Modern Technologies Supporting Motor Rehabilitation After Stroke: A Narrative Review
Abstract
1. Introduction
2. Neurobiological Basis of Motor Recovery
3. Literature Review Methodology
3.1. Data Sources and Selection Rationale
3.2. Search Strategy (Query Strings)
- Search strings included:
- General: (“post-stroke rehabilitation” OR “stroke motor recovery” OR “hemiplegia”) AND (“modern technologies” OR “robotics” OR “virtual reality”).
- Technology-Specific: (“post-stroke rehabilitation” OR “stroke motor recovery”) AND (“robotic rehabilitation” OR “FES” OR “BCI” OR “NIBS”).
- Filtered: (“post-stroke rehabilitation”) AND (“virtual reality”) AND (“RCT” OR “systematic review”) AND (2005:2025).
3.3. Selection Process and Synthesis
4. Literature Review
4.1. Robotic Rehabilitation
4.2. Virtual Reality
4.3. Functional Electrical Stimulation
4.4. Brain–Computer Interfaces
4.5. Non-Invasive Brain Stimulation
4.6. Integrated Rehabilitation Technology
4.6.1. VR with RR
4.6.2. VR with FES
4.6.3. RR with FES
4.6.4. BCI-Based Combined Therapies
4.6.5. NIBS-Based Combined Therapies
4.6.6. Summary and Clinical Implications
5. Discussion
5.1. Clinical Implications
5.2. Neurophysiological Mechanisms
5.3. Barriers and Patient Acceptance
5.4. Future Directions
5.5. Limitations
6. Conclusions
- RR, VR, FES, BCI, and NIBS demonstrate measurable benefits in motor recovery, patient engagement, and individualized therapy.
- The highest therapeutic effectiveness is achieved when these technologies are implemented early after stroke and combined with CP.
- IRT (e.g., VR with RR, FES with BCI) produces synergistic effects by simultaneously activating central and peripheral mechanisms, thereby enhancing neuroplasticity and functional recovery.
- Clinical application of modern technologies should be based on individualized assessment, standardized dosing and timing parameters, and clearly defined qualification criteria.
- Future research should focus on high-quality RCTs, harmonized protocols, long-term follow-up, and the integration of neurophysiological biomarkers (EEG, EMG, fMRI) to identify optimal responders and mechanisms of recovery.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ADL | Activities of Daily Living |
| ARAT | Action Research Arm Test |
| BBS | Berg Balance Scale |
| BCI | Brain–Computer Interface |
| CIMT | Constraint-Induced Movement Therapy |
| CNS | Central Nervous System |
| CP | Conventional Physiotherapy |
| cTBS | Continuous Theta-Burst Stimulation |
| DALYs | Disability-Adjusted Life Years |
| EEG | Electroencephalography |
| FAC | Functional Ambulation Categories |
| FES | Functional Electrical Stimulation |
| fMRI | Functional Magnetic Resonance Imaging |
| FMA | Fugl-Meyer Assessment |
| FMA-LE | Fugl-Meyer Assessment for Lower Extremity |
| FMA-UE | Fugl-Meyer Assessment for Upper Extremity |
| HD-tDCS | High-Definition Transcranial Direct Current Stimulation |
| IRT | Integrated Rehabilitation Technology |
| ISI | Inter-Stimulus Intervals |
| iTBS | Intermittent Theta-Burst Stimulation |
| JTHFT | Jebsen-Taylor Hand Function Test |
| LL | Lower Limb |
| LTD | Long-Term Depression |
| LTP | Long-Term Potentiation |
| MCID | Minimal Clinically Important Difference |
| MI | Motor Imagery |
| MNS | Mirror Neuron System |
| NIBS | Non-Invasive Brain Stimulation |
| PAS | Paired Associative Stimulation |
| PNS | Peripheral Nervous System |
| RAGT | Combining Robot-Assisted Gait Training |
| RCT | Randomized Controlled Trial |
| RR | Robotic Rehabilitation |
| rTMS | Repetitive Transcranial Magnetic Stimulation |
| STDP | Spike-Timing-Dependent Plasticity |
| TBS | Theta-Burst Stimulation |
| tDCS | Transcranial Direct Current Stimulation |
| TOT | Task-Oriented Training |
| UL | Upper Limb |
| VR | Virtual Reality |
References
- Feigin, V.L.; Brainin, M.; Norrving, B.; Martins, S.O.; Pandian, J.; Lindsay, P.; Grupper, M.F.; Rautalin, I. World Stroke Organization: Global Stroke Fact Sheet 2025. Int. J. Stroke 2025, 20, 132–144. [Google Scholar] [CrossRef]
- Wafa, H.A.; Wolfe, C.D.A.; Emmett, E.; Roth, G.A.; Johnson, C.O.; Wang, Y. Burden of Stroke in Europe: Thirty-Year Projections of Incidence, Prevalence, Deaths, and Disability-Adjusted Life Years. Stroke 2020, 51, 2418–2427. [Google Scholar] [CrossRef]
- Sacco, R.L.; Kasner, S.E.; Broderick, J.P.; Caplan, L.R.; Connors, J.J.B.; Culebras, A.; Elkind, M.S.V.; George, M.G.; Hamdan, A.D.; Higashida, R.T.; et al. An Updated Definition of Stroke for the 21st Century: A Statement for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2013, 44, 2064–2089. [Google Scholar] [CrossRef]
- Li, S. Spasticity, Motor Recovery, and Neural Plasticity after Stroke. Front. Neurol. 2017, 8, 120. [Google Scholar] [CrossRef]
- Al-Qazzaz, N.K.; Ali, S.H.; Ahmad, S.A.; Islam, S.; Mohamad, K. Cognitive Impairment and Memory Dysfunction after a Stroke Diagnosis: A Post-Stroke Memory Assessment. Neuropsychiatr. Dis. Treat. 2014, 10, 1677–1691. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S. Post-Stroke Mood and Emotional Disturbances: Pharmacological Therapy Based on Mechanisms. J. Stroke 2016, 18, 244–255. [Google Scholar] [CrossRef]
- Hurford, R.; Sekhar, A.; Hughes, T.A.T.; Muir, K.W. Diagnosis and Management of Acute Ischaemic Stroke. Pract. Neurol. 2020, 20, 304–316. [Google Scholar] [CrossRef]
- Bindawas, S.M.; Vennu, V.; Moftah, E. Improved Functions and Reduced Length of Stay after Inpatient Rehabilitation Programs in Older Adults with Stroke: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. NeuroRehabilitation 2017, 40, 369–390. [Google Scholar] [CrossRef]
- Rahayu, U.B.; Wibowo, S.; Setyopranoto, I.; Hibatullah Romli, M. Effectiveness of Physiotherapy Interventions in Brain Plasticity, Balance and Functional Ability in Stroke Survivors: A Randomized Controlled Trial. NeuroRehabilitation 2020, 47, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Hildebrand, M.W.; Geller, D.; Proffitt, R. Occupational Therapy Practice Guidelines for Adults With Stroke. Am. J. Occup. Ther. 2023, 77, 7705397010. [Google Scholar] [CrossRef] [PubMed]
- Brady, M.C.; Kelly, H.; Godwin, J.; Enderby, P.; Campbell, P. Speech and Language Therapy for Aphasia Following Stroke. Cochrane Database Syst. Rev. 2016, 2016, CD000425. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.D.; Ren, H.Y.; Prakash, R.; Vijayadas; Kumar, R. Outcomes of Neuropsychological Interventions of Stroke. Ann. Indian Acad. Neurol. 2013, 16, 319–328. [Google Scholar] [CrossRef]
- Byrd, E.M.; Jablonski, R.J.; Vance, D.E. Understanding Anosognosia for Hemiplegia After Stroke. Rehabil. Nurs. 2020, 45, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Griffin, C. Management of the Hemiplegic Shoulder Complex. Top. Stroke Rehabil. 2014, 21, 316–318. [Google Scholar] [CrossRef]
- Kiper, P.; Baba, A.; Agostini, M.; Turolla, A. Proprioceptive Based Training for Stroke Recovery. Proposal of New Treatment Modality for Rehabilitation of Upper Limb in Neurological Diseases. Arch. Physiother. 2015, 5, 6. [Google Scholar] [CrossRef]
- Kleim, J.A.; Jones, T.A. Principles of Experience-Dependent Neural Plasticity: Implications for Rehabilitation after Brain Damage. J. Speech Lang. Hear. Res. 2008, 51, S225–S239. [Google Scholar] [CrossRef]
- Schaechter, J.D. Motor Rehabilitation and Brain Plasticity after Hemiparetic Stroke. Prog. Neurobiol. 2004, 73, 61–72. [Google Scholar] [CrossRef]
- Chau, C.; Barbeau, H.; Rossignol, S. Early Locomotor Training with Clonidine in Spinal Cats. J. Neurophysiol. 1998, 79, 392–409. [Google Scholar] [CrossRef] [PubMed]
- Kimberley, T.J.; Samargia, S.; Moore, L.G.; Shakya, J.K.; Lang, C.E. Comparison of Amounts and Types of Practice during Rehabilitation for Traumatic Brain Injury and Stroke. J. Rehabil. Res. Dev. 2010, 47, 851–862. [Google Scholar] [CrossRef]
- Chien, W.-T.; Chong, Y.-Y.; Tse, M.-K.; Chien, C.-W.; Cheng, H.-Y. Robot-Assisted Therapy for Upper-Limb Rehabilitation in Subacute Stroke Patients: A Systematic Review and Meta-Analysis. Brain Behav. 2020, 10, e01742. [Google Scholar] [CrossRef]
- Langhorne, P.; Bernhardt, J.; Kwakkel, G. Stroke Rehabilitation. Lancet 2011, 377, 1693–1702. [Google Scholar] [CrossRef] [PubMed]
- Buckingham, S.; Anil, K.; Demain, S.; Gunn, H.; Jones, R.B.; Kent, B.; Logan, A.; Marsden, J.; Playford, E.D.; Freeman, J. Telerehabilitation for People with Physical Disabilities and Movement Impairment: Development and Evaluation of an Online Toolkit for Practitioners and Patients. Disabil. Rehabil. 2023, 45, 1885–1892. [Google Scholar] [CrossRef] [PubMed]
- Proietti, T.; Bandini, A. Wearable Technologies for Monitoring Upper Extremity Functions During Daily Life in Neurologically Impaired Individuals. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 2737–2748. [Google Scholar] [CrossRef]
- Veerbeek, J.M.; van Wegen, E.; van Peppen, R.; van der Wees, P.J.; Hendriks, E.; Rietberg, M.; Kwakkel, G. What Is the Evidence for Physical Therapy Poststroke? A Systematic Review and Meta-Analysis. PLoS ONE 2014, 9, e87987. [Google Scholar] [CrossRef]
- Ahmed, I.; Mustafaoglu, R.; Rossi, S.; Cavdar, F.A.; Agyenkwa, S.K.; Pang, M.Y.C.; Straudi, S. Non-Invasive Brain Stimulation Techniques for the Improvement of Upper Limb Motor Function and Performance in Activities of Daily Living After Stroke: A Systematic Review and Network Meta-Analysis. Arch. Phys. Med. Rehabil. 2023, 104, 1683–1697. [Google Scholar] [CrossRef]
- Camargo-Vargas, D.; Callejas-Cuervo, M.; Mazzoleni, S. Brain-Computer Interfaces Systems for Upper and Lower Limb Rehabilitation: A Systematic Review. Sensors 2021, 21, 4312. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, N.; Izumi, S.-I. Rehabilitation with Poststroke Motor Recovery: A Review with a Focus on Neural Plasticity. Stroke Res. Treat. 2013, 2013, 128641. [Google Scholar] [CrossRef]
- Aderinto, N.; AbdulBasit, M.O.; Olatunji, G.; Adejumo, T. Exploring the Transformative Influence of Neuroplasticity on Stroke Rehabilitation: A Narrative Review of Current Evidence. Ann. Med. Surg. 2023, 85, 4425–4432. [Google Scholar] [CrossRef]
- Yu, P.; Dong, R.; Wang, X.; Tang, Y.; Liu, Y.; Wang, C.; Zhao, L. Neuroimaging of Motor Recovery after Ischemic Stroke−Functional Reorganization of Motor Network. Neuroimage Clin. 2024, 43, 103636. [Google Scholar] [CrossRef]
- Dimyan, M.A.; Cohen, L.G. Neuroplasticity in the Context of Motor Rehabilitation after Stroke. Nat. Rev. Neurol. 2011, 7, 76–85. [Google Scholar] [CrossRef]
- Citri, A.; Malenka, R.C. Synaptic Plasticity: Multiple Forms, Functions, and Mechanisms. Neuropsychopharmacology 2008, 33, 18–41. [Google Scholar] [CrossRef]
- Kida, H.; Mitsushima, D. Mechanisms of Motor Learning Mediated by Synaptic Plasticity in Rat Primary Motor Cortex. Neurosci. Res. 2018, 128, 14–18. [Google Scholar] [CrossRef]
- Marzola, P.; Melzer, T.; Pavesi, E.; Gil-Mohapel, J.; Brocardo, P.S. Exploring the Role of Neuroplasticity in Development, Aging, and Neurodegeneration. Brain Sci. 2023, 13, 1610. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Man, H.; Ju, W.; Trimble, W.S.; MacDonald, J.F.; Wang, Y.T. Activation of Synaptic NMDA Receptors Induces Membrane Insertion of New AMPA Receptors and LTP in Cultured Hippocampal Neurons. Neuron 2001, 29, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Pinar, C.; Fontaine, C.J.; Triviño-Paredes, J.; Lottenberg, C.P.; Gil-Mohapel, J.; Christie, B.R. Revisiting the Flip Side: Long-Term Depression of Synaptic Efficacy in the Hippocampus. Neurosci. Biobehav. Rev. 2017, 80, 394–413. [Google Scholar] [CrossRef] [PubMed]
- Buetefisch, C.M. Role of the Contralesional Hemisphere in Post-Stroke Recovery of Upper Extremity Motor Function. Front. Neurol. 2015, 6, 214. [Google Scholar] [CrossRef]
- Di Pino, G.; Pellegrino, G.; Assenza, G.; Capone, F.; Ferreri, F.; Formica, D.; Ranieri, F.; Tombini, M.; Ziemann, U.; Rothwell, J.C.; et al. Modulation of Brain Plasticity in Stroke: A Novel Model for Neurorehabilitation. Nat. Rev. Neurol. 2014, 10, 597–608. [Google Scholar] [CrossRef]
- Buccino, G.; Binkofski, F.; Fink, G.R.; Fadiga, L.; Fogassi, L.; Gallese, V.; Seitz, R.J.; Zilles, K.; Rizzolatti, G.; Freund, H.J. Action Observation Activates Premotor and Parietal Areas in a Somatotopic Manner: An fMRI Study. Eur. J. Neurosci. 2001, 13, 400–404. [Google Scholar] [CrossRef]
- Kessler, K.; Biermann-Ruben, K.; Jonas, M.; Siebner, H.R.; Bäumer, T.; Münchau, A.; Schnitzler, A. Investigating the Human Mirror Neuron System by Means of Cortical Synchronization during the Imitation of Biological Movements. Neuroimage 2006, 33, 227–238. [Google Scholar] [CrossRef]
- Simon, S.; Mukamel, R. Sensitivity to Perception Level Differentiates Two Subnetworks within the Mirror Neuron System. Soc. Cogn. Affect. Neurosci. 2017, 12, 861–870. [Google Scholar] [CrossRef]
- Rizzolatti, G.; Fadiga, L.; Gallese, V.; Fogassi, L. Premotor Cortex and the Recognition of Motor Actions. Brain Res. Cogn. Brain Res. 1996, 3, 131–141. [Google Scholar] [CrossRef]
- Emerson, J.R.; Binks, J.A.; Scott, M.W.; Kenny, R.P.W.; Eaves, D.L. Combined Action Observation and Motor Imagery Therapy: A Novel Method for Post-Stroke Motor Rehabilitation. AIMS Neurosci. 2018, 5, 236–252. [Google Scholar] [CrossRef]
- Garrison, K.A.; Winstein, C.J.; Aziz-Zadeh, L. The Mirror Neuron System: A Neural Substrate for Methods in Stroke Rehabilitation. Neurorehabil. Neural Repair 2010, 24, 404–412. [Google Scholar] [CrossRef]
- Thieme, H.; Morkisch, N.; Mehrholz, J.; Pohl, M.; Behrens, J.; Borgetto, B.; Dohle, C. Mirror Therapy for Improving Motor Function after Stroke. Cochrane Database Syst. Rev. 2018, 7, CD008449. [Google Scholar] [CrossRef] [PubMed]
- Heck, D.H.; Fox, M.B.; Correia Chapman, B.; McAfee, S.S.; Liu, Y. Cerebellar Control of Thalamocortical Circuits for Cognitive Function: A Review of Pathways and a Proposed Mechanism. Front. Syst. Neurosci. 2023, 17, 1126508. [Google Scholar] [CrossRef] [PubMed]
- Popa, L.S.; Ebner, T.J. Cerebellum, Predictions and Errors. Front. Cell Neurosci. 2018, 12, 524. [Google Scholar] [CrossRef] [PubMed]
- Boddington, L.J.; Reynolds, J.N.J. Targeting Interhemispheric Inhibition with Neuromodulation to Enhance Stroke Rehabilitation. Brain Stimul. 2017, 10, 214–222. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, Y.; Zhang, Y. Effects of Cerebellar Non-Invasive Stimulation on Neurorehabilitation in Stroke Patients: An Updated Systematic Review. Biomedicines 2024, 12, 1348. [Google Scholar] [CrossRef]
- Ntakou, E.A.; Nasios, G.; Nousia, A.; Siokas, V.; Messinis, L.; Dardiotis, E. Targeting Cerebellum with Non-Invasive Transcranial Magnetic or Current Stimulation after Cerebral Hemispheric Stroke-Insights for Corticocerebellar Network Reorganization: A Comprehensive Review. Healthcare 2022, 10, 2401. [Google Scholar] [CrossRef]
- Wessel, M.J.; Hummel, F.C. Non-Invasive Cerebellar Stimulation: A Promising Approach for Stroke Recovery? Cerebellum 2018, 17, 359–371. [Google Scholar] [CrossRef]
- Kricheldorff, J.; Göke, K.; Kiebs, M.; Kasten, F.H.; Herrmann, C.S.; Witt, K.; Hurlemann, R. Evidence of Neuroplastic Changes after Transcranial Magnetic, Electric, and Deep Brain Stimulation. Brain Sci. 2022, 12, 929. [Google Scholar] [CrossRef]
- Terranova, C.; Rizzo, V.; Cacciola, A.; Chillemi, G.; Calamuneri, A.; Milardi, D.; Quartarone, A. Is There a Future for Non-Invasive Brain Stimulation as a Therapeutic Tool? Front. Neurol. 2018, 9, 1146. [Google Scholar] [CrossRef]
- Peng, Z.; Zhou, C.; Xue, S.; Bai, J.; Yu, S.; Li, X.; Wang, H.; Tan, Q. Mechanism of Repetitive Transcranial Magnetic Stimulation for Depression. Shanghai Arch. Psychiatry 2018, 30, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Huerta, P.T.; Volpe, B.T. Transcranial Magnetic Stimulation, Synaptic Plasticity and Network Oscillations. J. Neuroeng. Rehabil. 2009, 6, 7. [Google Scholar] [CrossRef]
- Brodie, S.M.; Meehan, S.; Borich, M.R.; Boyd, L.A. 5 Hz Repetitive Transcranial Magnetic Stimulation over the Ipsilesional Sensory Cortex Enhances Motor Learning after Stroke. Front. Hum. Neurosci. 2014, 8, 143. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Chen, S.; Chen, J.; Zhang, S.; Peng, Y.; Chen, Y.; Chen, J.; Li, X.; Chen, K.; Cai, G.; et al. Intermittent Theta Burst Stimulation Increases Natural Oscillatory Frequency in Ipsilesional Motor Cortex Post-Stroke: A Transcranial Magnetic Stimulation and Electroencephalography Study. Front. Aging Neurosci. 2022, 14, 818340. [Google Scholar] [CrossRef]
- Kim, S.; Lee, H.S.; Kim, H.; Kim, D.H.; Chang, W.H. Additional Effects of Facilitatory Cerebellar Repetitive Transcranial Magnetic Stimulation on Inhibitory Repetitive Transcranial Magnetic Stimulation over the Unaffected Contralesional Primary Motor Cortex for Motor Recovery in Subacute Ischemic Stroke Patients. J. Clin. Med. 2025, 14, 2315. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.-S.; Kwon, B.S.; Seo, H.G.; Park, J.; Paik, N.-J. Low-Frequency Repetitive Transcranial Magnetic Stimulation Over Contralesional Motor Cortex for Motor Recovery in Subacute Ischemic Stroke: A Randomized Sham-Controlled Trial. Neurorehabil. Neural Repair 2020, 34, 856–867. [Google Scholar] [CrossRef]
- Lee, H.Y.; Ryu, B. Effects of Repetitive Transcranial Magnetic Stimulation on Upper and Lower Limb Motor Function and Spasticity After Stroke: A Meta-Analysis. Brain Neurorehabil. 2025, 18, e5. [Google Scholar] [CrossRef]
- Xie, G.; Wang, T.; Deng, L.; Zhou, L.; Zheng, X.; Zhao, C.; Li, L.; Sun, H.; Liao, J.; Yuan, K. Repetitive Transcranial Magnetic Stimulation for Motor Function in Stroke: A Systematic Review and Meta-Analysis of Randomized Controlled Studies. Syst. Rev. 2025, 14, 47. [Google Scholar] [CrossRef]
- Yamada, Y.; Sumiyoshi, T. Neurobiological Mechanisms of Transcranial Direct Current Stimulation for Psychiatric Disorders; Neurophysiological, Chemical, and Anatomical Considerations. Front. Hum. Neurosci. 2021, 15, 631838. [Google Scholar] [CrossRef] [PubMed]
- Edwards, D.J.; Krebs, H.I.; Rykman, A.; Zipse, J.; Thickbroom, G.W.; Mastaglia, F.L.; Pascual-Leone, A.; Volpe, B.T. Raised Corticomotor Excitability of M1 Forearm Area Following Anodal tDCS Is Sustained during Robotic Wrist Therapy in Chronic Stroke. Restor. Neurol. Neurosci. 2009, 27, 199–207. [Google Scholar] [CrossRef]
- Qin, Y.; Xu, J.; Ng, S.S.M. Effects of Transcranial Direct Current Stimulation (tDCS) on Motor Function among People with Stroke: Evidence Mapping. Syst. Rev. 2025, 14, 60. [Google Scholar] [CrossRef]
- Yu, L.; Chen, H.; Chen, C.; Lin, Y.; Huang, Z.; Wang, J.; Chen, Q. Efficacy of Anodal Transcranial Direct Current Stimulation for Upper Extremity Function after Ischemic Stroke: A Systematic Review of Parallel Randomized Clinical Trials. J. Stroke Cerebrovasc. Dis. 2025, 34, 108112. [Google Scholar] [CrossRef]
- Bradnam, L.V.; Stinear, C.M.; Barber, P.A.; Byblow, W.D. Contralesional Hemisphere Control of the Proximal Paretic Upper Limb Following Stroke. Cereb. Cortex 2012, 22, 2662–2671. [Google Scholar] [CrossRef]
- Martino Cinnera, A.; Spampinato, D.A.; Pezzopane, V.; Antonioni, A.; Fregna, G.; Baroni, A.; Casarotto, A.; Di Lorenzo, F.; Bonnì, S.; Straudi, S.; et al. Promoting Spike-Timing-Dependent Plasticity via Paired Associative Stimulation: From Healthy Subjects to Clinical Applications. Neurosci. Biobehav. Rev. 2025, 177, 106314. [Google Scholar] [CrossRef]
- Baroni, A.; Antonioni, A.; Fregna, G.; Lamberti, N.; Manfredini, F.; Koch, G.; D’Ausilio, A.; Straudi, S. The Effectiveness of Paired Associative Stimulation on Motor Recovery after Stroke: A Scoping Review. Neurol. Int. 2024, 16, 567–589. [Google Scholar] [CrossRef] [PubMed]
- Falaschi, D.; Stagg, C.; Sel, A. Promoting Motor Recovery after Stroke Using Cortico-Cortical Paired Associative Stimulation. EClinicalMedicine 2025, 88, 103473. [Google Scholar] [CrossRef]
- Patel, J.; Shim, I.; Agrawal, D.K. Interventions for Neural Plasticity in Stroke Recovery. Arch. Intern. Med. Res. 2025, 8, 246–258. [Google Scholar] [CrossRef]
- Schweighofer, N.; Choi, Y.; Winstein, C.; Gordon, J. Task-Oriented Rehabilitation Robotics. Am. J. Phys. Med. Rehabil. 2012, 91, S270–S279. [Google Scholar] [CrossRef] [PubMed]
- Ko, H.; Kim, H.; Kim, Y.; Sohn, M.K.; Jee, S. Dose-Response Effect of Daily Rehabilitation Time on Functional Gain in Stroke Patients. Ann. Rehabil. Med. 2020, 44, 101–108. [Google Scholar] [CrossRef]
- Jette, A.M. The Importance of Dose of a Rehabilitation Intervention. Phys. Ther. 2017, 97, 1043. [Google Scholar] [CrossRef] [PubMed]
- Lang, C.E.; Lohse, K.R.; Birkenmeier, R.L. Dose and Timing in Neurorehabilitation: Prescribing Motor Therapy after Stroke. Curr. Opin. Neurol. 2015, 28, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Hong, R.; Li, B.; Bao, Y.; Liu, L.; Jin, L. Therapeutic Robots for Post-Stroke Rehabilitation. Med. Rev. 2024, 4, 55–67. [Google Scholar] [CrossRef]
- Mehrholz, J.; Pohl, M.; Platz, T.; Kugler, J.; Elsner, B. Electromechanical and Robot-Assisted Arm Training for Improving Activities of Daily Living, Arm Function, and Arm Muscle Strength after Stroke. Cochrane Database Syst. Rev. 2018, 9, CD006876. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Shi, X.; Xue, X.; Deng, Z. Efficacy of Robot-Assisted Training on Rehabilitation of Upper Limb Function in Patients with Stroke: A Systematic Review and Meta-Analysis. Arch. Phys. Med. Rehabil. 2023, 104, 1498–1513. [Google Scholar] [CrossRef]
- Ferreira, F.M.R.M.; Chaves, M.E.A.; Oliveira, V.C.; Van Petten, A.M.V.N.; Vimieiro, C.B.S. Effectiveness of Robot Therapy on Body Function and Structure in People with Limited Upper Limb Function: A Systematic Review and Meta-Analysis. PLoS ONE 2018, 13, e0200330. [Google Scholar] [CrossRef]
- De Iaco, L.; Veerbeek, J.M.; Ket, J.C.F.; Kwakkel, G. Upper Limb Robots for Recovery of Motor Arm Function in Patients With Stroke: A Systematic Review and Meta-Analysis. Neurology 2024, 103, e209495. [Google Scholar] [CrossRef]
- Villafañe, J.H.; Taveggia, G.; Galeri, S.; Bissolotti, L.; Mullè, C.; Imperio, G.; Valdes, K.; Borboni, A.; Negrini, S. Efficacy of Short-Term Robot-Assisted Rehabilitation in Patients with Hand Paralysis After Stroke: A Randomized Clinical Trial. Hand 2018, 13, 95–102. [Google Scholar] [CrossRef]
- Veerbeek, J.M.; Langbroek-Amersfoort, A.C.; van Wegen, E.E.H.; Meskers, C.G.M.; Kwakkel, G. Effects of Robot-Assisted Therapy for the Upper Limb After Stroke. Neurorehabil. Neural Repair 2017, 31, 107–121. [Google Scholar] [CrossRef]
- Zhang, X.; Yue, Z.; Wang, J. Robotics in Lower-Limb Rehabilitation after Stroke. Behav. Neurol. 2017, 2017, 3731802. [Google Scholar] [CrossRef] [PubMed]
- Mehrholz, J.; Thomas, S.; Kugler, J.; Pohl, M.; Elsner, B. Electromechanical-Assisted Training for Walking after Stroke. Cochrane Database Syst. Rev. 2020, 10, CD006185. [Google Scholar] [CrossRef] [PubMed]
- Moucheboeuf, G.; Griffier, R.; Gasq, D.; Glize, B.; Bouyer, L.; Dehail, P.; Cassoudesalle, H. Effects of Robotic Gait Training after Stroke: A Meta-Analysis. Ann. Phys. Rehabil. Med. 2020, 63, 518–534. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Xu, G.; Wu, Q. The Effect of the Lokomat® Robotic-Orthosis System on Lower Extremity Rehabilitation in Patients with Stroke: A Systematic Review and Meta-Analysis. Front. Neurol. 2023, 14, 1260652. [Google Scholar] [CrossRef]
- Calabrò, R.S.; Sorrentino, G.; Cassio, A.; Mazzoli, D.; Andrenelli, E.; Bizzarini, E.; Campanini, I.; Carmignano, S.M.; Cerulli, S.; Chisari, C.; et al. Robotic-Assisted Gait Rehabilitation Following Stroke: A Systematic Review of Current Guidelines and Practical Clinical Recommendations. Eur. J. Phys. Rehabil. Med. 2021, 57, 460–471. [Google Scholar] [CrossRef]
- Lo, K.; Stephenson, M.; Lockwood, C. Effectiveness of Robotic Assisted Rehabilitation for Mobility and Functional Ability in Adult Stroke Patients: A Systematic Review. JBI Database Syst. Rev. Implement. Rep. 2017, 15, 3049–3091. [Google Scholar] [CrossRef]
- Doumen, S.; Sorba, L.; Feys, P.; Tedesco Triccas, L. Efficacy and Dose of Rehabilitation Approaches for Severe Upper Limb Impairments and Disability During Early Acute and Subacute Stroke: A Systematic Review. Phys. Ther. 2023, 103, pzad002. [Google Scholar] [CrossRef]
- Pila, O.; Koeppel, T.; Grosmaire, A.-G.; Duret, C. Impact of Dose of Combined Conventional and Robotic Therapy on Upper Limb Motor Impairments and Costs in Subacute Stroke Patients: A Retrospective Study. Front. Neurol. 2022, 13, 770259. [Google Scholar] [CrossRef]
- Wagner, T.H.; Lo, A.C.; Peduzzi, P.; Bravata, D.M.; Huang, G.D.; Krebs, H.I.; Ringer, R.J.; Federman, D.G.; Richards, L.G.; Haselkorn, J.K.; et al. An Economic Analysis of Robot-Assisted Therapy for Long-Term Upper-Limb Impairment after Stroke. Stroke 2011, 42, 2630–2632. [Google Scholar] [CrossRef]
- Morone, G.; Palomba, A.; Martino Cinnera, A.; Agostini, M.; Aprile, I.; Arienti, C.; Paci, M.; Casanova, E.; Marino, D.; LA Rosa, G.; et al. Systematic Review of Guidelines to Identify Recommendations for Upper Limb Robotic Rehabilitation after Stroke. Eur. J. Phys. Rehabil. Med. 2021, 57, 238–245. [Google Scholar] [CrossRef]
- Chen, J.; Or, C.K.; Chen, T. Effectiveness of Using Virtual Reality-Supported Exercise Therapy for Upper Extremity Motor Rehabilitation in Patients with Stroke: Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Med. Internet Res. 2022, 24, e24111. [Google Scholar] [CrossRef]
- Riva, G. Virtual Reality in Psychotherapy: Review. Cyberpsychol. Behav. 2005, 8, 220–230, discussion 231–240. [Google Scholar] [CrossRef]
- Selzer, M.; Clarke, S.; Cohen, L.; Duncan, P.; Gage, F. Textbook of Neural Repair and Rehabilitation: Volume 2, Medical Neurorehabilitation; Cambridge University Press: Cambridge, UK, 2006; ISBN 978-1-139-45084-3. [Google Scholar]
- van de Ridder, J.M.M.; Stokking, K.M.; McGaghie, W.C.; ten Cate, O.T.J. What Is Feedback in Clinical Education? Med. Educ. 2008, 42, 189–197. [Google Scholar] [CrossRef]
- Cirstea, M.C.; Levin, M.F. Improvement of Arm Movement Patterns and Endpoint Control Depends on Type of Feedback during Practice in Stroke Survivors. Neurorehabil. Neural Repair 2007, 21, 398–411. [Google Scholar] [CrossRef]
- Bargeri, S.; Scalea, S.; Agosta, F.; Banfi, G.; Corbetta, D.; Filippi, M.; Sarasso, E.; Turolla, A.; Castellini, G.; Gianola, S. Effectiveness and Safety of Virtual Reality Rehabilitation after Stroke: An Overview of Systematic Reviews. EClinicalMedicine 2023, 64, 102220. [Google Scholar] [CrossRef]
- Hao, J.; Xie, H.; Harp, K.; Chen, Z.; Siu, K.-C. Effects of Virtual Reality Intervention on Neural Plasticity in Stroke Rehabilitation: A Systematic Review. Arch. Phys. Med. Rehabil. 2022, 103, 523–541. [Google Scholar] [CrossRef]
- Muratori, L.M.; Lamberg, E.M.; Quinn, L.; Duff, S.V. Applying Principles of Motor Learning and Control to Upper Extremity Rehabilitation. J. Hand Ther. 2013, 26, 94–102, quiz 103. [Google Scholar] [CrossRef]
- Bolognini, N.; Russo, C.; Edwards, D.J. The Sensory Side of Post-Stroke Motor Rehabilitation. Restor. Neurol. Neurosci. 2016, 34, 571–586. [Google Scholar] [CrossRef] [PubMed]
- Kiper, P.; Godart, N.; Cavalier, M.; Berard, C.; Cieślik, B.; Federico, S.; Kiper, A.; Pellicciari, L.; Meroni, R. Effects of Immersive Virtual Reality on Upper-Extremity Stroke Rehabilitation: A Systematic Review with Meta-Analysis. J. Clin. Med. 2023, 13, 146. [Google Scholar] [CrossRef] [PubMed]
- Al-Whaibi, R.M.; Al-Jadid, M.S.; ElSerougy, H.R.; Badawy, W.M. Effectiveness of Virtual Reality-Based Rehabilitation versus Conventional Therapy on Upper Limb Motor Function of Chronic Stroke Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Physiother. Theory Pract. 2022, 38, 2402–2416. [Google Scholar] [CrossRef] [PubMed]
- Laver, K.E.; Lange, B.; George, S.; Deutsch, J.E.; Saposnik, G.; Crotty, M. Virtual Reality for Stroke Rehabilitation. Cochrane Database Syst. Rev. 2017, 11, CD008349. [Google Scholar] [CrossRef]
- Khan, A.; Imam, Y.Z.; Muneer, M.; Al Jerdi, S.; Gill, S.K. Virtual Reality in Stroke Recovery: A Meta-Review of Systematic Reviews. Bioelectron. Med. 2024, 10, 23. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, M.; Polonio-López, B.; Corregidor-Sánchez, A.-I.; Martín-Conty, J.L.; Mohedano-Moriano, A.; Criado-Álvarez, J.-J. Can Specific Virtual Reality Combined with Conventional Rehabilitation Improve Poststroke Hand Motor Function? A Randomized Clinical Trial. J. Neuroeng. Rehabil. 2023, 20, 38. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Kim, Y.L.; Lee, S.M. Effects of Virtual Reality-Based Training and Task-Oriented Training on Balance Performance in Stroke Patients. J. Phys. Ther. Sci. 2015, 27, 1883–1888. [Google Scholar] [CrossRef]
- Cano Porras, D.; Siemonsma, P.; Inzelberg, R.; Zeilig, G.; Plotnik, M. Advantages of Virtual Reality in the Rehabilitation of Balance and Gait. Neurology 2018, 90, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Yaman, F.; Akdeniz Leblebicier, M.; Okur, İ.; İmal Kızılkaya, M.; Kavuncu, V. Is Virtual Reality Training Superior to Conventional Treatment in Improving Lower Extremity Motor Function in Chronic Hemiplegic Patients? Turk. J. Phys. Med. Rehabil. 2022, 68, 391–398. [Google Scholar] [CrossRef]
- Brunner, I.; Skouen, J.S.; Hofstad, H.; Aßmus, J.; Becker, F.; Sanders, A.-M.; Pallesen, H.; Qvist Kristensen, L.; Michielsen, M.; Thijs, L.; et al. Virtual Reality Training for Upper Extremity in Subacute Stroke (VIRTUES): A Multicenter RCT. Neurology 2017, 89, 2413–2421. [Google Scholar] [CrossRef]
- Saposnik, G.; Cohen, L.G.; Mamdani, M.; Pooyania, S.; Ploughman, M.; Cheung, D.; Shaw, J.; Hall, J.; Nord, P.; Dukelow, S.; et al. Efficacy and Safety of Non-Immersive Virtual Reality Exercising in Stroke Rehabilitation (EVREST): A Randomised, Multicentre, Single-Blind, Controlled Trial. Lancet Neurol. 2016, 15, 1019–1027. [Google Scholar] [CrossRef]
- Peckham, P.H.; Knutson, J.S. Functional Electrical Stimulation for Neuromuscular Applications. Annu. Rev. Biomed. Eng. 2005, 7, 327–360. [Google Scholar] [CrossRef] [PubMed]
- Popovic, M.R.; Masani, K.; Micera, S. Functional Electrical Stimulation Therapy: Recovery of Function Following Spinal Cord Injury and Stroke. In Neurorehabilitation Technology; Dietz, V., Nef, T., Rymer, W.Z., Eds.; Springer London: London, UK, 2012; pp. 105–121. ISBN 978-1-4471-2276-0. [Google Scholar]
- Khan, M.A.; Fares, H.; Ghayvat, H.; Brunner, I.C.; Puthusserypady, S.; Razavi, B.; Lansberg, M.; Poon, A.; Meador, K.J. A Systematic Review on Functional Electrical Stimulation Based Rehabilitation Systems for Upper Limb Post-Stroke Recovery. Front. Neurol. 2023, 14, 1272992. [Google Scholar] [CrossRef]
- Alon, G.; Levitt, A.F.; McCarthy, P.A. Functional Electrical Stimulation Enhancement of Upper Extremity Functional Recovery during Stroke Rehabilitation: A Pilot Study. Neurorehabil. Neural Repair 2007, 21, 207–215. [Google Scholar] [CrossRef]
- Chan, M.K.-L.; Tong, R.K.-Y.; Chung, K.Y.-K. Bilateral Upper Limb Training with Functional Electric Stimulation in Patients with Chronic Stroke. Neurorehabil. Neural Repair 2009, 23, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Eraifej, J.; Clark, W.; France, B.; Desando, S.; Moore, D. Effectiveness of Upper Limb Functional Electrical Stimulation after Stroke for the Improvement of Activities of Daily Living and Motor Function: A Systematic Review and Meta-Analysis. Syst. Rev. 2017, 6, 40. [Google Scholar] [CrossRef]
- Howlett, O.A.; Lannin, N.A.; Ada, L.; McKinstry, C. Functional Electrical Stimulation Improves Activity after Stroke: A Systematic Review with Meta-Analysis. Arch. Phys. Med. Rehabil. 2015, 96, 934–943. [Google Scholar] [CrossRef]
- Pomeroy, V.M.; King, L.; Pollock, A.; Baily-Hallam, A.; Langhorne, P. Electrostimulation for Promoting Recovery of Movement or Functional Ability after Stroke. Cochrane Database Syst. Rev. 2006, 2006, CD003241. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, N.; Popovic, M.R.; Zivanovic, V. Effect of Intensive Functional Electrical Stimulation Therapy on Upper-Limb Motor Recovery after Stroke: Case Study of a Patient with Chronic Stroke. Physiother. Can. 2013, 65, 20–28. [Google Scholar] [CrossRef]
- Meadmore, K.L.; Exell, T.A.; Hallewell, E.; Hughes, A.-M.; Freeman, C.T.; Kutlu, M.; Benson, V.; Rogers, E.; Burridge, J.H. The Application of Precisely Controlled Functional Electrical Stimulation to the Shoulder, Elbow and Wrist for Upper Limb Stroke Rehabilitation: A Feasibility Study. J. Neuroeng. Rehabil. 2014, 11, 105. [Google Scholar] [CrossRef] [PubMed]
- Sabut, S.K.; Sikdar, C.; Mondal, R.; Kumar, R.; Mahadevappa, M. Restoration of Gait and Motor Recovery by Functional Electrical Stimulation Therapy in Persons with Stroke. Disabil. Rehabil. 2010, 32, 1594–1603. [Google Scholar] [CrossRef]
- Yan, T.; Hui-Chan, C.W.Y.; Li, L.S.W. Functional Electrical Stimulation Improves Motor Recovery of the Lower Extremity and Walking Ability of Subjects with First Acute Stroke: A Randomized Placebo-Controlled Trial. Stroke 2005, 36, 80–85. [Google Scholar] [CrossRef]
- You, G.; Liang, H.; Yan, T. Functional Electrical Stimulation Early after Stroke Improves Lower Limb Motor Function and Ability in Activities of Daily Living. NeuroRehabilitation 2014, 35, 381–389. [Google Scholar] [CrossRef]
- Pereira, S.; Mehta, S.; McIntyre, A.; Lobo, L.; Teasell, R.W. Functional Electrical Stimulation for Improving Gait in Persons with Chronic Stroke. Top. Stroke Rehabil. 2012, 19, 491–498. [Google Scholar] [CrossRef]
- Zhang, X.-H.; Liu, J.-Y.; Han, P.; Wang, Y.-L.; Xiao, P. Clinical Efficacy of Functional Electrical Stimulation-Assisted Rehabilitation Cycling on the Function of Lower Limbs in Patients with Stroke. Curr. Neurovasc Res. 2021, 18, 318–323. [Google Scholar] [CrossRef]
- Debeuf, R.; De Vlieger, D.; Defour, A.; Feyen, K.; Guida, S.; Cuypers, L.; Firouzi, M.; Tassenoy, A.; Swinnen, E.; Beckwée, D.; et al. Electrotherapy in Stroke Rehabilitation Can Improve Lower Limb Muscle Characteristics: A Systematic Review and Meta-Analysis. Disabil. Rehabil. 2025, 47, 16–32. [Google Scholar] [CrossRef]
- Sousa, A.S.P.; Moreira, J.; Silva, C.; Mesquita, I.; Macedo, R.; Silva, A.; Santos, R. Usability of Functional Electrical Stimulation in Upper Limb Rehabilitation in Post-Stroke Patients: A Narrative Review. Sensors 2022, 22, 1409. [Google Scholar] [CrossRef]
- Nicolas-Alonso, L.F.; Gomez-Gil, J. Brain Computer Interfaces, a Review. Sensors 2012, 12, 1211–1279. [Google Scholar] [CrossRef] [PubMed]
- Shih, J.J.; Krusienski, D.J.; Wolpaw, J.R. Brain-Computer Interfaces in Medicine. Mayo Clin. Proc. 2012, 87, 268–279. [Google Scholar] [CrossRef] [PubMed]
- Mridha, M.F.; Das, S.C.; Kabir, M.M.; Lima, A.A.; Islam, M.R.; Watanobe, Y. Brain-Computer Interface: Advancement and Challenges. Sensors 2021, 21, 5746. [Google Scholar] [CrossRef]
- Cervera, M.A.; Soekadar, S.R.; Ushiba, J.; Millán, J.D.R.; Liu, M.; Birbaumer, N.; Garipelli, G. Brain-Computer Interfaces for Post-Stroke Motor Rehabilitation: A Meta-Analysis. Ann. Clin. Transl. Neurol. 2018, 5, 651–663. [Google Scholar] [CrossRef]
- Wang, A.; Tian, X.; Jiang, D.; Yang, C.; Xu, Q.; Zhang, Y.; Zhao, S.; Zhang, X.; Jing, J.; Wei, N.; et al. Rehabilitation with Brain-Computer Interface and Upper Limb Motor Function in Ischemic Stroke: A Randomized Controlled Trial. Med 2024, 5, 559–569.e4. [Google Scholar] [CrossRef]
- Mane, R.; Ang, K.K.; Guan, C. Brain-Computer Interface for Stroke Rehabilitation. In Handbook of Neuroengineering; Thakor, N.V., Ed.; Springer: Singapore, 2021; pp. 1–31. ISBN 978-981-15-2848-4. [Google Scholar]
- Liu, X.; Zhang, W.; Li, W.; Zhang, S.; Lv, P.; Yin, Y. Effects of Motor Imagery Based Brain-Computer Interface on Upper Limb Function and Attention in Stroke Patients with Hemiplegia: A Randomized Controlled Trial. BMC Neurol. 2023, 23, 136. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.-Z.; Wu, J.-J.; Cao, Z.; Hua, X.-Y.; Zheng, M.-X.; Xing, X.-X.; Ma, J.; Xu, J.-G. Motor Imagery-Based Brain-Computer Interface Rehabilitation Programs Enhance Upper Extremity Performance and Cortical Activation in Stroke Patients. J. Neuroeng. Rehabil. 2024, 21, 91. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, X.; Li, Z.; Zhang, Q.; Xue, C.; Huai, Y. The Effect of Brain-Computer Interface Training on Rehabilitation of Upper Limb Dysfunction After Stroke: A Meta-Analysis of Randomized Controlled Trials. Front. Neurosci. 2021, 15, 766879. [Google Scholar] [CrossRef]
- Carvalho, R.; Dias, N.; Cerqueira, J.J. Brain-Machine Interface of Upper Limb Recovery in Stroke Patients Rehabilitation: A Systematic Review. Physiother. Res. Int. 2019, 24, e1764. [Google Scholar] [CrossRef]
- Mrachacz-Kersting, N.; Jiang, N.; Stevenson, A.J.T.; Niazi, I.K.; Kostic, V.; Pavlovic, A.; Radovanovic, S.; Djuric-Jovicic, M.; Agosta, F.; Dremstrup, K.; et al. Efficient Neuroplasticity Induction in Chronic Stroke Patients by an Associative Brain-Computer Interface. J. Neurophysiol. 2016, 115, 1410–1421. [Google Scholar] [CrossRef]
- Sebastián-Romagosa, M.; Cho, W.; Ortner, R.; Sieghartsleitner, S.; Von Oertzen, T.J.; Kamada, K.; Laureys, S.; Allison, B.Z.; Guger, C. Brain-Computer Interface Treatment for Gait Rehabilitation in Stroke Patients. Front. Neurosci. 2023, 17, 1256077. [Google Scholar] [CrossRef]
- Sieghartsleitner, S.; Sebastián-Romagosa, M.; Cho, W.; Grünwald, J.; Ortner, R.; Scharinger, J.; Kamada, K.; Guger, C. Upper Extremity Training Followed by Lower Extremity Training with a Brain-Computer Interface Rehabilitation System. Front. Neurosci. 2024, 18, 1346607. [Google Scholar] [CrossRef]
- Brunner, I.; Lundquist, C.B.; Pedersen, A.R.; Spaich, E.G.; Dosen, S.; Savic, A. Brain Computer Interface Training with Motor Imagery and Functional Electrical Stimulation for Patients with Severe Upper Limb Paresis after Stroke: A Randomized Controlled Pilot Trial. J. Neuroeng. Rehabil. 2024, 21, 10. [Google Scholar] [CrossRef] [PubMed]
- Teo, W.-P.; Chew, E. Is Motor-Imagery Brain-Computer Interface Feasible in Stroke Rehabilitation? PM&R 2014, 6, 723–728. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Zhao, D.; Zhong, L.; Wang, Y.; Hao, M.; Ma, J. Efficacy and Safety of Brain-Computer Interface for Stroke Rehabilitation: An Overview of Systematic Review. Front. Hum. Neurosci. 2025, 19, 1525293. [Google Scholar] [CrossRef] [PubMed]
- Rithiely, B.; Shirahige, L.; Lima, P.; Souza, M.; Marques, D.; Brito, R.; Baltar, A.; Duarte-Moreira, R.J.; Barreto, G.; Andrade, R.; et al. Non-Invasive Brain Stimulation for Stroke-Related Motor Impairment and Disability: An Umbrella Review of Systematic Review and Meta-Analysis. Front. Neurosci. 2025, 19, 1633986. [Google Scholar] [CrossRef]
- Takeuchi, N.; Izumi, S.-I. Noninvasive Brain Stimulation for Motor Recovery after Stroke: Mechanisms and Future Views. Stroke Res. Treat. 2012, 2012, 584727. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, H.; Ma, J.; Gu, L.; Li, X. Efficacy of Combined Non-Invasive Brain Stimulation and Robot-Assisted Gait Training on Lower Extremity Recovery Post-Stroke: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Neurol. 2025, 16, 1500020. [Google Scholar] [CrossRef]
- Chen, G.; Lin, T.; Wu, M.; Cai, G.; Ding, Q.; Xu, J.; Li, W.; Wu, C.; Chen, H.; Lan, Y. Effects of Repetitive Transcranial Magnetic Stimulation on Upper-Limb and Finger Function in Stroke Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Neurol. 2022, 13, 940467. [Google Scholar] [CrossRef]
- Tang, Z.; Han, K.; Wang, R.; Zhang, Y.; Zhang, H. Excitatory Repetitive Transcranial Magnetic Stimulation Over the Ipsilesional Hemisphere for Upper Limb Motor Function After Stroke: A Systematic Review and Meta-Analysis. Front. Neurol. 2022, 13, 918597. [Google Scholar] [CrossRef]
- Hofmeijer, J.; Ham, F.; Kwakkel, G. Evidence of rTMS for Motor or Cognitive Stroke Recovery: Hype or Hope? Stroke 2023, 54, 2500–2511. [Google Scholar] [CrossRef]
- Lee, J.-H.; Jeun, Y.-J.; Park, H.Y.; Jung, Y.-J. Effect of Transcranial Direct Current Stimulation Combined with Rehabilitation on Arm and Hand Function in Stroke Patients: A Systematic Review and Meta-Analysis. Healthcare 2021, 9, 1705. [Google Scholar] [CrossRef]
- Graef, P.; Dadalt, M.L.R.; da Silva Rodrigués, D.A.M.; Stein, C.; de Souza Pagnussat, A. Transcranial Magnetic Stimulation Combined with Upper-Limb Training for Improving Function after Stroke: A Systematic Review and Meta-Analysis. J. Neurol. Sci. 2016, 369, 149–158. [Google Scholar] [CrossRef]
- Lin, X.; Li, H.; Chen, N.; Wu, X. Network Meta-Analysis of 4 Rehabilitation Methods With rTMS on Upper Limb Function and Daily Activities in Patients with Stroke. Stroke 2025, 56, 2644–2657. [Google Scholar] [CrossRef] [PubMed]
- van Lieshout, E.C.C.; van der Worp, H.B.; Visser-Meily, J.M.A.; Dijkhuizen, R.M. Timing of Repetitive Transcranial Magnetic Stimulation Onset for Upper Limb Function After Stroke: A Systematic Review and Meta-Analysis. Front. Neurol. 2019, 10, 1269. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Dai, L.; Liu, W.; Li, X.; Chen, J.; Zhang, H.; Chen, W.; Duan, W. The Effect and Optimal Parameters of Repetitive Transcranial Magnetic Stimulation on Lower Extremity Motor Function in Stroke Patient: A Systematic Review and Meta-Analysis. Disabil. Rehabil. 2024, 46, 4889–4900. [Google Scholar] [CrossRef] [PubMed]
- Veldema, J.; Gharabaghi, A. Non-Invasive Brain Stimulation for Improving Gait, Balance, and Lower Limbs Motor Function in Stroke. J. Neuroeng. Rehabil. 2022, 19, 84. [Google Scholar] [CrossRef]
- Corominas-Teruel, X.; Mozo, R.M.S.S.; Simó, M.F.; Colomina Fosch, M.T.; Valero-Cabré, A. Transcranial Direct Current Stimulation for Gait Recovery Following Stroke: A Systematic Review of Current Literature and Beyond. Front. Neurol. 2022, 13, 953939. [Google Scholar] [CrossRef]
- Li, Y.; Fan, J.; Yang, J.; He, C.; Li, S. Effects of Transcranial Direct Current Stimulation on Walking Ability after Stroke: A Systematic Review and Meta-Analysis. Restor. Neurol. Neurosci. 2018, 36, 59–71. [Google Scholar] [CrossRef]
- Miranda de Aquino Miranda, J.; Sousa de Andrade, P.H.; Henrique, M.E.S.A.; Henrique de Souza Fonseca, B.; Bazan, R.; Sande de Souza, L.A.P.; José Luvizutto, G. The Effect of Transcranial Direct Current Stimulation Combined with Task-Specific Training on Spatio-Temporal Gait Parameters and Functional Mobility in Individuals with Stroke: A Systematic Review and Meta-Analysis. Top. Stroke Rehabil. 2025, 32, 438–457. [Google Scholar] [CrossRef]
- Usman, J.S.; Wong, T.W.; Ng, S.S.M. Effects of Treadmill Training Combined with Transcranial Direct Current Stimulation on Mobility, Motor Performance, Balance Function, and Other Brain-Related Outcomes in Stroke Survivors: A Systematic Review and Meta-Analysis. Neurol. Sci. 2025, 46, 99–111. [Google Scholar] [CrossRef]
- Mitsutake, T.; Imura, T.; Hori, T.; Sakamoto, M.; Tanaka, R. Effects of Combining Online Anodal Transcranial Direct Current Stimulation and Gait Training in Stroke Patients: A Systematic Review and Meta-Analysis. Front. Hum. Neurosci. 2021, 15, 782305. [Google Scholar] [CrossRef] [PubMed]
- Luo, N.; Zhao, B.; Wang, H.; Wu, J.; Luo, Y.; Yuan, M.; Xu, C. Effect of Transcranial Direct Current Stimulation Combined with Cognitive Rehabilitation on Cognitive Function and Activities of Daily Living in Patients with Post-Stroke Cognitive Impairment: A Systematic Review and Meta-Analysis. Front. Neurol. 2025, 16, 1523001. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Zhang, J.; Chen, D.; Qin, Q.; Huang, F. Research on Transcranial Magnetic Stimulation for Stroke Rehabilitation: A Visual Analysis Based on CiteSpace. Eur. J. Med. Res. 2025, 30, 575. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, Q.; Li, D.; Wei, L.; Chu, E.; Bao, Y.; Liu, Z.; Jin, L.; Chen, X.; Zhao, K. Clinical Efficacy Observation of Repetitive Magnetic Stimulation for Treating Upper Limb Spasticity after Stroke. Sci. Rep. 2025, 15, 17722. [Google Scholar] [CrossRef]
- Gao, C.; Zhang, H.; He, K.; Zhang, L.; Wu, L.; Gao, Q. Efficacy of Non-Invasive Brain Stimulation Combined with Constraint-Induced Movement Therapy on Upper Extremity Function in Patients Who Had a Stroke: Protocol for a Systematic Review and Meta-Analysis of Randomised Controlled Trials. BMJ Open 2025, 15, e107406. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, H.; Wang, H.; Qie, S. Impact of the Combination of Virtual Reality and Noninvasive Brain Stimulation on the Upper Limb Motor Function of Stroke Patients: A Systematic Review and Meta-Analysis. J. Neuroeng. Rehabil. 2024, 21, 179. [Google Scholar] [CrossRef]
- Ren, C.; Li, X.; Gao, Q.; Pan, M.; Wang, J.; Yang, F.; Duan, Z.; Guo, P.; Zhang, Y. The Effect of Brain-Computer Interface Controlled Functional Electrical Stimulation Training on Rehabilitation of Upper Limb after Stroke: A Systematic Review and Meta-Analysis. Front. Hum. Neurosci. 2024, 18, 1438095. [Google Scholar] [CrossRef]
- Li, K.-P.; Wu, J.-J.; Zhou, Z.-L.; Xu, D.-S.; Zheng, M.-X.; Hua, X.-Y.; Xu, J.-G. Noninvasive Brain Stimulation for Neurorehabilitation in Post-Stroke Patients. Brain Sci. 2023, 13, 451. [Google Scholar] [CrossRef] [PubMed]
- Thielbar, K.O.; Lord, T.J.; Fischer, H.C.; Lazzaro, E.C.; Barth, K.C.; Stoykov, M.E.; Triandafilou, K.M.; Kamper, D.G. Training Finger Individuation with a Mechatronic-Virtual Reality System Leads to Improved Fine Motor Control Post-Stroke. J. Neuroeng. Rehabil. 2014, 11, 171. [Google Scholar] [CrossRef]
- Patel, J.; Fluet, G.; Qiu, Q.; Yarossi, M.; Merians, A.; Tunik, E.; Adamovich, S. Intensive Virtual Reality and Robotic Based Upper Limb Training Compared to Usual Care, and Associated Cortical Reorganization, in the Acute and Early Sub-Acute Periods Post-Stroke: A Feasibility Study. J. Neuroeng. Rehabil. 2019, 16, 92. [Google Scholar] [CrossRef] [PubMed]
- Merians, A.S.; Tunik, E.; Fluet, G.G.; Qiu, Q.; Adamovich, S.V. Innovative Approaches to the Rehabilitation of Upper Extremity Hemiparesis Using Virtual Environments. Eur. J. Phys. Rehabil. Med. 2009, 45, 123–133. [Google Scholar] [PubMed]
- Clark, W.E.; Sivan, M.; O’Connor, R.J. Evaluating the Use of Robotic and Virtual Reality Rehabilitation Technologies to Improve Function in Stroke Survivors: A Narrative Review. J. Rehabil. Assist. Technol. Eng. 2019, 6, 2055668319863557. [Google Scholar] [CrossRef] [PubMed]
- Alashram, A.R. Combined Robot-Assisted Therapy Virtual Reality for Upper Limb Rehabilitation in Stroke Survivors: A Systematic Review of Randomized Controlled Trials. Neurol. Sci. 2024, 45, 5141–5155. [Google Scholar] [CrossRef]
- Zhou, Z.-Q.; Hua, X.-Y.; Wu, J.-J.; Xu, J.-J.; Ren, M.; Shan, C.-L.; Xu, J.-G. Combined Robot Motor Assistance with Neural Circuit-Based Virtual Reality (NeuCir-VR) Lower Extremity Rehabilitation Training in Patients after Stroke: A Study Protocol for a Single-Centre Randomised Controlled Trial. BMJ Open 2022, 12, e064926. [Google Scholar] [CrossRef]
- Zakharov, A.V.; Bulanov, V.A.; Khivintseva, E.V.; Kolsanov, A.V.; Bushkova, Y.V.; Ivanova, G.E. Stroke Affected Lower Limbs Rehabilitation Combining Virtual Reality with Tactile Feedback. Front. Robot. AI 2020, 7, 81. [Google Scholar] [CrossRef]
- Mubin, O.; Alnajjar, F.; Jishtu, N.; Alsinglawi, B.; Al Mahmud, A. Exoskeletons with Virtual Reality, Augmented Reality, and Gamification for Stroke Patients’ Rehabilitation: Systematic Review. JMIR Rehabil. Assist. Technol. 2019, 6, e12010. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, J.; Krewer, C.; Bauer, P.; Koenig, A.; Riener, R.; Müller, F. Virtual Reality to Augment Robot-Assisted Gait Training in Non-Ambulatory Patients with a Subacute Stroke: A Pilot Randomized Controlled Trial. Eur. J. Phys. Rehabil. Med. 2018, 54, 397–407. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, J.-Y.; Kim, M.-Y.; Jeon, Y.-J.; Kim, S.; Shin, J.-H. Virtual Reality Rehabilitation with Functional Electrical Stimulation Improves Upper Extremity Function in Patients with Chronic Stroke: A Pilot Randomized Controlled Study. Arch. Phys. Med. Rehabil. 2018, 99, 1447–1453.e1. [Google Scholar] [CrossRef]
- Montoya, D.; Barria, P.; Cifuentes, C.A.; Aycardi, L.F.; Morís, A.; Aguilar, R.; Azorín, J.M.; Múnera, M. Biomechanical Assessment of Post-Stroke Patients’ Upper Limb before and after Rehabilitation Therapy Based on FES and VR. Sensors 2022, 22, 2693. [Google Scholar] [CrossRef]
- Minzatanu, D.; Roman, N.A.; Manaila, A.I.; Baseanu, I.C.C.; Tuchel, V.I.; Basalic, E.B.; Miclaus, R.S. Virtual Reality Associated with Functional Electrical Stimulation for Upper Extremity in Post-Stroke Rehabilitation: A Systematic Review. Appl. Sci. 2024, 14, 8248. [Google Scholar] [CrossRef]
- Kuznetsov, A.N.; Rybalko, N.V.; Daminov, V.D.; Luft, A.R. Early Poststroke Rehabilitation Using a Robotic Tilt-Table Stepper and Functional Electrical Stimulation. Stroke Res. Treat. 2013, 2013, 946056. [Google Scholar] [CrossRef]
- Straudi, S.; Baroni, A.; Mele, S.; Craighero, L.; Manfredini, F.; Lamberti, N.; Maietti, E.; Basaglia, N. Effects of a Robot-Assisted Arm Training Plus Hand Functional Electrical Stimulation on Recovery After Stroke: A Randomized Clinical Trial. Arch. Phys. Med. Rehabil. 2020, 101, 309–316. [Google Scholar] [CrossRef]
- Hu, X.; Tong, K.Y.; Li, R.; Chen, M.; Xue, J.J.; Ho, S.K.; Chen, P.N. Combined Functional Electrical Stimulation (FES) and Robotic System for Wrist Rehabiliation after Stroke. Stud. Health Technol. Inform. 2010, 154, 223–228. [Google Scholar] [PubMed]
- Resquín, F.; Cuesta Gómez, A.; Gonzalez-Vargas, J.; Brunetti, F.; Torricelli, D.; Molina Rueda, F.; Cano de la Cuerda, R.; Miangolarra, J.C.; Pons, J.L. Hybrid Robotic Systems for Upper Limb Rehabilitation after Stroke: A Review. Med. Eng. Phys. 2016, 38, 1279–1288. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Phua, K.S.; Ang, K.K.; Guan, C.; Zhang, H.; Lin, R.; Chua, K.S.G.; Ang, B.T.; Kuah, C.W.K. A Feasibility Study of Non-Invasive Motor-Imagery BCI-Based Robotic Rehabilitation for Stroke Patients. In Proceedings of the 2009 4th International IEEE/EMBS Conference on Neural Engineering, Antalya, Turkey, 29 April–2 May 2009; pp. 271–274. [Google Scholar]
- Cantillo-Negrete, J.; Carino-Escobar, R.I.; Carrillo-Mora, P.; Rodriguez-Barragan, M.A.; Hernandez-Arenas, C.; Quinzaños-Fresnedo, J.; Hernandez-Sanchez, I.R.; Galicia-Alvarado, M.A.; Miguel-Puga, A.; Arias-Carrion, O. Brain-Computer Interface Coupled to a Robotic Hand Orthosis for Stroke Patients’ Neurorehabilitation: A Crossover Feasibility Study. Front. Hum. Neurosci. 2021, 15, 656975. [Google Scholar] [CrossRef]
- Cheng, N.; Phua, K.S.; Lai, H.S.; Tam, P.K.; Tang, K.Y.; Cheng, K.K.; Yeow, R.C.-H.; Ang, K.K.; Guan, C.; Lim, J.H. Brain-Computer Interface-Based Soft Robotic Glove Rehabilitation for Stroke. IEEE Trans. Biomed. Eng. 2020, 67, 3339–3351. [Google Scholar] [CrossRef] [PubMed]
- Marghi, Y.M.; Farjadian, A.B.; Yen, S.C.; Erdogmus, D. EEG-Guided Robotic Mirror Therapy System for Lower Limb Rehabilitation. In Proceedings of the 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju Island, Republic of Korea, 11–15 July 2017; Volume 2017, pp. 1917–1921. [Google Scholar] [CrossRef]
- Baniqued, P.D.E.; Stanyer, E.C.; Awais, M.; Alazmani, A.; Jackson, A.E.; Mon-Williams, M.A.; Mushtaq, F.; Holt, R.J. Brain-Computer Interface Robotics for Hand Rehabilitation after Stroke: A Systematic Review. J. Neuroeng. Rehabil. 2021, 18, 15. [Google Scholar] [CrossRef] [PubMed]
- Sinha, A.M.; Nair, V.A.; Prabhakaran, V. Brain-Computer Interface Training with Functional Electrical Stimulation: Facilitating Changes in Interhemispheric Functional Connectivity and Motor Outcomes Post-Stroke. Front. Neurosci. 2021, 15, 670953. [Google Scholar] [CrossRef] [PubMed]
- Daly, J.J.; Cheng, R.; Rogers, J.; Litinas, K.; Hrovat, K.; Dohring, M. Feasibility of a New Application of Noninvasive Brain Computer Interface (BCI): A Case Study of Training for Recovery of Volitional Motor Control after Stroke. J. Neurol. Phys. Ther. 2009, 33, 203–211. [Google Scholar] [CrossRef]
- McCrimmon, C.M.; King, C.E.; Wang, P.T.; Cramer, S.C.; Nenadic, Z.; Do, A.H. Brain-Controlled Functional Electrical Stimulation for Lower-Limb Motor Recovery in Stroke Survivors. In Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; Volume 2014, pp. 1247–1250. [Google Scholar] [CrossRef]
- Luo, X. Effects of Motor Imagery-Based Brain-Computer Interface-Controlled Electrical Stimulation on Lower Limb Function in Hemiplegic Patients in the Acute Phase of Stroke: A Randomized Controlled Study. Front. Neurol. 2024, 15, 1394424. [Google Scholar] [CrossRef]
- Vourvopoulos, A.; Pardo, O.M.; Lefebvre, S.; Neureither, M.; Saldana, D.; Jahng, E.; Liew, S.-L. Effects of a Brain-Computer Interface with Virtual Reality (VR) Neurofeedback: A Pilot Study in Chronic Stroke Patients. Front. Hum. Neurosci. 2019, 13, 210. [Google Scholar] [CrossRef]
- Wen, D.; Fan, Y.; Hsu, S.-H.; Xu, J.; Zhou, Y.; Tao, J.; Lan, X.; Li, F. Combining Brain-Computer Interface and Virtual Reality for Rehabilitation in Neurological Diseases: A Narrative Review. Ann. Phys. Rehabil. Med. 2021, 64, 101404. [Google Scholar] [CrossRef]
- Kim, S.; Park, H.-Y. Update on Non-Invasive Brain Stimulation on Stroke Motor Impairment: A Narrative Review. Brain Neurorehabil. 2024, 17, e5. [Google Scholar] [CrossRef]
- Cha, S.; Choi, J.; Moon, C.; Cho, K. Non-Invasive Brain Stimulation Contributing to Postural Control with and without Stroke: A Systematic Review and Meta-Analysis. Sci. Rep. 2025, 15, 26020. [Google Scholar] [CrossRef]
- Chen, G.; Wu, M.; Chen, J.; Cai, G.; Liu, Q.; Zhao, Y.; Huang, Z.; Lan, Y. Non-Invasive Brain Stimulation Effectively Improves Post-Stroke Sensory Impairment: A Systematic Review and Meta-Analysis. J. Neural Transm. 2023, 130, 1219–1230. [Google Scholar] [CrossRef] [PubMed]
- Ni, X.; Yuan, Z.; Xie, R.; Zhai, X.; Cheng, X.; Pan, Y. Comparison of the Efficacy of Different Protocols of Repetitive Transcranial Magnetic Stimulation and Transcranial Direct Current Stimulation on Motor Function, Activities of Daily Living, and Neurological Function in Patients with Early Stroke: A Systematic Review and Network Meta-Analysis. Neurol. Sci. 2025, 46, 2479–2498. [Google Scholar] [CrossRef]
- Zou, X.; Zhu, J.; Hu, S.; Hou, Z.; Ma, G. Application of Non-Invasive Brain Stimulation Combined with Functional Magnetic Resonance Imaging in Post-Stroke Motor Function Rehabilitation. J. Neurosci. Methods 2025, 421, 110470. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Liu, J.; Guo, Y.; Hou, Q.; Song, J.; Wang, X.; Yu, W.; Lü, Y. Comparative Efficacy of Non-Invasive Brain Stimulation for Post-Stroke Cognitive Impairment: A Network Meta-Analysis. Aging Clin. Exp. Res. 2024, 36, 37. [Google Scholar] [CrossRef]
- Straudi, S.; Ahmed, I.; Vallin, E.; Borsato, S.; Bozzolan, M.; Da Roit, M.; Lazzarini, S.G.; Arienti, C. The Effectiveness of Noninvasive Brain Stimulation Techniques Combined with Motor Interventions in Adult Patients After Stroke: An Overview of Systematic Reviews. Neuromodul. Technol. Neural Interface 2025, 28, 1104–1117. [Google Scholar] [CrossRef]
- Narayan, S.K.; Jayan, J.; Arumugam, M. Short-Term Effect of Noninvasive Brain Stimulation Techniques on Motor Impairment in Chronic Ischemic Stroke: A Systematic Review with Meta-Analysis. Neurol. India 2022, 70, 37–49. [Google Scholar] [CrossRef]
- Chai, L.; Huang, Y.; Guo, X.; Xiong, A.; Lin, B.; Huang, J. Does SLT Combined with NIBS Enhance Naming Recovery in Post-Stroke Aphasia? A Meta-Analysis and Systematic Review. NeuroRehabilitation 2024, 54, 543–561. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, H.; Liu, Y.; Mei, H.; Guo, L.; Liu, X.; Tao, X.; Ma, J. Non-Invasive Brain Stimulation Associated Mirror Therapy for Upper-Limb Rehabilitation after Stroke: Systematic Review and Meta-Analysis of Randomized Clinical Trials. Front. Neurol. 2022, 13, 918956. [Google Scholar] [CrossRef]
- Zhang, W.; Li, W.; Liu, X.; Zhao, Q.; Gao, M.; Li, Z.; Lv, P.; Yin, Y. Examining the Effectiveness of Motor Imagery Combined with Non-Invasive Brain Stimulation for Upper Limb Recovery in Stroke Patients: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. J. Neuroeng. Rehabil. 2024, 21, 209. [Google Scholar] [CrossRef] [PubMed]
- Iosa, M.; Hesse, S.; Oliviero, A.; Paolucci, S. New Technologies for Stroke Rehabilitation. Stroke Res. Treat. 2013, 2013, 815814. [Google Scholar] [CrossRef] [PubMed]
- Maceira-Elvira, P.; Popa, T.; Schmid, A.-C.; Hummel, F.C. Wearable Technology in Stroke Rehabilitation: Towards Improved Diagnosis and Treatment of Upper-Limb Motor Impairment. J. Neuroeng. Rehabil. 2019, 16, 142. [Google Scholar] [CrossRef]
- Hatem, S.M.; Saussez, G.; Della Faille, M.; Prist, V.; Zhang, X.; Dispa, D.; Bleyenheuft, Y. Rehabilitation of Motor Function after Stroke: A Multiple Systematic Review Focused on Techniques to Stimulate Upper Extremity Recovery. Front. Hum. Neurosci. 2016, 10, 442. [Google Scholar] [CrossRef] [PubMed]
- Bok, S.-K.; Song, Y.; Lim, A.; Jin, S.; Kim, N.; Ko, G. High-Tech Home-Based Rehabilitation after Stroke: A Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 2668. [Google Scholar] [CrossRef] [PubMed]


| Technology | Optimal Phase | Desired Patient Status | Mechanism | Implementation Barriers |
|---|---|---|---|---|
| RR | Acute–subacute (≤3 months) | Partial voluntary movement; non-ambulatory | High-intensity, repetitive, task-specific training; neuroplasticity induction | High cost, staff training, limited access, and no standardization |
| VR | Subacute–chronic | Cognition intact; good visual attention | Multisensory feedback, motivation ↑, experience-dependent plasticity | Device heterogeneity, sensory overload, dizziness, and poor protocol unification |
| FES | Early subacute (≤2 months) | Partial/absent voluntary movement; preserved PNS | Motor/sensory nerve stimulation, muscle contraction, sensorimotor coupling | Discomfort, contraindications, weak chronic-phase effects |
| BCI | Subacute–chronic | Severe paresis/minimal movement | Cortical activity → external feedback; top-down neuroplasticity | High cost, EEG instability, technical complexity, time-intensive |
| NIBS | Acute–subacute | Conscious, intact cortical integrity | Modulation of cortical excitability; interhemispheric rebalancing | Variable response, protocol inconsistency, operator-dependent |
| IRT | Mainly subacute | Individualized | Synergistic central–peripheral activation; neuroplasticity ↑ | High cost, organizational complexity, interdisciplinary coordination |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moskiewicz, D.; Sarzyńska-Długosz, I. Modern Technologies Supporting Motor Rehabilitation After Stroke: A Narrative Review. J. Clin. Med. 2025, 14, 8035. https://doi.org/10.3390/jcm14228035
Moskiewicz D, Sarzyńska-Długosz I. Modern Technologies Supporting Motor Rehabilitation After Stroke: A Narrative Review. Journal of Clinical Medicine. 2025; 14(22):8035. https://doi.org/10.3390/jcm14228035
Chicago/Turabian StyleMoskiewicz, Denis, and Iwona Sarzyńska-Długosz. 2025. "Modern Technologies Supporting Motor Rehabilitation After Stroke: A Narrative Review" Journal of Clinical Medicine 14, no. 22: 8035. https://doi.org/10.3390/jcm14228035
APA StyleMoskiewicz, D., & Sarzyńska-Długosz, I. (2025). Modern Technologies Supporting Motor Rehabilitation After Stroke: A Narrative Review. Journal of Clinical Medicine, 14(22), 8035. https://doi.org/10.3390/jcm14228035

