body sway and secondary hyperparathyroidism in elderly women. J. Bone Miner. Res. 2000, 15, 1113–1118. [Google Scholar] [CrossRef]
- Prietl, B.; Treiber, G.; Pieber, T.R.; Amrein, K. Vitamin D and immune function. Nutrients 2013, 5, 2502–2521. [Google Scholar] [CrossRef] [PubMed]
- AlGhamdi, S.A.; Enaibsi, N.N.; Alsufiani, H.M.; Alshaibi, H.F.; Khoja, S.O.; Carlberg, C. A Single Oral Vitamin D3 Bolus Reduces Inflammatory Markers in Healthy Saudi Males. Int. J. Mol. Sci. 2022, 23, 11992. [Google Scholar] [CrossRef] [PubMed]





| Age (Years) | |||||
|---|---|---|---|---|---|
| n | Min. | Mean | Max. | SD | |
| Total | 210 | 18.5 | 67.5 | 87.9 | 15.4 |
| Male | 80 | 18.5 | 63.9 | 87.6 | 17.9 |
| Female | 130 | 23.1 | 69.7 | 87.9 | 13.1 |
| Path-VF group | 84 | 53.0 | 75.3 | 87.9 | 9.0 |
| Male | 22 | 53.0 | 74.0 | 87.0 | 10.6 |
| Female | 62 | 52.0 | 75.8 | 87.0 | 8.5 |
| Control group | 126 | 18.5 | 62.2 | 87.6 | 16.5 |
| Male | 58 | 18.5 | 60.0 | 87.0 | 18.7 |
| Female | 68 | 23.0 | 64.1 | 86.0 | 14.2 |
| Zero Vit.D3-Suplement (0 IU/Day) | 157 | 18.5 | 65.1 | 87.4 | 16.1 |
| Low Vit.D3-Suplement (<2000 IU/Day) | 33 | 53.0 | 75.4 | 87.7 | 9.2 |
| High Vit.D3-Suplement (≥2000 IU/Day) | 20 | 52.4 | 73.1 | 87.9 | 11.2 |
| Diagnosed Osteoporosis | 42 | 53.0 | 76.2 | 87.9 | 8.2 |
| Osteoporosis with zero Vit.D3-Suplement | 13 | 63.0 | 73.5 | 85.2 | 6.8 |
| Osteoporosis with low Vit.D3-Suplement | 20 | 53.0 | 77.7 | 86.8 | 9.1 |
| Osteoporosis with high Vit.D3-Suplement | 9 | 68.5 | 79.0 | 87.9 | 7.9 |
| Patients with Hounsfield units Value | 88 | 31.9 | 69.3 | 87.7 | 12.7 |
| n | Mean | SD | p | r | |
|---|---|---|---|---|---|
| Path-VF group | 35 | 1431.4 | 1055.7 | <0.001 *** | 0.36 |
| Control group | 18 | 2366.7 | 1186.7 |
| β | SE β | z | p | ||
|---|---|---|---|---|---|
| (Intercept) | −4.34 | 2.94 | −1.48 | 0.139 | |
| Gender | 0.64 | 0.92 | 0.69 | 0.490 | |
| Vit.D3 Dose | −0.001 | 0.0004 | −2.37 | 0.018 | * |
| Age | 0.08 | 0.04 | 2.15 | 0.031 | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Strahl, A.; Kunze, B.; Krebs, S.; Stangenberg, M.; Viezens, L.; Strube, P.; Dreimann, M. Low-Dose Vitamin D3 Supplementation: Associations with Vertebral Fragility and Pedicle Screw Loosening. J. Clin. Med. 2025, 14, 8052. https://doi.org/10.3390/jcm14228052
Li J, Strahl A, Kunze B, Krebs S, Stangenberg M, Viezens L, Strube P, Dreimann M. Low-Dose Vitamin D3 Supplementation: Associations with Vertebral Fragility and Pedicle Screw Loosening. Journal of Clinical Medicine. 2025; 14(22):8052. https://doi.org/10.3390/jcm14228052
Chicago/Turabian StyleLi, Jun, André Strahl, Beate Kunze, Stefan Krebs, Martin Stangenberg, Lennart Viezens, Patrick Strube, and Marc Dreimann. 2025. "Low-Dose Vitamin D3 Supplementation: Associations with Vertebral Fragility and Pedicle Screw Loosening" Journal of Clinical Medicine 14, no. 22: 8052. https://doi.org/10.3390/jcm14228052
APA StyleLi, J., Strahl, A., Kunze, B., Krebs, S., Stangenberg, M., Viezens, L., Strube, P., & Dreimann, M. (2025). Low-Dose Vitamin D3 Supplementation: Associations with Vertebral Fragility and Pedicle Screw Loosening. Journal of Clinical Medicine, 14(22), 8052. https://doi.org/10.3390/jcm14228052

