Breastfeeding in a Polluted World: Perspective on the Properties of Breast Milk and the Need for Protection
Abstract
1. Introduction
Evolutionary Evidence and Psychological Functions of Breast Milk and Breastfeeding
2. The Unique Features of Breast Milk
2.1. Microbiome
2.2. Metabolomics
2.3. Multipotent Stem Cells
3. Breast Milk Reflects the Environment We Live in
3.1. Endocrine-Disrupting Chemicals in BM and Their Effects
3.2. EDCs in BM and Neurodevelopment
3.3. Measuring EDCs in Milk
3.4. Micro- and Nanoplastics in Human Breast Milk
4. Conclusions and Future Perspectives
- (1)
- harmonized biomonitoring of EDCs and micro/nanoplastics in BM;
- (2)
- large-scale, longitudinal cohort studies to clarify exposure–outcome relationships;
- (3)
- public health policies that reduce maternal pollutant exposure without undermining confidence in breastfeeding;
- (4)
- improved regulatory frameworks that address chemical mixture effects and long-term risks.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oftedal, O.T. The evolution of milk secretion and its ancient origins. Animal 2012, 6, 355–368. [Google Scholar] [CrossRef]
- van Schaik, C.P.; Song, Z.; Schuppli, C.; Drobniak, S.M.; Heldstab, S.A.; Griesser, M. Extended parental provisioning and variation in vertebrate brain sizes. PLoS Biol. 2023, 21, e3002016. [Google Scholar] [CrossRef]
- Krol, K.M.; Grossmann, T. Psychological effects of breastfeeding on children and mothers. Bundesgesundheitsblatt-Gesundheitsforschung-Gesundheitsschutz 2018, 61, 977–985. [Google Scholar] [CrossRef]
- Modak, A.; Ronghe, V.; Gomase, K.P.; Dukare, K.P. The psychological benefits of breastfeeding: Fostering maternal well-being and child development. Cureus 2023, 15, e46730. [Google Scholar] [CrossRef]
- Cooijmans, K.H.; Beijers, R.; Brett, B.E.; de Weerth, C. Daily skin-to-skin contact in full-term infants and breastfeeding: Secondary outcomes from a randomized controlled trial. Matern. Child Nutr. 2022, 18, e13241. [Google Scholar] [CrossRef]
- Tsabanaki, A.; Kokkinaki, T.; Triliva, S.; Karademas, E. Intersubjectivity in interactions between breastfeeding infants and their mothers: A longitudinal observational study in the first year of life. Eur. J. Dev. Psychol. 2023, 20, 497–516. [Google Scholar] [CrossRef]
- Kim, C.Y.; Smith, N.P.; Teti, D.M. Associations Between Breastfeeding, Maternal Emotional Availability, and Infant–Mother Attachment: The Role of Coparenting. J. Hum. Lact. 2024, 40, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Bigelow, A.E.; Power, M. Mother–infant skin-to-skin contact: Short-and long-term effects for mothers and their children born full-term. Front. Psychol. 2020, 11, 515068. [Google Scholar] [CrossRef] [PubMed]
- Feldman, J.S.; Natale, B.N.; Shaw, D.S.; Nordahl, K.B.; Janson, H.; Nærde, A. Duration of breastfeeding and supportive paternal caregiving in early childhood and the potential mediating function of maternal caregiving. J. Dev. Behav. Pediatr. 2023, 44, e309–e314. [Google Scholar] [CrossRef]
- Linde, K.; Lehnig, F.; Nagl, M.; Kersting, A. The association between breastfeeding and attachment: A systematic review. Midwifery 2020, 81, 102592. [Google Scholar] [CrossRef] [PubMed]
- López-Fernández, G.; Barrios, M.; Gómez-Benito, J. Breastfeeding and maternal attachment: The moderating roles of maternal stress and child behavior. J. Pediatr. Nurs. 2023, 69, e80–e87. [Google Scholar] [CrossRef] [PubMed]
- Uvnäs-Moberg, K.; Ekström-Bergström, A.; Buckley, S.; Massarotti, C.; Pajalic, Z.; Luegmair, K.; Kotlowska, A.; Lengler, L.; Olza, I.; Grylka-Baeschlin, S.; et al. Maternal plasma levels of oxytocin during breastfeeding—A systematic review. PLoS ONE 2020, 15, e0235806. [Google Scholar]
- Satriyandari, Y.; Fitriahadi, E. Breastfeeding as a Natural Therapy for Anxiety: A Study of Heart Rate Variability in Breastfeeding Mothers. J. Public Health Sci. 2025, 4, 180–192. [Google Scholar]
- Tucker, Z.; O’Malley, C.; O’Malley, C.B. Mental health benefits of breastfeeding: A literature review. Cureus 2022, 14, e29199. [Google Scholar] [CrossRef]
- Wouk, K.; Tucker, C.; Pence, B.W.; Meltzer-Brody, S.; Zvara, B.; Grewen, K.; Stuebe, A.M. Positive emotions during infant feeding and breastfeeding outcomes. J. Hum. Lact. 2020, 36, 157–167. [Google Scholar] [CrossRef]
- Ohmura, N.; Okuma, L.; Truzzi, A.; Esposito, G.; Kuroda, K.O. Maternal physiological calming responses to infant suckling at the breast. J. Physiol. Sci. 2023, 73, 3. [Google Scholar] [CrossRef]
- Ballard, O.; Morrow, A.L. Human Milk Composition: Nutrients and bioactive factors. Pediatr. Clin. N. Am. 2013, 60, 49–74. [Google Scholar] [CrossRef]
- Bergman, A.; United Nations Environment Programme; World Health Organization. State of the Science of Endocrine Disrupting Chemicals—2012 an Assessment of the State of the Science of Endocrine Disruptors; WHO: Geneva, Switzerland, 2013. [Google Scholar]
- Brambilla, M.M.; Perrone, S.; Shulhai, A.M.; Ponzi, D.; Paterlini, S.; Pisani, F.; Rollo, D.; Pelosi, A.; Street, M.E.; Palanza, P. Systematic review on Endocrine Disrupting Chemicals in breastmilk and neuro-behavioral development: Insight into the early ages of life. Neurosci. Biobehav. Rev. 2025, 169, 106028. [Google Scholar] [CrossRef] [PubMed]
- Purkiewicz, A.; Regin, K.J.; Mumtaz, W.; Pietrzak-Fiećko, R. Breastfeeding: The Multifaceted Impact on Child Development and Maternal Well-Being. Nutrients 2025, 17, 1326. [Google Scholar] [CrossRef]
- Nyquist, S.K.; Gao, P.; Haining, T.K.J.; Retchin, M.R.; Golan, Y.; Drake, R.S.; Kolb, K.; Mead, B.E.; Ahituv, N.; Martinez, M.E.; et al. Cellular and transcriptional diversity over the course of human lactation. Proc. Natl. Acad. Sci. USA 2022, 119, e2121720119. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, T.; Samuel, T.M.; Zhu, Z.; Howell, B.; Cho, S.; Baluyot, K.; Hazlett, H.; Elison, J.T.; Wu, D.; Hauser, J.; et al. Joint analyses of human milk fatty acids, phospholipids, and choline in association with cognition and temperament traits during the first 6 months of life. Front. Nutr. 2022, 9, 919769. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Berlanga-Macías, C.; Sánchez-López, M.; Solera-Martínez, M.; Díez-Fernández, A.; Ballesteros-Yáñez, I.; Castillo-Sarmiento, C.A.; Martínez-Ortega, I.A.; Martínez-Vizcaíno, V. Relationship between exclusive breastfeeding and brain-derived neurotrophic factor in children. PLoS ONE 2021, 16, e0248023. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Berger, P.K.; Ong, M.L.; Bode, L.; Belfort, M.B. Human Milk Oligosaccharides and Infant Neurodevelopment: A Narrative Review. Nutrients 2023, 15, 719. [Google Scholar] [CrossRef]
- Selma-Royo, M.; Calvo-Lerma, J.; Bäuerl, C.; Esteban-Torres, M.; Cabrera-Rubio, R.; Collado, M.C. Human milk microbiota: What did we learn in the last 20 years? Microbiome Res. Rep. 2022, 1, 19. [Google Scholar] [CrossRef]
- Aagaard, K.; Ma, J.; Antony, K.M.; Ganu, R.; Petrosino, J.; Versalovic, J. The placenta harbors a unique microbiome. Sci. Transl. Med. 2014, 6, 237ra65. [Google Scholar] [CrossRef] [PubMed]
- Biagi, E.; Quercia, S.; Aceti, A.; Beghetti, I.; Rampelli, S.; Turroni, S.; Faldella, G.; Candela, M.; Brigidi, P.; Corvaglia, L. The Bacterial Ecosystem of Mother’s Milk and Infant’s Mouth and Gut. Front. Microbiol. 2017, 8, 1214. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abu, Y.; Roy, S. Intestinal dysbiosis during pregnancy and microbiota-associated impairments in offspring. Front. Microbiomes 2025, 4, 1548650. [Google Scholar] [CrossRef]
- Cabrera-Rubio, R.; Collado, M.C.; Laitinen, K.; Salminen, S.; Isolauri, E.; Mira, A. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am. J. Clin. Nutr. 2012, 96, 544–551. [Google Scholar] [CrossRef] [PubMed]
- Peila, C.; Sottemano, S.; Cesare Marincola, F.; Stocchero, M.; Pusceddu, N.G.; Dessì, A.; Baraldi, E.; Fanos, V.; Bertino, E. NMR Metabonomic Profile of Preterm Human Milk in the First Month of Lactation: From Extreme to Moderate Prematurity. Foods 2022, 11, 345. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Corona, L.; Lussu, A.; Bosco, A.; Belfort, M.B. Human Milk Oligosaccharides: A Comprehensive Review towards Metabolomics. Children 2021, 8, 804. [Google Scholar] [CrossRef]
- Faa, G.; Pichiri, G.; Coni, P.; Dessì, A.; Fraschini, M.; Fanos, V. They will be famous: Multipotent stem cells in breast milk. World J. Clin. Pediatr. 2025, 14, 101080. [Google Scholar] [CrossRef] [PubMed]
- European Chemical Agency (ECHA) and European Food Safety Authority (EFSA) with the technical support of the Joint Research Centre (JRC); Andersson, N.; Arena, M.; Auteri, D.; Barmaz, S.; Grignard, E.; Kienzler, A.; Lepper, P.; Lostia, A.M.; Munn, S.; et al. Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009. EFSA J. 2018, 16, 5311. [Google Scholar] [CrossRef] [PubMed]
- La Merrill, M.A.; Vandenberg, L.N.; Smith, M.T.; Goodson, W.; Browne, P.; Patisaul, H.B.; Guyton, K.Z.; Kortenkamp, A.; Cogliano, V.J.; Woodruff, T.J.; et al. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat. Rev. Endocrinol. 2020, 16, 45–57. [Google Scholar] [CrossRef] [PubMed]
- van Beijsterveldt, I.A.L.P.; Dorrepaal, D.J.; van Zelst, B.D.; van den Berg, S.A.A.; Hokken-Koelega, A.C.S. Poly- and perfluoroalkyl substances (PFAS) in the first 1000 days reduce linear growth, lean body mass and bone mineral density at age 3 years. Clin. Nutr. 2025, 50, 175–182. [Google Scholar] [CrossRef]
- Nuti, F.; Fernández, F.R.; Severi, M.; Traversi, R.; Fanos, V.; Street, M.E.; Palanza, P.; Rovero, P.; Papini, A.M. Study of Endocrine-Disrupting Chemicals in Infant Formulas and Baby Bottles: Data from the European LIFE-MILCH PROJECT. Molecules 2024, 29, 5434. [Google Scholar] [CrossRef]
- Sun, M.; Cao, X.; Wu, Y.; Shen, L.; Wei, G. Prenatal exposure to endocrine-disrupting chemicals and thyroid function in neonates: A systematic review and meta-analysis. Ecotoxicol. Environ. Saf. 2022, 231, 113215. [Google Scholar] [CrossRef]
- Sigvaldsen, A.; Frederiksen, H.; Højsager, F.D.; Andersson, A.M.; Juul, A.; Boye, H.; Andersen, M.S.; Jensen, T.K. Prenatal and childhood exposure to bisphenols and bone mineral density in 7-year-old children from the Odense Child Cohort. Int. J. Hyg. Environ. Health 2024, 260, 114408. [Google Scholar] [CrossRef]
- Shulhai, A.M.; Palanza, P.; Street, M.E. Current Evidence on the Effects of Endocrine-Disrupting Chemicals (EDCs) on Bone Growth and Health. Expo. Health 2024, 16, 1001–1025. [Google Scholar] [CrossRef]
- García-Recio, E.; González-Acedo, A.; Manzano-Moreno, F.J.; De Luna-Bertos, E.; Ruiz, C. Gene Expression Modulation of Markers Involved in Bone Formation and Resorption by Bisphenol A, Bisphenol F, Bisphenol S, and Bisphenol AF. Genes 2024, 15, 1453. [Google Scholar] [CrossRef]
- Jaskulak, M.; Zimowska, M.; Rolbiecka, M.; Zorena, K. Understanding the role of endocrine disrupting chemicals as environmental obesogens in the obesity epidemic: A comprehensive overview of epidemiological studies between 2014 and 2024. Ecotoxicol. Environ. Saf. 2025, 299, 118401. [Google Scholar] [CrossRef]
- Di Lorenzo, M.; Aurino, L.; Lonardo, M.S.; Cacciapuoti, N.; Nasti, G.; Belfiore, A.; Guida, B.; Chiurazzi, M. Obesity and obesity related disease in adulthood: The dark side of early life exposure to Environmental Chemical Disruptors. J. Endocrinol. Investig. 2025, 48, 2261–2277. [Google Scholar] [CrossRef]
- Briollais, L.; Rustand, D.; Allard, C.; Wu, Y.; Xu, J.; Rajan, S.G.; Hivert, M.F.; Doyon, M.; Bouchard, L.; McGowan, P.O.; et al. DNA methylation mediates the association between breastfeeding and early-life growth trajectories. Clin. Epigenet. 2021, 13, 231. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ponzi, D.; Parmigiani, S.; Paterlini, S.; Bellantoni, M.; Palanza, P. The relevance of the evolutionary approach for understanding health and disease of the human body and mind. Neurosci. Biobehav. Rev. 2025, 169, 106009. [Google Scholar] [CrossRef]
- Lemaitre, H.; Augé, P.; Saitovitch, A.; Vinçon-Leite, A.; Tacchella, J.M.; Fillon, L.; Calmon, R.; Dangouloff-Ros, V.; Lévy, R.; Grévent, D.; et al. Rest functional brain maturation during the first year of life. Cereb. Cortex 2020, 31, 1776–1785. [Google Scholar] [CrossRef]
- Hou, L.; Li, X.; Yan, P.; Li, Y.; Wu, Y.; Yang, Q.; Shi, X.; Ge, L.; Yang, K. Impact of the Duration of Breastfeeding on the Intelligence of Children: A Systematic Review with Network Meta-Analysis. Breastfeed. Med. 2021, 16, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Victora, C.G.; Bahl, R.; Barros, A.J.; Franca, G.V.; Horton, S.; Krasevec, J.; Murch, S.; Sankar, M.J.; Walker, N.; Rollins, N.C. Breastfeeding in the 21st century: Epidemiology, mechanisms, and lifelong effect. Lancet 2016, 387, 475–490. [Google Scholar] [CrossRef]
- Ghozy, S.; Tran, L.; Naveed, S.; Quynh, T.T.H.; Helmy Zayan, A.; Waqas, A.; Sayed, A.K.H.; Karimzadeh, S.; Hirayama, K.; Huy, N.T. Association of breastfeeding status with risk of autism spectrum disorder: A systematic review, dose-response analysis and meta-analysis. Asian J. Psychiatry 2020, 48, 101916. [Google Scholar] [CrossRef] [PubMed]
- Jallow, J.; Hurtig, T.; Kerkelä, M.; Miettunen, J.; Halt, A.H. Prenatal maternal stress, breastfeeding and offspring ADHD symptoms. Eur. Child. Adolesc. Psychiatry 2024, 33, 4003–4011. [Google Scholar] [CrossRef]
- Bernasconi, S.; Street, M.E.; Iughetti, L.; Predieri, B. Chemical contaminants in breast milk: A brief critical overview. Glob. Pediatr. 2022, 2, 100017. [Google Scholar] [CrossRef]
- Angelopoulou, M.; Siaperas, P.; Livadas, S.; Karantana, E.; Papadimitriou, D.T.; Angelopoulos, N. Endocrine circuitry in autism spectrum disorders: A systematic review of mechanistic insights and clinical implications. Neuroscience 2025, 585, 351–366. [Google Scholar] [CrossRef]
- Parenti, M.; Slupsky, C.M. Disrupted Prenatal Metabolism May Explain the Etiology of Suboptimal Neurodevelopment: A Focus on Phthalates and Micronutrients and their Relationship to Autism Spectrum Disorder. Adv. Nutr. 2024, 15, 100279. [Google Scholar] [CrossRef]
- Ames, J.L.; Sharma, V.; Lyall, K. Effects of Early-life PFAS Exposure on Child Neurodevelopment: A Review of the Evidence and Research gaps. Curr. Environ. Health Rep. 2025, 12, 9. [Google Scholar] [CrossRef]
- González, N.; Domingo, J.L. PFC/PFAS concentrations in human milk and infant exposure through lactation: A comprehensive review of the scientific literature. Arch. Toxicol. 2025, 99, 1843–1864. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martín-Carrasco, I.; Carbonero-Aguilar, P.; Dahiri, B.; Moreno, I.M.; Hinojosa, M. Comparison between Pollutants Found in Breast Milk and Infant Formula in the Last Decade: A Review. Sci. Total Environ. 2023, 875, 162461. [Google Scholar] [CrossRef] [PubMed]
- Milić, N.; Milanović, M.; Drljača, J.; Sudji, J.; Milošević, N. Challenges in the Analytical Preparation of a Biological Matrix in Analyses of Endocrine-Disrupting Bisphenols. Separations 2023, 10, 226. [Google Scholar] [CrossRef]
- Panuwet, P.; Hunter, R.E., Jr.; D’Souza, P.E.; Chen, X.; Radford, S.A.; Cohen, J.R.; Marder, M.E.; Kartavenka, K.; Ryan, P.B.; Barr, D.B. Biological Matrix Effects in Quantitative Tandem Mass Spectrometry-Based Analytical Methods: Advancing Biomonitoring. Crit. Rev. Anal. Chem. 2016, 46, 93–105. [Google Scholar] [CrossRef] [PubMed]
- ECHA. Guidance on Labelling and Packaging in accordance with Regulation (EC) No 1272/2008. Update 13 November 2024. Available online: https://echa.europa.eu/guidance-documents/guidance-on-clp (accessed on 10 November 2025).
- Ragusa, A.; Notarstefano, V.; Svelato, A.; Belloni, A.; Gioacchini, G.; Blondeel, C.; Zucchelli, E.; De Luca, C.; D’Avino, S.; Gulotta, A.; et al. Raman Microspectroscopy Detection and Characterisation of Microplastics in Human Breastmilk. Polymers 2022, 14, 2700. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dias, G.R.M.; Giusti, F.C.V.; de Novais, C.O.; de Oliveira, M.A.L.; Paiva, A.G.; Kalil-Cutti, B.; Mahoney, M.M.; Graceli, J.B. Intergenerational and transgenerational effects of endocrine-disrupting chemicals in the offspring brain development and behavior. Front. Endocrinol. 2025, 16, 1571689. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jahedi, F.; Frad, N.J.H.; Khaksar, M.A.; Rashidi, P.; Safdari, F.; Mansouri, Z. Nano and microplastics: Unveiling their profound impact on endocrine health. Toxicol. Mech. Methods 2025, 35, 865–893. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Exclusive Breastfeeding for Optimal Growth, Development and Health of Infants; World Health Organization: Geneva, Switzerland, 2023; Available online: https://www.who.int/tools/elena/interventions/exclusive-breastfeeding (accessed on 25 July 2025).
- Socianu, S.; Bopp, S.K.; Govarts, E.; Gilles, L.; Buekers, J.; Kolossa-Gehring, M.; Backhaus, T.; Franco, A. Chemical Mixtures in the EU Population: Composition and Potential Risks. Int. J. Environ. Res. Public Health 2022, 19, 6121. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Street, M.E.; Shulhai, A.-M.; Fanos, V.; Papini, A.M.; Ponzi, D.; Ragusa, A.; Rollo, D.; Palanza, P. Breastfeeding in a Polluted World: Perspective on the Properties of Breast Milk and the Need for Protection. J. Clin. Med. 2025, 14, 8034. https://doi.org/10.3390/jcm14228034
Street ME, Shulhai A-M, Fanos V, Papini AM, Ponzi D, Ragusa A, Rollo D, Palanza P. Breastfeeding in a Polluted World: Perspective on the Properties of Breast Milk and the Need for Protection. Journal of Clinical Medicine. 2025; 14(22):8034. https://doi.org/10.3390/jcm14228034
Chicago/Turabian StyleStreet, Maria Elisabeth, Anna-Mariia Shulhai, Vassilios Fanos, Anna Maria Papini, Davide Ponzi, Antonio Ragusa, Dolores Rollo, and Paola Palanza. 2025. "Breastfeeding in a Polluted World: Perspective on the Properties of Breast Milk and the Need for Protection" Journal of Clinical Medicine 14, no. 22: 8034. https://doi.org/10.3390/jcm14228034
APA StyleStreet, M. E., Shulhai, A.-M., Fanos, V., Papini, A. M., Ponzi, D., Ragusa, A., Rollo, D., & Palanza, P. (2025). Breastfeeding in a Polluted World: Perspective on the Properties of Breast Milk and the Need for Protection. Journal of Clinical Medicine, 14(22), 8034. https://doi.org/10.3390/jcm14228034

