Hemostatic Changes Following Red Blood Cell Transfusion in Critically Ill Patients: A Retrospective Cohort Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Data Source and Extraction
2.3. Variables Collected
- Demographic data: age, sex, body weight, total blood volume—calculated as weight [kg] × 65 mL (women)/75 mL (men);
- Clinical data: ICU admission diagnosis; date and time of RBC transfusion, indication for transfusion (e.g., anemia without active bleeding), type of RBC (leukoreduced, irradiated, etc.), RBC volume transfused, RBC volume as percent of the patient’s total blood volume, and RBC age (storage duration) at the moment of transfusion;
- Laboratory data:
- Rotational thromboelastometry (ROTEM Delta, TEM Innovations GmbH, Munich, Germany). The assays routinely performed in the local ICU included INTEM (assessment of the intrinsic coagulation pathway), EXTEM (assessment of the extrinsic coagulation pathway), FIBTEM (assessment of fibrinogen-based clot firmness through inhibition of platelets), and APTEM (detection of hyperfibrinolysis and assessment of the effect of antifibrinolytic agents). The analyzed parameters included the following: clotting time (CT), clot formation time (CFT), alpha angle (AA), maximum clot firmness (MCF), maximal lysis (ML), lysis index at 30 min (LI30), and lysis index at 45 min (LI45). Platelet contribution to clot strength was estimated by calculating the difference in MCF between the EXTEM and FIBTEM assays.
- Conventional coagulation tests (CCTs) included the following: prothrombin time (PT), international normalized ratio (INR), prothrombin activity (%), activated partial thromboplastin time (aPTT), thrombin time (TT), D-dimer (DD), and fibrinogen concentration measured with the Clauss method.
- Complete Blood Count (CBC): hemoglobin (Hb) concentration and platelet count (PLT).
2.4. Inclusion and Exclusion Criteria
- Age ≥ 18 years;
- Hospitalized in the ICU;
- Received a single unit of RBC transfusion for the indication of anemia (defined as hemoglobin < 8 g dL−1) without active bleeding per attending physician’s discretion;
- Availability of ROTEM results within 1 h pre- and post-RBC transfusion.
- Receipt of other blood components (e.g., plasma, platelets, cryoprecipitate, fibrinogen concentrate) during the same time window;
- Known coagulation disorders or use of anticoagulants that could confound ROTEM results.
2.5. Endpoints and Outcome Measures
2.6. Statistical Analysis
2.7. Ethical Considerations
3. Results
3.1. Study Population Characteristics
3.2. Results of Conventional Coagulation Tests Pre–Post-Red Blood Cell Transfusion
3.3. Results of Rotational Thromboelastometry Pre–Post-Red Blood Cell Transfusion
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, D.; Houck, K.L.; Murdiyarso, L.; Higgins, H.; Rhoads, N.; Romero, S.K.; Kozar, R.; Nascimbene, A.; Gernsheimer, T.B.; Sanchez, Z.A.C.; et al. RBCs regulate platelet function and hemostasis under shear conditions through biophysical and biochemical means. Blood 2024, 144, 1521–1531. [Google Scholar] [CrossRef] [PubMed]
- Kunicki, T.J.; Nugent, D.J. Qualitative disorders of platelet function. In Wintrobe’s Clinical Hematology; Greer, J.P., Arber, D.A., Glader, B., List, A.F., Means, R.T., Paraskevas, F., Rodgers, G.M., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2014. [Google Scholar]
- Sun, S.; Campello, E.; Zou, J.; Konings, J.; Huskens, D.; Wan, J.; Fernández, D.I.; Reutelingsperger, C.P.M.; Ten Cate, H.; Toffanin, S.; et al. Crucial roles of red blood cells and platelets in whole blood thrombin generation. Blood Adv. 2023, 7, 6717–6731. [Google Scholar] [CrossRef] [PubMed]
- Van Der Meijden, P.E.; Van Schilfgaarde, M.; Van Oerle, R.; Renné, T.; ten Cate, H.; Spronk, H.M.H. Platelet- and erythrocyte-derived microparticles trigger thrombin generation via factor XIIa. J. Thromb. Haemost. 2012, 10, 1355–1362. [Google Scholar] [CrossRef] [PubMed]
- Noubouossie, D.F.; Henderson, M.W.; Mooberry, M.; Ilich, A.; Ellsworth, P.; Piegore, M.; Skinner, S.C.; Pawlinski, R.; Welsby, I.; Renné, T.; et al. Red blood cell microvesicles activate the contact system, leading to factor IX activation via 2 independent pathways. Blood 2020, 135, 755–765. [Google Scholar] [CrossRef] [PubMed]
- Gasa, N.; Meiring, M. Microparticles: A link to increased thrombin generation. Blood Coagul. Fibrinolysis 2021, 32, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Said, A.S.; Rogers, S.C.; Doctor, A. Physiologic impact of circulating RBC microparticles upon blood-vascular interactions. Front. Physiol. 2018, 8, 1120. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, A.H.; Doctor, A. Red blood cell contribution to hemostasis. Front. Pediatr. 2021, 9, 629824. [Google Scholar] [CrossRef] [PubMed]
- Drotarova, M.; Zolkova, J.; Belakova, K.M.; Brunclikova, M.; Skornova, I.; Stasko, J.; Simurda, T. Basic principles of rotational thromboelastometry (ROTEM®) and the role of ROTEM-guided fibrinogen replacement therapy in the management of coagulopathies. Diagnostics 2023, 13, 3219. [Google Scholar] [CrossRef] [PubMed]
- Marin, M.; Orso, D.; Federici, N.; Vetrugno, L.; Bove, T. D-dimer specificity and clinical context: An old unlearned story. Crit. Care 2021, 25, 101. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, S.B.; Balaya, R.D.A.; Dagamajalu, S.; Bhandary, Y.P.; Unwalla, H.; Prasad, T.S.K.; Rahman, I. A signaling pathway map of plasminogen activator inhibitor-1 (PAI-1/SERPINE-1): A review of an innovative frontier in molecular aging and cellular senescence. Cell Commun. Signal. 2024, 22, 544. [Google Scholar] [CrossRef] [PubMed]
| Characteristic | Value |
|---|---|
| Male sex [n (%)] | 20 (57.1) |
| Age, Me 1 (IQR 2) [years] | 62.0 (47.0–71.0) |
| Weight, Me (IQR) [kilograms] | 87.0 (74.0–106.0) |
| Total blood volume, Me (IQR) [mL] | 6300 (5200–7125) |
| Diagnosis: | |
| Post-surgery, n (%) | 20 (57.1) |
| Acute respiratory failure, n (%) | 5 (14.3) |
| Severe acute pancreatitis, n (%) | 5 (14.3) |
| Subarachnoid hemorrhage, n (%) | 2 (5.7) |
| Sepsis, n (%) | 2 (5.7) |
| Sudden cardiac arrest, n (%) | 1 (2.9) |
| C-reactive protein, Me (IQR) [mg L−1] | 143.0 (93.1–237.0) |
| Creatinine, Me (IQR) [mg dL−1] | 1.3 (0.7–2.2) |
| Blood urea nitrogen, Me (IQR) [mg dL−1] | 37.8 (29.0–84.6) |
| Urea, Me (IQR) [mg dL−1] | 80.9 (62.1–181.0) |
| Bilirubin, Me (IQR) [mg dL−1] | 0.7 (0.3–1.3) |
| Hb 3 pre-transfusion [g L−1] | 63.0 (61.0–70.0) |
| Hb post-transfusion [g L−1] | 78.0 (72.0–81.0) |
| Parameter | Value, Me 1 (IQR 2) Pre-Transfusion | Value, Me (IQR) Post-Transfusion | p-Value | Reference Range |
|---|---|---|---|---|
| Prothrombin time [s] | 13.8 (12.7–14.9) | 13.9 (12.6–14.8) | 0.53 | 9.4–12.5 |
| International normalized ratio | 1.14 (1.05–1.24) | 1.15 (1.04–1.23) | 0.68 | 0.80–1.20 |
| Prothrombin activity [%] | 76.0 (71.0–88.0) | 76.0 (71.0–88.0) | 1.00 | 80.0–120.0 |
| Activated partial thromboplastin time [s] | 35.2 (31.3–37.9) | 33.9 (30.5–39.1) | 0.69 | 25.4–36.9 |
| Thrombin time [s] | 17.1 (15.9–19.2) | 16.6 (15.9–18.1) | 0.28 | 10.3–16.6 |
| D-dimers [ng mL−1] | 3911.0 (1805.0–7335.0) | 4014.0 (1859.0–7219.0) | 0.03 | <500.0 |
| Fibrinogen [mg dL−1] | 526.0 (431.0–781.0) | 539.0 (439.0–817.0) | 0.86 | 200.0–393.0 |
| Platelets [×103 µL−1] | 269.0 (195.0–357.0) | 276.5 (197.5–372.5) | 0.43 | 130–400 |
| Parameter | Value, Me 1 (IQR 2) Pre-Transfusion | Value, Me (IQR) Post-Transfusion | p-Value | Reference Range |
|---|---|---|---|---|
| INTEM CT 3 [s] | 192.0 (173.0–211.0) | 193.0 (171.0–208.0) | 0.37 | 100–240 |
| INTEM CFT 4 [s] | 43.0 (38.0–48.0) | 45.0 (39.0–49.0) | 0.05 | 30–110 |
| INTEM AA 5 [°] | 81.0 (80.0–83.0) | 81.0 (80.0–83.0) | 0.14 | 70–83 |
| INTEM MCF 6 [mm] | 78.0 (73.0–81.0) | 77.0 (73.0–81.0) | <0.01 | 50–72 |
| INTEM ML 7 [%] | 3.0 (1.0–5.0) | 3.0 (0.0–5.0) | 0.71 | 0–15 |
| INTEM LI30 8 [%] | 100.0 (100.0–100.0) | 100.0 (100.0–100.0) | 1.00 | 94–100 |
| INTEM LI45 9 [%] | 98.0 (97.0–100.0) | 99.0 (97.0–100.0) | 0.23 | - |
| EXTEM CT [s] | 82.0 (69.0–92.0) | 83.0 (70.0–95.0) | 0.98 | 38–79 |
| EXTEM CFT [s] | 45.0 (38.0–52.0) | 45.0 (37.0–52.0) | <0.01 | 34–159 |
| EXTEM AA [°] | 81.0 (80.0–82.0) | 81.0 (79.0–82.0) | 0.06 | 63–83 |
| EXTEM MCF [mm] | 73.0 (70.0–78.0) | 72.0 (70.0–78.0) | 0.63 | 50–72 |
| EXTEM ML [%] | 30.0 (7.0–62.0) | 19.5 (4.0–42.0) | <0.01 | 0–15 |
| EXTEM LI30 [%] | 88.0 (73.0–100.0) | 96.5 (81.0–100.0) | <0.01 | 94–100 |
| EXTEM LI45 [%] | 72.5 (46.0–95.0) | 82.5 (60.0–97.0) | <0.01 | - |
| FIBTEM CT [s] | 76.0 (67.0–90.0) | 78.0 (63.0–91.0) | 0.43 | 38–62 |
| FIBTEM CFT [s] | 55.5 (45.0–89.0) | 59.5 (48.0–118.0) | <0.01 | ≤300 |
| FIBTEM AA [°] | 81.0 (78.0–82.0) | 80.0 (77.0–81.0) | 0.27 | 65–80 |
| FIBTEM MCF [mm] | 35.0 (29.0–43.0) | 33.0 (29.0–40.0) | <0.01 | 9–25 |
| FIBTEM ML [%] | 0.0 (0.0–1.0) | 0.0 (0.0–1.0) | 0.52 | 0–15 |
| FIBTEM LI30 [%] | 100.0 (100.0–100.0) | 100.0 (100.0–100.0) | 1.00 | - |
| FIBTEM LI45 [%] | 100.0 (100.0–100.0) | 100.0 (100.0–100.0) | 0.37 | - |
| APTEM CT [s] | 80.0 (68.0–98.0) | 79.0 (66.0–93.0) | 0.75 | 33–62 |
| APTEM CFT [s] | 43.0 (37.0–49.0) | 46.0 (38.0–54.0) | 0.07 | 48–127 |
| APTEM AA [°] | 82.0 (80.0–82.0) | 82.0 (79.0–82.0) | 0.24 | - |
| APTEM MCF [mm] | 78.0 (74.0–80.0) | 76.0 (72.0–80.0) | 0.04 | 61–79 |
| APTEM ML [%] | 6.0 (3.0–9.0) | 5.0 (2.0–10.0) | 0.31 | 0–15 |
| APTEM LI30 [%] | 99.0 (98.0–100.0) | 100.0 (98.0–100.0) | 0.56 | - |
| APTEM LI45 [%] | 97.0 (94.0–98.0) | 97.0 (93.0–99.0) | 0.33 | - |
| MCFEXTEM-FIBTEM [mm] | 37.0 (33.0–42.0) | 40.0 (35.0–44.0) | <0.01 | 26–63 |
| Parameter | Change in Pre–Post-Transfusion Value, Me 1 (IQR 2) Fresher RBCs 3 | Change in Pre–Post-Transfusion Value, Me (IQR) Older RBCs | p-Value |
|---|---|---|---|
| INTEM CT 4 [s] | 9.5 (−7.5–35.5) | −4.0 (−17.0–4.0) | 0.06 |
| INTEM CFT 5 [s] | 1.0 (−0.5–2.5) | 1.0 (−1.0–3.0) | 0.93 |
| INTEM AA 6 [°] | 0.0 (−0.5–0.0) | 0.0 (−1.0–0.0) | 0.91 |
| INTEM MCF 7 [mm] | −1.0 (−2–(−0.5) | −1.0 (−2.0–0.0) | 0.56 |
| INTEM ML 8 [%] | 0.0 (−0.5–0.0) | 0.0 (−1.0–1.0) | 0.82 |
| INTEM LI30 9 [%] | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 1.00 |
| INTEM LI45 10 [%] | 0.0 (0.0–1.0) | 0.0 (0.0–0.5) | 0.68 |
| EXTEM CT [s] | 1.0 (−1.0–4.5) | −1.0 (−4.0–4.0) | 0.40 |
| EXTEM CFT [s] | 3.5 (1.0–4.0) | 1.0 (−1.0–5.0) | 0.54 |
| EXTEM AA [°] | 0.0 (0.0–0.0) | 0.0 (−1.0–0.0) | 0.45 |
| EXTEM MCF [mm] | 0.0 (−2.0–1.5) | 0.0 (−1.0–1.0) | 0.88 |
| EXTEM ML [%] | −13.5 (−24.0–1.5) | −7.0 (−15.0–0.0) | 0.70 |
| EXTEM LI30 [%] | 1.0 (−1.5–8.5) | 2.5 (0.0–13.0) | 0.46 |
| EXTEM LI45 [%] | 17.0 (−2.0–24.0) | 7.0 (0.0–15.0) | 0.43 |
| FIBTEM CT [s] | 2.0 (0.5–4.5) | −3.0 (−6.0–1.0) | 0.03 |
| FIBTEM CFT [s] | 33.5 (7.0–39.5) | 6.0 (2.0–12.0) | 0.05 |
| FIBTEM AA [°] | 0.0 (−1.0–0.5) | 0.0 (−2.0–1.0) | 0.65 |
| FIBTEM MCF [mm] | −1.0 (−2.0–(−0.5) | −2.0 (−3.0–0.0) | 0.20 |
| FIBTEM ML [%] | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.76 |
| FIBTEM LI30 [%] | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 1.00 |
| FIBTEM LI45 [%] | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.76 |
| APTEM CT [s] | 1.5 (−11.0–5.5) | 0.0 (−6.0–2.0) | 0.62 |
| APTEM CFT [s] | 0.5 (−1.0–3.5) | 3.0 (−1.0–5.0) | 0.63 |
| APTEM AA [°] | −0.5 (−1.0–0.5) | 0.0 (−1.0–0.0) | 0.84 |
| APTEM MCF [mm] | −0.5 (−2.5–1.0) | −1.0 (−2.0–1.0) | 0.92 |
| APTEM ML [%] | −1.5 (−3.5–(−0.5) | 0.0 (−2.0–3.0) | 0.23 |
| APTEM LI30 [%] | 0.5 (−0.5–1.0) | 0.0 (−1.0–1.0) | 0.67 |
| APTEM LI45 [%] | 2.0 (0.0–2.0) | 0.0 (−1.5–1.5) | 0.31 |
| MCFEXTEM-FIBTEM [mm] | 2.0 (−1.0–2.5) | 2.0 (0.0–4.0) | 0.67 |
| FIBTEM MCF 1 Change | Coefficient (95% CI 2) | p-Value |
|---|---|---|
| Red blood cell age | −0.09 (−0.26–0.08) | 0.28 |
| Blood volume change | −0.03 (−1.47–1.41) | 0.96 |
| Admission diagnosis | −0.09 (−1.26–1.08) | 0.88 |
| MCF 1 EXTEM-FIBTEM Change | Coefficient (95% CI 2) | p-Value |
|---|---|---|
| Red blood cell age | −0.00 (−0.12–0.11) | 0.95 |
| Blood volume change | −0.51 (−2.37–1.35) | 0.57 |
| Admission diagnosis | −0.23 (−1.24–0.79) | 0.64 |
| Platelet number change | 0.00 (−0.04–0.04) | 0.97 |
| FIBTEM MCF change | −0.86 (−1.14–(−0.58) | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czempik, P.F. Hemostatic Changes Following Red Blood Cell Transfusion in Critically Ill Patients: A Retrospective Cohort Study. J. Clin. Med. 2025, 14, 8048. https://doi.org/10.3390/jcm14228048
Czempik PF. Hemostatic Changes Following Red Blood Cell Transfusion in Critically Ill Patients: A Retrospective Cohort Study. Journal of Clinical Medicine. 2025; 14(22):8048. https://doi.org/10.3390/jcm14228048
Chicago/Turabian StyleCzempik, Piotr F. 2025. "Hemostatic Changes Following Red Blood Cell Transfusion in Critically Ill Patients: A Retrospective Cohort Study" Journal of Clinical Medicine 14, no. 22: 8048. https://doi.org/10.3390/jcm14228048
APA StyleCzempik, P. F. (2025). Hemostatic Changes Following Red Blood Cell Transfusion in Critically Ill Patients: A Retrospective Cohort Study. Journal of Clinical Medicine, 14(22), 8048. https://doi.org/10.3390/jcm14228048
