Redefining the Diagnostic and Therapeutic Landscape of Non-Small Cell Lung Cancer in the Era of Precision Medicine
Abstract
1. Introduction
2. Non-Small Cell Lung Cancer
3. Risk Factors and Etiological Insights
3.1. Environmental and Lifestyle Risk Factors
3.2. Genetic and Molecular Risk Factors
3.3. Immunological and Microenvironmental Contributors
4. Stage Classification of NSCLC
5. Emerging Paradigms in Histopathological Characteristics and Diagnostic Refinement
5.1. Classical Histological Subtypes
5.2. Role of Advanced Pathology in Modern Medicine
5.3. Next-Generation Sequencing in Histological Context
6. Evolving Landscape of Early Diagnosis
6.1. Liquid Biopsy Approaches
6.2. Low-Dose CT Screening and Radiomics
6.3. Novel and Investigational Diagnostic Strategies
7. New Therapeutic Paradigms and Emerging Areas in Treating NSCLC
7.1. Next-Generation Targeted Therapies
| Modality | Example Agent(s) | Mechanism | Clinical Stage/Approval | Clinical Trials/References |
|---|---|---|---|---|
| Antibody–Drug Conjugates (ADCs) | Datopotamab deruxtecan (TROP2) | TROP2-targeted cytotoxic delivery | Phase 3 | NCT04656652/[76] |
| Antibody–Drug Conjugates (ADCs) | Trastuzumab deruxtecan (HER2) | HER2-targeted cytotoxic delivery | FDA-approved | NCT03734029/[77] |
| Antibody–Drug Conjugates (ADCs) | Patritumab deruxtecan (HER3) | HER3-targeted cytotoxic delivery | Phase 2 | NCT05865990/[78] |
| Bispecific Antibodies | Amivantamab (EGFR-MET) | EGFR and MET dual targeting | FDA-approved | NCT02609776/[79] |
| Bispecific Antibodies | KN046 (PD-L1/CTLA-4) | Dual checkpoint blockade | Phase 2 | NCT04054531/[80] |
| Bispecific Antibodies | SHR-1701 (PD-L1/TGF-β) | Checkpoint + TGF-β blockade | Phase 1 | NCT03774979/[81] |
| CAR-T Cells | EGFR-directed CAR-T | Engineered T cells for EGFR+ tumors | Phase 1 | NCT03030001/[82] |
| CAR-T Cells | MUC1-directed CAR-T | CARs target MUC1-overexpressing NSCLC | Phase 1 | NCT03525782/[83] |
| CAR-T Cells | MSLN-directed CAR-T | CARs target mesothelin+ tumors | Phase 1 | NCT02414269/[84] |
| Oncolytic Virus | MEM-288 | IFN-β + CD40L adenoviral vector | Phase 1 | NCT05076760/[85] |
| Oncolytic Virus | DNX-2401 (oncolytic adenovirus) | Oncolysis + immune priming | Phase 2 | NCT02798406/[86] |
| Oncolytic Virus | RP1 (oncolytic HSV) | Oncolysis + GM-CSF expression | Phase 2 | NCT03767348/[87] |
| Cancer Vaccines | BNT116 + Cemiplimab | mRNA vaccine + PD-1 blockade | Phase 1–2 | NCT05557591/[88] |
| Cancer Vaccines | mRNA-4157 + Pembrolizumab | Neoantigen mRNA vaccine + anti-PD-1 | Phase 2 | NCT06077760/[89] |
| Cancer Vaccines | TG4010 (MUC1 + IL-2) | Viral vaccine targeting MUC1 | Phase 2 | NCT00415818/[90] |
| Immune Checkpoint Blockade | Nivolumab | Anti–PD-1 checkpoint blockade | FDA-approved | NCT02175017/[91] |
| Immune Checkpoint Blockade | Atezolizumab | Anti–PD-L1 checkpoint blockade | FDA-approved | NCT02409342/[92] |
| Neoantigen Vaccines | GEN-009 (neoantigen peptides) | Synthetic long peptides + adjuvant | Phase 1 | NCT03633110/[93] |
| Neoantigen Vaccines | NEO-PV-01 + Nivolumab | Tumor-specific peptides + PD-1 inhibitor | Phase 2 | NCT03380871/[94] |
| Neoantigen Vaccines | Personalized mRNA vaccines | mRNA encoding patient-specific neoantigens | Phase 1 | NCT03908671/[95] |
7.2. Innovations in Immunotherapy and Combinatorial Regimens
7.3. Antibody–Drug Conjugates and Bispecific Antibodies
7.4. Cellular Therapies, Oncolytic Viruses, and Cancer Vaccines
8. Challenges and Future Directions
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Gridelli, C.; Rossi, A.; Carbone, D.P.; Guarize, J.; Karachaliou, N.; Mok, T.; Petrella, F.; Spaggiari, L.; Rosell, R. Non-small-cell lung cancer. Nat. Rev. Dis. Primers 2015, 1, 15009. [Google Scholar] [CrossRef]
- Eapen, M.S.; Hansbro, P.M.; Larsson-Callerfelt, A.K.; Jolly, M.K.; Myers, S.; Sharma, P.; Jones, B.; Rahman, M.A.; Markos, J.; Chia, C.; et al. Chronic Obstructive Pulmonary Disease and Lung Cancer: Underlying Pathophysiology and New Therapeutic Modalities. Drugs 2018, 78, 1717–1740. [Google Scholar] [CrossRef]
- Dong, Y.J.; Cai, Y.R.; Zhou, L.J.; Su, D.; Mu, J.; Chen, X.J.; Zhang, L.I. Association between the histological subtype of lung adenocarcinoma, EGFR/KRAS mutation status and the ALK rearrangement according to the novel IASLC/ATS/ERS classification. Oncol. Lett. 2016, 11, 2552–2558. [Google Scholar] [CrossRef]
- Roussot, N.; Kaderbhai, C.; Ghiringhelli, F. Targeting Immune Checkpoint Inhibitors for Non-Small-Cell Lung Cancer: Beyond PD-1/PD-L1 Monoclonal Antibodies. Cancers 2025, 17, 906. [Google Scholar] [CrossRef]
- Upadhyay, S.; Kaur, B.; Gabr, M.T. CD28 and ICOS in immune regulation: Structural insights and therapeutic targeting. Bioorg. Med. Chem. Lett. 2025, 127, 130310. [Google Scholar] [CrossRef]
- Upadhyay, S.; Cho, S.; Nada, H.; Gabr, M.T. Discovery of CD28-Targeted Small Molecule Inhibitors of T Cell Co-stimulation Using Affinity Selection-Mass Spectrometry (AS-MS) and Ex Vivo Validation. bioRxiv 2025. [Google Scholar] [CrossRef]
- Antonoff, M.B.; Gay, C.M. Timing of local consolidative pulmonary resection for oncogene-driven stage IV lung cancer. J. Thorac. Cardiovasc. Surg. 2025, 170, 876–881.e871. [Google Scholar] [CrossRef]
- Hayashibara, T.; Yamada, Y.; Miyanishi, T.; Mori, H.; Joh, T.; Maeda, T.; Mori, N.; Maita, T.; Kamihira, S.; Tomonaga, M. Vascular endothelial growth factor and cellular chemotaxis: A possible autocrine pathway in adult T-cell leukemia cell invasion. Clin. Cancer Res. 2001, 7, 2719–2726. [Google Scholar] [PubMed]
- Mitchell, A.R.; Spurrell, P.A.; Ahmet, H.; Higson, M.; Sulke, N. Reversal of tachycardiomyopathy by the atrial defibrillator. Eur. J. Heart Fail. 2002, 4, 485–488. [Google Scholar] [CrossRef] [PubMed]
- Cambier, J.C.; Butler, J.E. A rapid method for the purification of immunoglobulin M (IgM) from the sera of certain mammalian species. Prep. Biochem. 1974, 4, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Findeis-Hosey, J.J.; Yang, Q.; McMahon, L.A.; Yao, J.L.; Li, F.; Xu, H. Combination of napsin A and TTF-1 immunohistochemistry helps in differentiating primary lung adenocarcinoma from metastatic carcinoma in the lung. Appl. Immunohistochem. Mol. Morphol. 2011, 19, 313–317. [Google Scholar] [CrossRef]
- Kriegsmann, K.; Cremer, M.; Zgorzelski, C.; Harms, A.; Muley, T.; Winter, H.; Kazdal, D.; Warth, A.; Kriegsmann, M. Agreement of CK5/6, p40, and p63 immunoreactivity in non-small cell lung cancer. Pathology 2019, 51, 240–245. [Google Scholar] [CrossRef]
- Gadkowski, L.B.; Stout, J.E. Cavitary pulmonary disease. Clin. Microbiol. Rev. 2008, 21, 305–333. [Google Scholar] [CrossRef]
- Shelley, W.B.; Wood, M.G. New technic for instant visualization of fungi in hair. J. Am. Acad. Dermatol. 1980, 2, 69–71. [Google Scholar] [CrossRef] [PubMed]
- Warth, A.; Penzel, R.; Lindenmaier, H.; Brandt, R.; Stenzinger, A.; Herpel, E.; Goeppert, B.; Thomas, M.; Herth, F.J.; Dienemann, H.; et al. EGFR, KRAS, BRAF and ALK gene alterations in lung adenocarcinomas: Patient outcome, interplay with morphology and immunophenotype. Eur. Respir. J. 2014, 43, 872–883. [Google Scholar] [CrossRef] [PubMed]
- Eapen, M.S.; McAlinden, K.D.; Myers, S.; Lu, W.; Sohal, S.S. microRNAs Are Key Regulators in Chronic Lung Disease: Exploring the Vital Link between Disease Progression and Lung Cancer. J. Clin. Med. 2019, 8, 1986. [Google Scholar] [CrossRef]
- Dogan, S.; Xu, B.; Rana, S.; Chen, H.; Ghossein, R.A.; Berger, M.F.; Ho, A.L.; Katabi, N. Loss of CDKN2A/B is a Molecular Marker of High-grade Histology and is Associated with Aggressive Behavior in Acinic Cell Carcinoma. Mod. Pathol. 2023, 36, 100150. [Google Scholar] [CrossRef] [PubMed]
- LoPiccolo, J.; Gusev, A.; Christiani, D.C.; Janne, P.A. Lung cancer in patients who have never smoked—An emerging disease. Nat. Rev. Clin. Oncol. 2024, 21, 121–146. [Google Scholar] [CrossRef]
- Lu, W.; Aarsand, R.; Schotte, K.; Han, J.; Lebedeva, E.; Tsoy, E.; Maglakelidze, N.; Soriano, J.B.; Bill, W.; Halpin, D.M.G.; et al. Tobacco and COPD: Presenting the World Health Organization (WHO) Tobacco Knowledge Summary. Respir. Res. 2024, 25, 338. [Google Scholar] [CrossRef]
- Eaton, D.L.; Kwan, L.Y.; Stratton, K. (Eds.) Public Health Consequences of E-Cigarettes; National Academies Press: Washington, DC, USA, 2018. [Google Scholar]
- Esakov, A.I.; Meshcheriakova, O.D. Recovery of colchicine-blocked chemoreceptor reactions of the frog tongue as affected by electrical stimulation of the sympathetic nervous system. Biull. Eksp. Biol. Med. 1982, 94, 3–6. [Google Scholar] [CrossRef]
- Schiessel, C.; Forsthove, C.; Keppler, D. 45Calcium uptake during the transition from reversible to irreversible liver injury induced by D-galactosamine in vivo. Hepatology 1984, 4, 855–861. [Google Scholar] [CrossRef]
- Lorenzo-Gonzalez, M.; Ruano-Ravina, A.; Torres-Duran, M.; Kelsey, K.T.; Provencio, M.; Parente-Lamelas, I.; Leiro-Fernandez, V.; Vidal-Garcia, I.; Castro-Anon, O.; Martinez, C.; et al. Lung cancer and residential radon in never-smokers: A pooling study in the Northwest of Spain. Environ. Res. 2019, 172, 713–718. [Google Scholar] [CrossRef]
- Hill, W.; Lim, E.L.; Weeden, C.E.; Lee, C.; Augustine, M.; Chen, K.; Kuan, F.-C.; Marongiu, F.; Evans, E.J.; Moore, D.A.; et al. Lung adenocarcinoma promotion by air pollutants. Nature 2023, 616, 159–167. [Google Scholar] [CrossRef]
- Díaz-Gay, M.; Zhang, T.; Hoang, P.H.; Leduc, C.; Baine, M.K.; Travis, W.D.; Sholl, L.M.; Joubert, P.; Khandekar, A.; Zhao, W.; et al. The mutagenic forces shaping the genomes of lung cancer in never smokers. Nature 2025, 644, 133–144. [Google Scholar] [CrossRef]
- von Essen, C.F. Radiation tolerance of the skin. Acta Radiol. Ther. Phys. Biol. 1969, 8, 311–330. [Google Scholar] [CrossRef]
- Borngen, U. Work of breathing: A little-known parameter of pulmonary function (author’s transl). Med. Klin. 1974, 69, 1157–1162. [Google Scholar]
- Dearden, S.; Stevens, J.; Wu, Y.L.; Blowers, D. Mutation incidence and coincidence in non small-cell lung cancer: Meta-analyses by ethnicity and histology (mutMap). Ann. Oncol. 2013, 24, 2371–2376. [Google Scholar] [CrossRef]
- Amazigo, U. Onchocerciasis and women’s reproductive health: Indigenous and biomedical concepts. Trop. Dr. 1993, 23, 149–151. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Kang, K.; Chen, P.; Zeng, Z.; Li, G.; Xiong, W.; Yi, M.; Xiang, B. Regulatory mechanisms of PD-1/PD-L1 in cancers. Mol. Cancer 2024, 23, 108. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, S.; Khan, S.; Hassan, M.I. Exploring the diverse role of pyruvate kinase M2 in cancer: Navigating beyond glycolysis and the Warburg effect. Biochim. Biophys. Acta Rev. Cancer 2024, 1879, 189089. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, S.; Bhardwaj, M.; Kumar, S.P.; Khan, S.; Kumar, A.; Hassan, M.I. Impact of Cancer-Associated PKM2 Mutations on Enzyme Activity and Allosteric Regulation: Structural and Functional Insights into Metabolic Reprogramming. Biochemistry 2025, 64, 1463–1475. [Google Scholar] [CrossRef] [PubMed]
- Kay, F.U.; Kandathil, A.; Batra, K.; Saboo, S.S.; Abbara, S.; Rajiah, P. Revisions to the Tumor, Node, Metastasis staging of lung cancer (8(th) edition): Rationale, radiologic findings and clinical implications. World J. Radiol. 2017, 9, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Demirdöğen, E.; Terzi, O.E.; Aydın Güçlü, Ö.; Ursavaş, A.; Karadağ, M. Differences Between the 8th and 9th Editions of the TNM Staging System in Predicting Mortality in Non-Small Cell Lung Cancer Patients Staged with EBUS. Diagnostics 2025, 15, 1570. [Google Scholar] [CrossRef]
- Wu, T.; Cai, J.; Li, Y.; Xie, R.; Chen, K. Validation for revision of the stage IIIA(T1N2) in the forthcoming ninth edition of the TNM classification for lung cancer. BMC Cancer 2025, 25, 446. [Google Scholar] [CrossRef]
- Mercier, C.; Bourbonnais, D.; Bilodeau, S.; Lemay, J.F.; Cross, P. Description of a new motor re-education programme for the paretic lower limb aimed at improving the mobility of stroke patients. Clin. Rehabil. 1999, 13, 199–206. [Google Scholar] [CrossRef]
- Kinsey, C.M.; Arenberg, D.A. Endobronchial ultrasound-guided transbronchial needle aspiration for non-small cell lung cancer staging. Am. J. Respir. Crit. Care Med. 2014, 189, 640–649. [Google Scholar] [CrossRef] [PubMed]
- Dreachslin, J.L. Diversity leadership. J. Nurs. Adm. 1999, 29, 3–4. [Google Scholar] [CrossRef]
- Makinen, J.M.; Laitakari, K.; Johnson, S.; Makitaro, R.; Bloigu, R.; Lappi-Blanco, E.; Kaarteenaho, R. Nonpredominant lepidic pattern correlates with better outcome in invasive lung adenocarcinoma. Lung Cancer 2015, 90, 568–574. [Google Scholar] [CrossRef]
- Brown, A.J.; Sun, L.; Feramisco, J.D.; Brown, M.S.; Goldstein, J.L. Cholesterol addition to ER membranes alters conformation of SCAP, the SREBP escort protein that regulates cholesterol metabolism. Mol. Cell 2002, 10, 237–245. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, L.; Xie, H.; Dong, Z.; Wu, W.; Kong, J.; Chen, G.; Wu, C. Expression of p63, p40 and CK5/6 in small cell lung cancer. Zhonghua Bing Li Xue Za Zhi 2015, 44, 644–647. [Google Scholar]
- Silverton, N.H. Skin pigmentation by phenindione. Br. Med. J. 1966, 1, 675. [Google Scholar] [CrossRef]
- Abdesselem, K.; Gastinne, R.; Labrune, M.; Hassine, W.; Ben Attia, M.; Saied, H.; Gharbi, H.A. Sonography in the diagnosis and follow-up of pancreatic pseudocysts in childhood. A report of 4 cases. Eur. J. Radiol. 1984, 4, 213–215. [Google Scholar] [PubMed]
- Numabe, H. Oculo-facio-cardio-dental syndrome. Ryoikibetsu Shokogun Shirizu 2001, 34 Pt 2, 350–351. [Google Scholar]
- West, K. Infection-control basics. A common sense review for EMS personnel. JEMS 2002, 27, 115–118, 120, 122–125. [Google Scholar] [PubMed]
- Michaud, P.; Termet, H.; Chassignolle, J.; Rassat, J.P.; Dureau, G.; Teneriello, F. Syphilitic ostial coronaritis. Analysis of 6 observations. J. Cardiovasc. Surg. 1971, 12, 254–263. [Google Scholar]
- Jahani, M.M.; Mashayekhi, P.; Omrani, M.D.; Meibody, A.A. Efficacy of liquid biopsy for genetic mutations determination in non-small cell lung cancer: A systematic review on literatures. BMC Cancer 2025, 25, 433. [Google Scholar] [CrossRef]
- Duffy, M.J.; Crown, J. Use of Circulating Tumour DNA (ctDNA) for Measurement of Therapy Predictive Biomarkers in Patients with Cancer. J. Pers. Med. 2022, 12, 99. [Google Scholar] [CrossRef]
- Chen, K.; Shields, M.D.; Chauhan, P.S.; Ramirez, R.J.; Harris, P.K.; Reimers, M.A.; Zevallos, J.P.; Davis, A.A.; Pellini, B.; Chaudhuri, A.A. Commercial ctDNA Assays for Minimal Residual Disease Detection of Solid Tumors. Mol. Diagn. Ther. 2021, 25, 757–774. [Google Scholar] [CrossRef]
- Henrich, B.; Kitzerow, A.; Feldmann, R.C.; Schaal, H.; Hadding, U. Repetitive elements of the Mycoplasma hominis adhesin p50 can be differentiated by monoclonal antibodies. Infect. Immun. 1996, 64, 4027–4034. [Google Scholar] [CrossRef]
- Ryu, J.R.; Choi, T.Y.; Kwon, E.J.; Lee, W.H.; Nishida, Y.; Hayashi, Y.; Matsukage, A.; Yamaguchi, M.; Yoo, M.A. Transcriptional regulation of the Drosophila-raf proto-oncogene by the DNA replication-related element (DRE)/DRE-binding factor (DREF) system. Nucleic Acids Res. 1997, 25, 794–799. [Google Scholar] [CrossRef]
- Lotery, A.J.; Jacobson, S.G.; Fishman, G.A.; Weleber, R.G.; Fulton, A.B.; Namperumalsamy, P.; Heon, E.; Levin, A.V.; Grover, S.; Rosenow, J.R.; et al. Mutations in the CRB1 gene cause Leber congenital amaurosis. Arch. Ophthalmol. 2001, 119, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Boyle, P.; Chapman, C.J.; Holdenrieder, S.; Murray, A.; Robertson, C.; Wood, W.C.; Maddison, P.; Healey, G.; Fairley, G.H.; Barnes, A.C.; et al. Clinical validation of an autoantibody test for lung cancer. Ann. Oncol. 2011, 22, 383–389. [Google Scholar] [CrossRef]
- Vittone, J.; Gill, D.; Goldsmith, A.; Klein, E.A.; Karlitz, J.J. A multi-cancer early detection blood test using machine learning detects early-stage cancers lacking USPSTF-recommended screening. NPJ Precis. Oncol. 2024, 8, 91. [Google Scholar] [CrossRef]
- Klein, E.A.; Richards, D.; Cohn, A.; Tummala, M.; Lapham, R.; Cosgrove, D.; Chung, G.; Clement, J.; Gao, J.; Hunkapiller, N.; et al. Clinical validation of a targeted methylation-based multi-cancer early detection test using an independent validation set. Ann. Oncol. 2021, 32, 1167–1177. [Google Scholar] [CrossRef]
- Eberth, J.M. Lung Cancer Screening with Low-Dose CT in the United States. J. Am. Coll. Radiol. 2015, 12, 1395–1402. [Google Scholar] [CrossRef]
- Standl, T.; Beck, H. Influence of the subarachnoid position of microcatheters on onset of analgesia and dose of plain bupivacaine 0.5% in continuous spinal anesthesia. Reg. Anesth. 1994, 19, 231–236. [Google Scholar] [CrossRef]
- Whitmore, D.; Foulkes, N.S.; Sassone-Corsi, P. Light acts directly on organs and cells in culture to set the vertebrate circadian clock. Nature 2000, 404, 87–91. [Google Scholar] [CrossRef]
- Shiri, I.; Amini, M.; Nazari, M.; Hajianfar, G.; Haddadi Avval, A.; Abdollahi, H.; Oveisi, M.; Arabi, H.; Rahmim, A.; Zaidi, H. Impact of feature harmonization on radiogenomics analysis: Prediction of EGFR and KRAS mutations from non-small cell lung cancer PET/CT images. Comput. Biol. Med. 2022, 142, 105230. [Google Scholar] [CrossRef] [PubMed]
- Stella, L.; Venanzi, M.; Carafa, M.; Maccaroni, E.; Straccamore, M.E.; Zanotti, G.; Palleschi, A.; Pispisa, B. Structural features of model glycopeptides in solution and in membrane phase: A spectroscopic and molecular mechanics investigation. Biopolymers 2002, 64, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Walstra, A.N.H.; Lancaster, H.L.; Heuvelmans, M.A.; van der Aalst, C.M.; Hubert, J.; Moldovanu, D.; Oudkerk, S.F.; Han, D.; Gratama, J.W.C.; Silva, M.; et al. Feasibility of AI as first reader in the 4-IN-THE-LUNG-RUN lung cancer screening trial: Impact on negative-misclassifications and clinical referral rate. Eur. J. Cancer 2025, 216, 115214. [Google Scholar] [CrossRef]
- Walstra, A.; Lancaster, H.L.; Heuvelmans, M.A.; Gratama, J.W.; Silva, M.; Oudkerk, M. MA02.07 AI as Primary Reader in 4-IN-THE-LUNG-RUN Lung Cancer Screening Trial: Impact on Negative Misclassification and Referral Rate. J. Thorac. Oncol. 2024, 19, S58. [Google Scholar] [CrossRef]
- Erdogdu, E.; Öksüz, İ.; Duman, S.; Ozkan, B.; Erturk, S.M.; Bakkaloğlu, D.V.; Kara, M.; Toker, A. Machine learning-based prediction of N2 lymph node metastasis in non-small cell lung cancer. BMC Pulm. Med. 2025, 25, 454. [Google Scholar] [CrossRef] [PubMed]
- Ge, C.; Shi, Y.; Wang, W.; Zhang, A.; Huang, M.; Zhao, F.; Li, A.; Feng, Z.; Wang, M.; Wu, H. Artificial Intelligence-driven image analysis for standardised programmed death-ligand 1 expression evaluation in non-small cell lung cancer. Diagn. Pathol. 2025, 20, 106. [Google Scholar] [CrossRef]
- Bonci, E.-A.; Bandura, A.; Dooley, A.; Erjan, A.; Gebreslase, H.W.; Hategan, M.; Khanduja, D.; Lai, E.; Lescaie, A.; Nitescu, G.V.; et al. Artificial intelligence in NSCLC management for revolutionizing diagnosis, prognosis, and treatment optimization: A systematic review. Crit. Rev. Oncol. Hematol. 2025, 216, 104929. [Google Scholar] [CrossRef]
- Gao, H.; Yang, J.; He, L.; Wang, W.; Liu, Y.; Hu, Y.; Ge, M.; Ding, J.; Ye, Q. The Diagnostic Potential of SHOX2 and RASSF1A DNA Methylation in Early Lung Adenocarcinoma. Front. Oncol. 2022, 12, 849024. [Google Scholar] [CrossRef]
- Nutman, T.B. Lymphatic filariasis: New insights and prospects for control. Curr. Opin. Infect. Dis. 2001, 14, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Zhong, R.; Liang, H.; Zhong, Q.; Huang, H.; He, J.; Chen, Y.; Wang, Z.; Xie, S.; Jiang, Y.; et al. Exhaled VOC detection in lung cancer screening: A comprehensive meta-analysis. BMC Cancer 2024, 24, 775. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, A.J. Soluble guanylate cyclase: An old therapeutic target re-visited. Br. J. Pharmacol. 2002, 136, 637–640. [Google Scholar] [CrossRef]
- Albanese, S.A.; Coren, A.B.; Weinstein, M.P.; Cady, R.B.; Lubicky, J.P. Ultrasonography for urinary tract evaluation in patients with congenital spine anomalies. Clin. Orthop. Relat. Res. 1988, 228, 302–306. [Google Scholar] [CrossRef]
- Khan, S.; Upadhyay, S.; Hassan, M.I. Novel prospects in targeting neurodegenerative disorders via autophagy. Eur. J. Pharmacol. 2024, 984, 177060. [Google Scholar] [CrossRef]
- Meeradevi, T.; Sasikala, S.; Murali, L.; Manikandan, N.; Ramaswamy, K. Lung cancer detection with machine learning classifiers with multi-attribute decision-making system and deep learning model. Sci. Rep. 2025, 15, 8565. [Google Scholar] [CrossRef]
- Nakajima, E.C.; Drezner, N.; Li, X.; Mishra-Kalyani, P.S.; Liu, Y.; Zhao, H.; Bi, Y.; Liu, J.; Rahman, A.; Wearne, E.; et al. FDA Approval Summary: Sotorasib for KRAS G12C-Mutated Metastatic NSCLC. Clin. Cancer Res. 2022, 28, 1482–1486. [Google Scholar] [CrossRef]
- Dhillon, S. Adagrasib: First Approval. Drugs 2023, 83, 275–285. [Google Scholar] [CrossRef]
- Dy, G.K.; Govindan, R.; Velcheti, V.; Falchook, G.S.; Italiano, A.; Wolf, J.; Sacher, A.G.; Takahashi, T.; Ramalingam, S.S.; Dooms, C.; et al. Long-term benefit of sotorasib in patients with KRAS G12C-mutated non-small-cell lung cancer: Plain language summary. Future Oncol. 2024, 20, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Sands, J.; Ahn, M.-J.; Lisberg, A.; Cho, B.C.; Blumenschein, G.; Shum, E.; Tostivint, E.P.; Goto, Y.; Yoh, K.; Heist, R.; et al. Datopotamab Deruxtecan in Advanced or Metastatic Non–Small Cell Lung Cancer with Actionable Genomic Alterations: Results from the Phase II TROPION-Lung05 Study. J. Clin. Oncol. 2025, 43, 1254–1265. [Google Scholar] [CrossRef]
- Modi, S.; Jacot, W.; Yamashita, T.; Sohn, J.; Vidal, M.; Tokunaga, E.; Tsurutani, J.; Ueno, N.T.; Prat, A.; Chae, Y.S.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer. N. Engl. J. Med. 2022, 387, 9–20. [Google Scholar] [CrossRef]
- Le Rhun, E.; Franceschi, E.; Weller, M. TUXEDO-3: A phase 2 trial of patritumab deruxtecan for patients with leptomeningeal metastasis. Neuro-Oncology 2025, 27, 1927–1929. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.; Lee, S.H.; Kim, S.Y.; Jeong, S.Y.; Kim, J.H.; Pyo, K.H.; Park, C.W.; Heo, S.G.; Yun, M.R.; Lim, S.; et al. Antitumor Activity of Amivantamab (JNJ-61186372), an EGFR-MET Bispecific Antibody, in Diverse Models of EGFR Exon 20 Insertion-Driven NSCLC. Cancer Discov. 2020, 10, 1194–1209. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Chen, G.; Li, X.; Wu, J.; Chang, B.; Hu, S.; Yang, S.; Xu, T.; Liu, Y.; Wang, N.; et al. KN046, a bispecific antibody against PD-L1 and CTLA-4, plus chemotherapy as first-line treatment for metastatic NSCLC: A multicenter phase 2 trial. Cell Rep. Med. 2024, 5, 101470. [Google Scholar] [CrossRef]
- Feng, J.; Tang, D.; Wang, J.; Zhou, Q.; Peng, J.; Lou, H.; Sun, Y.; Cai, Y.; Chen, H.; Yang, J.; et al. SHR-1701, a Bifunctional Fusion Protein Targeting PD-L1 and TGFbeta, for Recurrent or Metastatic Cervical Cancer: A Clinical Expansion Cohort of a Phase I Study. Clin. Cancer Res. 2022, 28, 5297–5305. [Google Scholar] [CrossRef]
- Li, H.; Huang, Y.; Jiang, D.Q.; Cui, L.Z.; He, Z.; Wang, C.; Zhang, Z.W.; Zhu, H.L.; Ding, Y.M.; Li, L.F.; et al. Antitumor activity of EGFR-specific CAR T cells against non-small-cell lung cancer cells in vitro and in mice. Cell Death Dis. 2018, 9, 177. [Google Scholar] [CrossRef]
- Wang, A.; Lv, T.; Song, Y. Tandem CAR-T cells targeting MUC1 and PSCA combined with anti-PD-1 antibody exhibit potent preclinical activity against non-small cell lung cancer. Cell Immunol. 2023, 391–392, 104760. [Google Scholar] [CrossRef] [PubMed]
- Adusumilli, P.S.; Zauderer, M.G.; Riviere, I.; Solomon, S.B.; Rusch, V.W.; O’Cearbhaill, R.E.; Zhu, A.; Cheema, W.; Chintala, N.K.; Halton, E.; et al. A Phase I Trial of Regional Mesothelin-Targeted CAR T-cell Therapy in Patients with Malignant Pleural Disease, in Combination with the Anti-PD-1 Agent Pembrolizumab. Cancer Discov. 2021, 11, 2748–2763. [Google Scholar] [CrossRef]
- Saltos, A.N.; Arrowood, C.; Beasley, G.; Ronald, J.; El-Haddad, G.; Guerra-Guevara, L.; Khan, U.; Wolf, S.; Gu, L.; Wang, X.F.; et al. A phase 1 first-in-human study of interferon beta (IFNβ) and membrane-stable CD40L expressing oncolytic virus (MEM-288) in solid tumors including non–small-cell lung cancer (NSCLC). J. Clin. Oncol. 2023, 41, 2569. [Google Scholar] [CrossRef]
- Nassiri, F.; Patil, V.; Yefet, L.S.; Singh, O.; Liu, J.; Dang, R.M.A.; Yamaguchi, T.N.; Daras, M.; Cloughesy, T.F.; Colman, H.; et al. Author Correction: Oncolytic DNX-2401 virotherapy plus pembrolizumab in recurrent glioblastoma: A phase 1/2 trial. Nat. Med. 2025, 31, 3204. [Google Scholar] [CrossRef]
- Wong, M.K.K.; Sacco, J.J.; Robert, C.; Michels, J.; Bowles, T.L.; In, G.K.; Tsai, K.K.; Lebbe, C.; Gaudy-Marqueste, C.; Couselo, E.M.; et al. Efficacy and safety of RP1 combined with nivolumab in patients with anti–PD-1–failed melanoma from the IGNYTE clinical trial. J. Clin. Oncol. 2024, 42, 9517. [Google Scholar] [CrossRef]
- Dziadziuszko, R.; Deme, D.; Ramlau, R.; Göker, E.; Yalcin, B.; Munshi, N.; Markman, J.L.; Chen, V.; Rout, M.K.; Dalle Fratte, C.; et al. Abstract CT013: Phase I trial evaluating BNT116, a TAA-encoding mRNA vaccine, in combination with cemiplimab in frail patients with advanced non-small cell lung cancer (NSCLC). Cancer Res. 2025, 85, CT013. [Google Scholar] [CrossRef]
- Lee, J.M.; Spicer, J.; Nair, S.; Khattak, A.; Brown, M.; Meehan, R.S.; Shariati, N.M.; Deng, X.; Samkari, A.; Chaft, J.E. The phase 3 INTerpath-002 study design: Individualized neoantigen therapy (INT) V940 (mRNA-4157) plus pembrolizumab vs placebo plus pembrolizumab for resected early-stage non–small-cell lung cancer (NSCLC). J. Clin. Oncol. 2024, 42, TPS8116. [Google Scholar] [CrossRef]
- Quoix, E.; Ramlau, R.; Westeel, V.; Papai, Z.; Madroszyk, A.; Riviere, A.; Koralewski, P.; Breton, J.L.; Stoelben, E.; Braun, D.; et al. Therapeutic vaccination with TG4010 and first-line chemotherapy in advanced non-small-cell lung cancer: A controlled phase 2B trial. Lancet Oncol. 2011, 12, 1125–1133. [Google Scholar] [CrossRef]
- Sundar, R.; Cho, B.C.; Brahmer, J.R.; Soo, R.A. Nivolumab in NSCLC: Latest evidence and clinical potential. Ther. Adv. Med. Oncol. 2015, 7, 85–96. [Google Scholar] [CrossRef]
- Herbst, R.S.; Giaccone, G.; Marinis, F.D.; Reinmuth, N.; Vergnenegre, A.; Barrios, C.H.; Morise, M.; Felip, E.; Andric, Z.; Geater, S.; et al. Atezolizumab for First-Line Treatment of PD-L1–Selected Patients with NSCLC. N. Engl. J. Med. 2020, 383, 1328–1339. [Google Scholar] [CrossRef]
- Cohen, R.B.; Twardowski, P.; Johnson, M.L.; Gillison, M.L.; Stein, M.N.; Vaishampayan, U.N.; McNeil, L.; Shainheit, M.; DeOliveira, D.; Jain, M.; et al. GEN-009, a neoantigen vaccine containing ATLAS selected neoantigens, to generate broad sustained immunity against immunogenic tumor mutations and avoid inhibitory peptides. J. Clin. Oncol. 2020, 38, 3107. [Google Scholar] [CrossRef]
- Awad, M.M.; Govindan, R.; Balogh, K.N.; Spigel, D.R.; Garon, E.B.; Bushway, M.E.; Poran, A.; Sheen, J.H.; Kohler, V.; Esaulova, E.; et al. Personalized neoantigen vaccine NEO-PV-01 with chemotherapy and anti-PD-1 as first-line treatment for non-squamous non-small cell lung cancer. Cancer Cell 2022, 40, 1010–1026.E11. [Google Scholar] [CrossRef]
- Zhang, W.; Yin, Q.; Huang, H.; Lu, J.; Qin, H.; Chen, S.; Zhang, W.; Su, X.; Sun, W.; Dong, Y.; et al. Personal Neoantigens from Patients with NSCLC Induce Efficient Antitumor Responses. Front. Oncol. 2021, 11, 628456. [Google Scholar] [CrossRef]
- Tang, Y.; Pu, X.; Yuan, X.; Pang, Z.; Li, F.; Wang, X. Targeting KRASG12D mutation in non-small cell lung cancer: Molecular mechanisms and therapeutic potential. Cancer Gene Ther. 2024, 31, 961–969. [Google Scholar] [CrossRef]
- Daley, B.R.; Sealover, N.E.; Finniff, B.A.; Hughes, J.M.; Sheffels, E.; Gerlach, D.; Hofmann, M.H.; Kostyrko, K.; LaMorte, J.P.; Linke, A.J.; et al. SOS1 Inhibition Enhances the Efficacy of KRASG12C Inhibitors and Delays Resistance in Lung Adenocarcinoma. Cancer Res. 2025, 85, 118–133. [Google Scholar] [CrossRef]
- Wolf, J.; Hochmair, M.; Han, J.-Y.; Reguart, N.; Souquet, P.-J.; Smit, E.F.; Orlov, S.V.; Vansteenkiste, J.; Nishio, M.; de Jonge, M.; et al. Capmatinib in MET exon 14-mutated non-small-cell lung cancer: Final results from the open-label, phase 2 GEOMETRY mono-1 trial. Lancet Oncol. 2024, 25, 1357–1370. [Google Scholar] [CrossRef]
- Paik, P.K.; Felip, E.; Veillon, R.; Sakai, H.; Cortot, A.B.; Garassino, M.C.; Mazieres, J.; Viteri, S.; Senellart, H.; Meerbeeck, J.V.; et al. Tepotinib in Non–Small-Cell Lung Cancer with MET Exon 14 Skipping Mutations. N. Engl. J. Med. 2020, 383, 931–943. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Lin, Z.; Chen, Y.; Fu, Y.; Ding, Z. Dramatic response to neoadjuvant savolitinib in marginally resectable lung adenocarcinoma with MET exon 14 skipping mutation: A case report and literature review. Front. Oncol. 2022, 12, 1006634. [Google Scholar] [CrossRef] [PubMed]
- Corvaja, C.; Passaro, A.; Attili, I.; Aliaga, P.T.; Spitaleri, G.; Signore, E.D.; de Marinis, F. Advancements in fourth-generation EGFR TKIs in EGFR-mutant NSCLC: Bridging biological insights and therapeutic development. Cancer Treat. Rev. 2024, 130, 102824. [Google Scholar] [CrossRef] [PubMed]
- Chmielecki, J.; Mok, T.; Wu, Y.-L.; Han, J.-Y.; Ahn, M.-J.; Ramalingam, S.S.; John, T.; Okamoto, I.; Yang, J.C.-H.; Shepherd, F.A.; et al. Analysis of acquired resistance mechanisms to osimertinib in patients with EGFR-mutated advanced non-small cell lung cancer from the AURA3 trial. Nat. Commun. 2023, 14, 1071. [Google Scholar] [CrossRef]
- Ferro, A.; Marinato, G.M.; Mulargiu, C.; Marino, M.; Pasello, G.; Guarneri, V.; Bonanno, L. The study of primary and acquired resistance to first-line osimertinib to improve the outcome of EGFR-mutated advanced Non-small cell lung cancer patients: The challenge is open for new therapeutic strategies. Crit. Rev. Oncol. Hematol. 2024, 196, 104295. [Google Scholar] [CrossRef] [PubMed]
- Gomatou, G.; Syrigos, N.; Kotteas, E. Osimertinib Resistance: Molecular Mechanisms and Emerging Treatment Options. Cancers 2023, 15, 841. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Eapen, M.S.; Hardikar, A.; Chia, C.; Robertson, I.; Singhera, G.K.; Hackett, T.L.; Sohal, S.S. Epithelial-mesenchymal transition changes in nonsmall cell lung cancer patients with early COPD. ERJ Open Res. 2023, 9, 00581-2023. [Google Scholar] [CrossRef]
- Li, Y.; Mao, T.; Wang, J.; Zheng, H.; Hu, Z.; Cao, P.; Yang, S.; Zhu, L.; Guo, S.; Zhao, X.; et al. Toward the next generation EGFR inhibitors: An overview of osimertinib resistance mediated by EGFR mutations in non-small cell lung cancer. Cell Commun. Signal. 2023, 21, 71. [Google Scholar] [CrossRef]
- Shaw, A.T.; Solomon, B.J.; Besse, B.; Bauer, T.M.; Lin, C.-C.; Soo, R.A.; Riely, G.J.; Ou, S.-H.I.; Clancy, J.S.; Li, S.; et al. ALK Resistance Mutations and Efficacy of Lorlatinib in Advanced Anaplastic Lymphoma Kinase-Positive Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2019, 37, 1370–1379. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Gao, Y.; Xu, W.; Zhu, J. Mechanisms of Resistance to ALK Inhibitors and Corresponding Treatment Strategies in Lung Cancer. Int. J. Gen. Med. 2025, 18, 2151–2171. [Google Scholar] [CrossRef]
- Ye, Z.; Guo, J. Acquired ALK G1202R-, ALK I1171N-, or EML4-ALK-mediated resistance to ensartinib in lung adenocarcinoma but responded to lorlatinib: A case report. Front. Oncol. 2023, 13, 1082115. [Google Scholar] [CrossRef]
- Drilon, A.; Camidge, D.R.; Lin, J.J.; Kim, S.-W.; Solomon, B.J.; Dziadziuszko, R.; Besse, B.; Goto, K.; Langen, A.J.d.; Wolf, J.; et al. Repotrectinib in ROS1 Fusion–Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2024, 390, 118–131. [Google Scholar] [CrossRef]
- Yun, M.R.; Kim, D.H.; Kim, S.-Y.; Joo, H.-S.; Lee, Y.W.; Choi, H.M.; Park, C.W.; Heo, S.G.; Kang, H.N.; Lee, S.S.; et al. Repotrectinib Exhibits Potent Antitumor Activity in Treatment-Naïve and Solvent-Front–Mutant ROS1-Rearranged Non–Small Cell Lung Cancer. Clin. Cancer Res. 2020, 26, 3287–3295. [Google Scholar] [CrossRef]
- Ou, S.-H.I.; Hagopian, G.G.; Zhang, S.S.; Nagasaka, M. Comprehensive Review of ROS1 Tyrosine Kinase Inhibitors-Classified by Structural Designs and Mutation Spectrum (Solvent Front Mutation [G2032R] and Central β-Sheet 6 [Cβ6] Mutation [L2086F]). J. Thorac. Oncol. 2024, 19, 706–718. [Google Scholar] [CrossRef]
- Solomon, B.J.; Tan, L.; Lin, J.J.; Wong, S.Q.; Hollizeck, S.; Ebata, K.; Tuch, B.B.; Yoda, S.; Gainor, J.F.; Sequist, L.V.; et al. RET Solvent Front Mutations Mediate Acquired Resistance to Selective RET Inhibition in RET-Driven Malignancies. J. Thorac. Oncol. 2020, 15, 541–549. [Google Scholar] [CrossRef]
- Subbiah, V.; Shen, T.; Terzyan, S.S.; Liu, X.; Hu, X.; Patel, K.P.; Hu, M.; Cabanillas, M.; Behrang, A.; Meric-Bernstam, F.; et al. Structural basis of acquired resistance to selpercatinib and pralsetinib mediated by non-gatekeeper RET mutations. Ann. Oncol. 2021, 32, 261–268. [Google Scholar] [CrossRef]
- Fujino, T.; Suda, K.; Koga, T.; Hamada, A.; Ohara, S.; Chiba, M.; Shimoji, M.; Takemoto, T.; Soh, J.; Mitsudomi, T. Foretinib can overcome common on-target resistance mutations after capmatinib/tepotinib treatment in NSCLCs with MET exon 14 skipping mutation. J. Hematol. Oncol. 2022, 15, 79. [Google Scholar] [CrossRef]
- Takeda, M.; Ota, M.; Iwama, E.; Sugawara, S.; Shukuya, T.; Umemura, S.; Tanaka, H.; Oki, M.; Takahama, T.; Masuda, T.; et al. A Phase II, Open Label, Single-Arm Study on the Efficacy of Cabozantinib in Patients with Advanced/Metastatic Nonsmall Cell Lung Cancer Harboring MET Exon 14 Alterations who Developed Acquired Resistance to Tepotinib or Capmatinib (CAPTURE Trial). Clin. Lung Cancer 2025, 26, e232–e235. [Google Scholar] [CrossRef]
- Shaverdashvili, K.; Burns, T.F. Advances in the treatment of KRASG12C mutant non–small cell lung cancer. Cancer 2025, 131, e35783. [Google Scholar] [CrossRef] [PubMed]
- Oya, Y.; Imaizumi, K.; Mitsudomi, T. The next-generation KRAS inhibitors…What comes after sotorasib and adagrasib? Lung Cancer 2024, 194, 107886. [Google Scholar] [CrossRef]
- Planchard, D.; Smit, E.F.; Groen, H.J.M.; Mazieres, J.; Besse, B.; Helland, Å.; Giannone, V.; D’Amelio, A.M., Jr.; Zhang, P.; Mookerjee, B.; et al. Dabrafenib plus trametinib in patients with previously untreated BRAFV600E-mutant metastatic non-small-cell lung cancer: An open-label, phase 2 trial. Lancet Oncol. 2017, 18, 1307–1316. [Google Scholar] [CrossRef] [PubMed]
- Planchard, D.; Besse, B.; Groen, H.J.M.; Hashemi, S.M.S.; Mazieres, J.; Kim, T.M.; Quoix, E.; Souquet, P.-J.; Barlesi, F.; Baik, C.; et al. Phase 2 Study of Dabrafenib Plus Trametinib in Patients with BRAF V600E-Mutant Metastatic NSCLC: Updated 5-Year Survival Rates and Genomic Analysis. J. Thorac. Oncol. 2022, 17, 103–115. [Google Scholar] [CrossRef]
- Smit, E.F.; Felip, E.; Uprety, D.; Nagasaka, M.; Nakagawa, K.; Paz-Ares Rodríguez, L.; Pacheco, J.M.; Li, B.T.; Planchard, D.; Baik, C.; et al. Trastuzumab deruxtecan in patients with metastatic non-small-cell lung cancer (DESTINY-Lung01): Primary results of the HER2-overexpressing cohorts from a single-arm, phase 2 trial. Lancet Oncol. 2024, 25, 439–454. [Google Scholar] [CrossRef] [PubMed]
- Goto, K.; Goto, Y.; Kubo, T.; Ninomiya, K.; Kim, S.-W.; Planchard, D.; Ahn, M.-J.; Smit, E.F.; Langen, A.J.d.; Pérol, M.; et al. Trastuzumab Deruxtecan in Patients with HER2-Mutant Metastatic Non–Small-Cell Lung Cancer: Primary Results from the Randomized, Phase II DESTINY-Lung02 Trial. J. Clin. Oncol. 2023, 41, 4852–4863. [Google Scholar] [CrossRef]
- Chen, M.F.; Yang, S.-R.; Shia, J.; Girshman, J.; Punn, S.; Wilhelm, C.; Kris, M.G.; Cocco, E.; Drilon, A.; Raj, N. Response to Repotrectinib After Development of NTRK Resistance Mutations on First- and Second-Generation TRK Inhibitors. JCO Precis. Oncol. 2023, 7, e2200697. [Google Scholar] [CrossRef]
- Xiang, S.; Lu, X. Selective type II TRK inhibitors overcome xDFG mutation mediated acquired resistance to the second-generation inhibitors selitrectinib and repotrectinib. Acta Pharm. Sin. B 2024, 14, 517–532. [Google Scholar] [CrossRef]
- Murray, B.W.; Rogers, E.; Zhai, D.; Deng, W.; Chen, X.; Sprengeler, P.A.; Zhang, X.; Graber, A.; Reich, S.H.; Stopatschinskaja, S.; et al. Molecular Characteristics of Repotrectinib That Enable Potent Inhibition of TRK Fusion Proteins and Resistant Mutations. Mol. Cancer Ther. 2021, 20, 2446–2456. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Handorf, E.A.; Zhou, Y.; Borghaei, H.; Aggarwal, C.; Bauman, J. Outcomes in patients treated with frontline immune checkpoint inhibition (ICI) for advanced NSCLC with KRAS mutations and STK11/KEAP1 comutations across PD-L1 levels. Lung Cancer 2024, 190. [Google Scholar] [CrossRef]
- Ricciuti, B.; Lamberti, G.; Puchala, S.R.; Mahadevan, N.R.; Lin, J.-R.; Alessi, J.V.; Chowdhury, A.; Li, Y.Y.; Wang, X.; Spurr, L.; et al. Genomic and Immunophenotypic Landscape of Acquired Resistance to PD-(L)1 Blockade in Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2024, 42, 1311–1321. [Google Scholar] [CrossRef] [PubMed]
- Skoulidis, F.; Araujo, H.A.; Do, M.T.; Qian, Y.; Sun, X.; Galan-Cobo, A.; Le, J.T.; Montesion, M.; Palmer, R.; Jahchan, N.; et al. CTLA4 blockade abrogates KEAP1/STK11-related resistance to PD-(L)1 inhibitors. Nature 2024, 635, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, S.; Nada, H.; Cho, S.; Gabr, M.T. Structure-Guided Optimization and Functional Characterization of Small Molecule Antagonists Targeting CD28 Costimulation. bioRxiv 2025. [Google Scholar] [CrossRef]
- Marcoux, N.; Gettinger, S.N.; O’Kane, G.; Arbour, K.C.; Neal, J.W.; Husain, H.; Evans, T.L.; Brahmer, J.R.; Muzikansky, A.; Bonomi, P.D.; et al. EGFR-Mutant Adenocarcinomas That Transform to Small-Cell Lung Cancer and Other Neuroendocrine Carcinomas: Clinical Outcomes. J. Clin. Oncol. 2019, 37, 278–285. [Google Scholar] [CrossRef]
- Ding, J.; Leng, Z.; Gu, H.; Jing, X.; Song, Y. Etoposide/platinum plus anlotinib for patients with transformed small-cell lung cancer from EGFR-mutant lung adenocarcinoma after EGFR-TKI resistance: A retrospective and observational study. Front. Oncol. 2023, 13, 1153131. [Google Scholar] [CrossRef]
- Chiu, D.T. “Karate kid” finger. Plast. Reconstr. Surg. 1993, 91, 362–364. [Google Scholar] [CrossRef] [PubMed]
- Leite, C.A.; Carvalho, R.P.; da Costa, F.M.; Medeiros, A.K.; Schutz, F.A.; William, W.N., Jr. Selpercatinib and capmatinib combination promotes sustained complete response in novel ISOC1-RET fusion lung cancer after resistance to RET inhibitor via MET amplification: Case Report. Front. Oncol. 2023, 13, 1264231. [Google Scholar] [CrossRef]
- Jain, S.K.; Uppal, R.P. Pharmacokinetics of trimethoprim in buffalo calves. Zentralblatt Vet. Reihe A 1983, 30, 682–687. [Google Scholar] [CrossRef]
- Usui, T.; Nakasone, S.; Kawamoto, M. Bile acids in human urine. Yonago Acta. Med. 1966, 10, 250–251. [Google Scholar]
- Hellmann, M.D.; Ciuleanu, T.E.; Pluzanski, A.; Lee, J.S.; Otterson, G.A.; Audigier-Valette, C.; Minenza, E.; Linardou, H.; Burgers, S.; Salman, P.; et al. Nivolumab plus Ipilimumab in Lung Cancer with a High Tumor Mutational Burden. N. Engl. J. Med. 2018, 378, 2093–2104. [Google Scholar] [CrossRef]
- Niho, Y.; Asano, Y. Progress in the field of hematology in the last 100 years: Discovery of granulocyte colony-stimulating factor and the clinical application. Nihon Naika Gakkai Zasshi 2002, 91, 1989–1993. [Google Scholar]
- Cho, B.C.; Abreu, D.R.; Hussein, M.; Cobo, M.; Patel, A.J.; Secen, N.; Lee, K.H.; Massuti, B.; Hiret, S.; Yang, J.C.H.; et al. Tiragolumab plus atezolizumab versus placebo plus atezolizumab as a first-line treatment for PD-L1-selected non-small-cell lung cancer (CITYSCAPE): Primary and follow-up analyses of a randomised, double-blind, phase 2 study. Lancet Oncol. 2022, 23, 781–792. [Google Scholar] [CrossRef]
- Lu, S.; Kato, T.; Dong, X.; Ahn, M.-J.; Quang, L.-V.; Soparattanapaisarn, N.; Inoue, T.; Wang, C.-L.; Huang, M.; Yang, J.C.-H.; et al. Osimertinib after Chemoradiotherapy in Stage III EGFR-Mutated NSCLC. N. Engl. J. Med. 2024, 391, 585–597. [Google Scholar] [CrossRef]
- Hayes, D.F.; Yamauchi, H.; Broadwater, G.; Cirrincione, C.T.; Rodrigue, S.P.; Berry, D.A.; Younger, J.; Panasci, L.L.; Millard, F.; Duggan, D.B.; et al. Circulating HER-2/erbB-2/c-neu (HER-2) extracellular domain as a prognostic factor in patients with metastatic breast cancer: Cancer and Leukemia Group B Study 8662. Clin. Cancer Res. 2001, 7, 2703–2711. [Google Scholar] [PubMed]
- Felip, E.; Altorki, N.; Zhou, C.; Vallieres, E.; Martinez-Marti, A.; Rittmeyer, A.; Chella, A.; Reck, M.; Goloborodko, O.; Huang, M.; et al. Overall survival with adjuvant atezolizumab after chemotherapy in resected stage II-IIIA non-small-cell lung cancer (IMpower010): A randomised, multicentre, open-label, phase III trial. Ann. Oncol. 2023, 34, 907–919. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-L.; Dziadziuszko, R.; Ahn, J.S.; Barlesi, F.; Nishio, M.; Lee, D.H.; Lee, J.-S.; Zhong, W.; Horinouchi, H.; Mao, W.; et al. Alectinib in Resected ALK-Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2024, 390, 1265–1276. [Google Scholar] [CrossRef] [PubMed]
- Spicer, J.D.; Garassino, M.C.; Wakelee, H.; Liberman, M.; Kato, T.; Tsuboi, M.; Lee, S.-H.; Chen, K.-N.; Dooms, C.; Majem, M.; et al. Neoadjuvant pembrolizumab plus chemotherapy followed by adjuvant pembrolizumab compared with neoadjuvant chemotherapy alone in patients with early-stage non-small-cell lung cancer (KEYNOTE-671): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2024, 404, 1240–1252. [Google Scholar] [CrossRef] [PubMed]
- Ahn, M.J.; Tanaka, K.; Paz-Ares, L.; Cornelissen, R.; Girard, N.; Pons-Tostivint, E.; Vicente Baz, D.; Sugawara, S.; Cobo, M.; Perol, M.; et al. Datopotamab Deruxtecan Versus Docetaxel for Previously Treated Advanced or Metastatic Non-Small Cell Lung Cancer: The Randomized, Open-Label Phase III TROPION-Lung01 Study. J. Clin. Oncol. 2025, 43, 260–272. [Google Scholar] [CrossRef]
- Xie, Y.; Lu, Q.; Wang, J.Q.; Bo, L.; Ashby, C.R., Jr.; Chen, Z.S. Amivantamab: A monoclonal EGFR-MET bispecific antibody for EGFR exon 20 insertion in non-small cell lung cancer. Drugs Today 2022, 58, 389–398. [Google Scholar] [CrossRef]
- Felip, E.; Cho, B.C.; Gutiérrez, V.; Alip, A.; Besse, B.; Lu, S.; Spira, A.I.; Girard, N.; Califano, R.; Gadgeel, S.M.; et al. Amivantamab plus lazertinib versus osimertinib in first-line EGFR-mutant advanced non-small-cell lung cancer with biomarkers of high-risk disease: A secondary analysis from MARIPOSA. Ann. Oncol. 2024, 35, 805–816. [Google Scholar] [CrossRef] [PubMed]
- Rovida, E.; Baccarini, M.; Olivotto, M.; Dello Sbarba, P. Opposite effects of different doses of MCSF on ERK phosphorylation and cell proliferation in macrophages. Oncogene 2002, 21, 3670–3676. [Google Scholar] [CrossRef]
- Upadhyay, S.; Talagayev, V.; Cho, S.; Wolber, G.; Gabr, M. Structure-based virtual screening identifies potent CD28 inhibitors that suppress T cell co-stimulation in cellular and mucosal models. Eur. J. Med. Chem. 2025, 300, 118194. [Google Scholar] [CrossRef]
- Ma, H.Y.; Das, J.; Prendergast, C.; De Jong, D.; Braumuller, B.; Paily, J.; Huang, S.; Liou, C.; Giarratana, A.; Hosseini, M.; et al. Advances in CAR T Cell Therapy for Non-Small Cell Lung Cancer. Curr. Issues Mol. Biol. 2023, 45, 9019–9038. [Google Scholar] [CrossRef]
- Upadhyay, S.; Upmanyu, K.; Gabr, M.T. Designing immunity with cytokines: A logic-based framework for programmable CAR therapies. Cytokine Growth Factor Rev. 2025, 86, 40–55. [Google Scholar] [CrossRef]
- Hawkins, E.R.; D’Souza, R.R.; Klampatsa, A. Armored CAR T-Cells: The Next Chapter in T-Cell Cancer Immunotherapy. Biologics 2021, 15, 95–105. [Google Scholar] [CrossRef]
- Stone, V.B.; Parker, V.; Quarterman, M.; Lee, C. The relationship between skin cancer knowledge and preventive behaviors used by parents. Dermatol. Nurs. 1999, 11, 411–416, 421–424; quiz 425–426. [Google Scholar] [PubMed]
- Filling, C.; Wu, X.; Shafqat, N.; Hult, M.; Martensson, E.; Shafqat, J.; Oppermann, U.C. Subcellular targeting analysis of SDR-type hydroxysteroid dehydrogenases. Mol. Cell Endocrinol. 2001, 171, 99–101. [Google Scholar] [CrossRef]
- Zheng, H.; Yu, X.; Ibrahim, M.L.; Foresman, D.; Xie, M.; Johnson, J.O.; Boyle, T.A.; Ruffell, B.; Perez, B.A.; Antonia, S.J.; et al. Combination IFNbeta and Membrane-Stable CD40L Maximize Tumor Dendritic Cell Activation and Lymph Node Trafficking to Elicit Systemic T-cell Immunity. Cancer Immunol. Res. 2023, 11, 466–485. [Google Scholar] [CrossRef]
- Peters, P.N.; Whitaker, R.S.; Lim, F.; Russell, S.; Bloom, E.A.; Pollara, J.; Strickland, K.C.; Cantwell, M.J.; Beg, A.; Berchuck, A.; et al. Oncolytic adenovirus MEM-288 encoding membrane-stable CD40L and IFNbeta induces an anti-tumor immune response in high grade serous ovarian cancer. Neoplasia 2024, 57, 101056. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Cen, L.; Wei, F.; Dong, J.; Huang, Y.; Han, Y.; Wang, Z.; Deng, J.; Jiang, Y. EGFR mutations in non-small cell lung cancer: Classification, characteristics and resistance to third-generation EGFR-tyrosine kinase inhibitors (Review). Oncol. Lett. 2025, 30, 375. [Google Scholar] [CrossRef] [PubMed]


| On-Therapy Context | Common Resistance Mechanism(s) | What to Test at Progression (Preferred) | Re-Biopsy vs. Liquid Biopsy Strategy | Evidence-Based Next Step(s) | Trial-Ready Options/Notes | References |
|---|---|---|---|---|---|---|
| EGFR classic (Ex19del/L858R) on 1L osimertinib | C797S, L718Q/V, G724S; MET/HER2 amp; KRAS/PIK3CA/NRAS; RET/ALK fusions; SCLC/NE transformation, EMT | Comprehensive NGS (DNA+RNA); MET IHC/ISH; NE markers if histologic shift; ctDNA if tissue hard to access | Start with ctDNA; if negative or histologic change suspected → tissue biopsy; brain imaging for CNS sanctuary | MET amp → add/switch MET TKI; C797S (trans) → 1G/2G EGFR TKI + osimertinib; SCLC transform → platinum–etoposide ± IO; oligoprogression → local therapy + osimertinib | EGFR/MET combos (amivantamab-based), HER3-ADC, 4th-gen EGFR TKIs, EGFR+MET+anti-VEGF triplets | [102,103,104,105] |
| EGFR exon20 insertion | On-target heterogeneity; MET/HER2 amp; KRAS/PIK3CA; RET fusions | DNA+RNA NGS; ctDNA for rapid spectrum; IHC for HER2 | Liquid first; tissue if negative or to quantify amplifications | Amivantamab or mobocertinib; chemo-IO for progression; MET/HER2 bypass → targeted combo | Next-gen exon20 TKIs; EGFR+MET/SHP2/MEK combo trials | [106] |
| ALK fusion (on 1L alectinib/brigatinib) | G1202R, I1171X, L1196M, compound mutations; MET, KRAS, BRAF bypass; CNS progression | DNA+RNA NGS; ctDNA for mutation spectrum; brain MRI | Liquid detects G1202R/compound variants; tissue if liquid negative | Lorlatinib for G1202R/compound; CNS RT + continue ALK TKI; MET amp → add/switch MET TKI | Next-gen ALK TKIs for compound mutations; SHP2/MEK combos for bypass | [107,108,109] |
| ROS1 fusion (crizotinib/entrectinib) | G2032R, D2033N, L2026M; CNS progression | DNA+RNA NGS; ctDNA for mutation detection | Liquid first; tissue if liquid negative or discordant | Repotrectinib or lorlatinib for solvent-front mutations; CNS RT for isolated brain progression | Next-gen ROS1 TKIs; pathway combos if bypass identified | [110,111,112] |
| RET fusion (selpercatinib/pralsetinib) | G810X (solvent-front), gatekeeper; MET, KRAS bypass | DNA+RNA NGS; ctDNA for solvent-front mutations | Liquid first; tissue if negative/discordant | Switch within class if non-solvent-front; MET amp → add/switch MET TKI; chemo-IO as per profile | Next-gen RET TKIs; SHP2/MEK combos for bypass | [112,113,114] |
| MET exon14 skipping (capmatinib/tepotinib) | D1228, Y1230; KRAS, EGFR, PIK3CA; amplification dynamics | DNA NGS (copy-number), RNA for splice variants; ctDNA for on-target calls | Liquid efficient; tissue for copy-number/alternate drivers | Switch within class if mutation-dependent; combine with EGFR/MEK/PI3K inhibitor per co-alteration | Selective MET TKIs for specific mutants; MET+SHP2/MEK/EGFR combos | [98,115,116] |
| KRAS G12C (sotorasib/adagrasib) | Y96D/C, H95X, R68S; MET, NRAS, BRAF, FGFR2, PIK3CA; EGFR feedback activation | DNA NGS (on-target & bypass); ctDNA for dynamic resistance tracking | Liquid for speed; tissue if negative or for RNA fusions | Alternate G12C inhibitor for on-target changes; add EGFR blockade; chemo-IO per PD-L1; local therapy for oligoprogression | G12C + SHP2/SOS1/EGFR/MEK combos (CodeBreaK/KRYSTAL); KRAS degraders emerging | [117,118] |
| BRAF V600E (dabrafenib + trametinib) | MAPK reactivation (NRAS/KRAS), MEK alterations, RTK upregulation | DNA NGS; ctDNA for rapid readout | Liquid acceptable; tissue for RTK amp confirmation | Add/switch MEK/ERK pathway strategies; chemo-IO if no targeted path | ERK inhibitors, RTK blockade triplets under study | [119,120] |
| HER2 (ERBB2) mutations | Target downregulation, HER2 amp, ADC resistance (payload efflux), PIK3CA | DNA NGS; IHC for HER2 expression; ctDNA to capture heterogeneity | Liquid for mosaicism; tissue to confirm expression/amplification | T-DXd (ADC); switch ADC class; add pathway inhibitor as per co-drivers | HER2 TKIs, PI3K/AKT combos, alternative ADCs | [121,122] |
| NTRK1/2/3 fusion (larotrectinib/entrectinib) | G595R/G623R (solvent-front), xDFG; MET, BRAF, KRAS bypass | DNA+RNA NGS; ctDNA for on-target | Liquid first; tissue for rare fusion isoforms | Selitrectinib or repotrectinib for solvent-front mutations | Next-gen TRK inhibitors; pathway combos | [123,124,125] |
| Immunotherapy (PD-1/PD-L1) resistance | STK11/KEAP1, JAK1/2, B2M loss, suppressive TME; EGFR/ALK oncogene-driven immune exclusion | DNA NGS (co-alterations), RNA for inflamed signatures, PD-L1 IHC; ctDNA for TMB dynamics | Tissue preferred for PD-L1 and histology; liquid for mutational context | Switch to targeted therapy if new driver; chemo-IO or IO-IO intensification; trials for STK11/KEAP1 | TIGIT/LAG-3/CTLA-4 combos; STING/IL-2/IL-12 agonists; TAM/CAF modulators | [126,127,128,129] |
| Histologic transformation (EGFR-mutant → SCLC/NE) | RB1/TP53 loss; lineage plasticity | Tissue biopsy with NE IHC (synaptophysin, INSM1), NGS to confirm driver retention | Tissue mandatory (liquid cannot diagnose transformation) | Platinum–etoposide ± IO; continue EGFR TKI for CNS control case-by-case | AURKA, DLL3-ADC, epigenetic therapy trials | [130,131] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, S.; Upadhyay, S.; Kauser, S.; Hasan, G.M.; Lu, W.; Waters, M.; Hassan, M.I.; Sohal, S.S. Redefining the Diagnostic and Therapeutic Landscape of Non-Small Cell Lung Cancer in the Era of Precision Medicine. J. Clin. Med. 2025, 14, 8021. https://doi.org/10.3390/jcm14228021
Khan S, Upadhyay S, Kauser S, Hasan GM, Lu W, Waters M, Hassan MI, Sohal SS. Redefining the Diagnostic and Therapeutic Landscape of Non-Small Cell Lung Cancer in the Era of Precision Medicine. Journal of Clinical Medicine. 2025; 14(22):8021. https://doi.org/10.3390/jcm14228021
Chicago/Turabian StyleKhan, Shumayila, Saurabh Upadhyay, Sana Kauser, Gulam Mustafa Hasan, Wenying Lu, Maddison Waters, Md Imtaiyaz Hassan, and Sukhwinder Singh Sohal. 2025. "Redefining the Diagnostic and Therapeutic Landscape of Non-Small Cell Lung Cancer in the Era of Precision Medicine" Journal of Clinical Medicine 14, no. 22: 8021. https://doi.org/10.3390/jcm14228021
APA StyleKhan, S., Upadhyay, S., Kauser, S., Hasan, G. M., Lu, W., Waters, M., Hassan, M. I., & Sohal, S. S. (2025). Redefining the Diagnostic and Therapeutic Landscape of Non-Small Cell Lung Cancer in the Era of Precision Medicine. Journal of Clinical Medicine, 14(22), 8021. https://doi.org/10.3390/jcm14228021

