The Relationship Between Body Fat Percentage, Anthropometric Measurements, and Diabetes Complications in Female Patients with Type 2 Diabetes
Abstract
1. Background
2. Materials and Methods
2.1. Study Design
2.2. Inclusion and Exclusion Criteria
2.3. Sample Size Calculation
2.4. Measures and Tools
2.5. Ethical Approval
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| T2DM | Type 2 diabetes mellitus |
| DR | Diabetic retinopathy |
| DN | Diabetic nephropathy |
| DPN | Diabetic peripheral neuropathy |
| WC | Waist circumference |
| WHR | Waist-to-hip ratio |
| BIA | Bioelectrical impedance analysis |
| BMI | Body mass index |
| SFT | Skinfold thickness |
| SSI | Social Security Institution |
| FFM | Fat-free mass |
References
- Hossain, P.; Kawar, B.; El Nahas, M. Obesity and diabetes in the developing world—A growing challenge. N. Engl. J. Med. 2007, 356, 213–215. [Google Scholar] [CrossRef]
- Türkiye Endokrinoloji ve Metabolizma Derneği. Obezite Tanı ve Tedavi Kılavuzu. 22 December 2024. Available online: https://file.temd.org.tr/Uploads/publications/guides/documents/obezitetanitedavikilavizu-2024.pdf (accessed on 30 August 2025).
- Morrish, N.J.; Wang, S.L.; Stevens, L.K.; Fuller, J.H.; Keen, H. Mortality and causes of death in the WHO multinational study of vascular disease in diabetes. Diabetologia 2001, 44 (Suppl. S2), S14–S21. [Google Scholar] [CrossRef] [PubMed]
- Bellisari, A.; Roche, A.F. Anthropometry and ultrasound. In Human Body Composition; Heymsfield, S.B., Lohman, T.G., Wang, Z., Going, S.B., Eds.; Human Kinetics: Champaign, IL, USA, 2005; pp. 109–128. [Google Scholar]
- Tovée, M.J. Anthropometry. In Encyclopedia of Body Image and Human Appearance; Cash, T.F., Smolak, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 23–29. Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780123849250000043 (accessed on 22 December 2024).
- Yamada, Y.; Yoshida, T.; Murakami, H.; Kawakami, R.; Gando, Y.; Ohno, H.; Tanisawa, K.; Konishi, K.; Julien, T.; Kondo, E.; et al. Phase angle obtained via bioelectrical impedance analysis and objectively measured physical activity or exercise habits. Sci. Rep. 2022, 12, 17274. [Google Scholar] [CrossRef]
- Di Vincenzo, O.; Marra, M.; Antognozzi, V.; Sammarco, R.; Ballarin, G.; Cioffi, I.; Scalfi, L.; Pasanisi, F. Comparison of bioelectrical impedance analysis–derived phase angle in individuals with different weight status. Nutrition 2023, 108, 111960. [Google Scholar] [CrossRef]
- Nathan, D.M. Long-term complications of diabetes mellitus. N. Engl. J. Med. 1993, 328, 1676–1685. [Google Scholar] [CrossRef]
- Brownlee, M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes 2005, 54, 1615–1625. [Google Scholar] [CrossRef]
- Sneed, N.M.; Morrison, S.A. Body composition methods in adults with type 2 diabetes or at risk for T2D: A clinical review. Curr. Diab. Rep. 2021, 21, 14. [Google Scholar] [CrossRef]
- Zhou, J.B.; Yuan, J.; Tang, X.Y.; Zhao, W.; Luo, F.Q.; Bai, L.; Li, B.; Cong, J.; Qi, L.; Yang, J.-K. Is central obesity associated with diabetic retinopathy in Chinese individuals? An exploratory study. J. Int. Med. Res. 2019, 47, 5601–5612. [Google Scholar] [CrossRef]
- Ranganathan, R.S.; Shanmugasundaram, R.; Manimozhian, N. High fasting blood sugar and increased waist circumference as risk factors for diabetic retinopathy in type 2 diabetes patients older than 45 years. Cureus 2022, 14, e28291. [Google Scholar] [CrossRef]
- Engin, A. The pathogenesis of obesity-associated adipose tissue inflammation and insulin resistance. Adv. Exp. Med. Biol. 2017, 960, 221–245. [Google Scholar]
- Zhang, Y.; Guo, Y.; Shen, X.; Zhao, F.; Yan, S. Lower body mass index is not of more benefit for diabetic complications. J. Diabetes Investig. 2019, 10, 1307–1317. [Google Scholar] [CrossRef]
- Sen, D.; Ghosh, S.; Roy, D. Correlation of C-reactive protein and body mass index with diabetic retinopathy in Indian population. Diabetes Metab. Syndr. 2015, 9, 28–29. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, X.; Li, B.; Zhu, X.; Li, C.; Zhou, C.; Gu, C.; Wang, Y.; Ma, M.; Fan, Y.; et al. Association of BMI and waist circumference with diabetic microvascular complications: A prospective cohort study from the UK Biobank and Mendelian randomization analysis. Diabetes Res. Clin. Pract. 2023, 205, 110975. [Google Scholar] [CrossRef]
- Lee, Y.J.; Kim, J.J.; Kim, J.; Cho, D.W.; Won, J.Y. The correlation between waist circumference and the pro-inflammatory adipokines in diabetic retinopathy of type 2 diabetes patients. Int. J. Mol. Sci. 2023, 24, 2036. [Google Scholar] [CrossRef]
- Hukportie, D.N.; Li, F.R.; Zhou, R.; Zheng, J.Z.; Wu, X.X.; Wu, X.B. Anthropometric measures and incident diabetic nephropathy in participants with type 2 diabetes mellitus. Front. Endocrinol. 2021, 12, 706845. [Google Scholar] [CrossRef]
- Oh, H.; Quan, S.A.; Jeong, J.Y.; Jang, S.N.; Lee, J.E.; Kim, D.H. Waist circumference, not body mass index, is associated with renal function decline in Korean population: Hallym Aging Study. PLoS ONE 2013, 8, e59071. [Google Scholar] [CrossRef]
- Liu, X.; Xu, Y.; An, M.; Zeng, Q. The risk factors for diabetic peripheral neuropathy: A meta-analysis. PLoS ONE 2019, 14, e0212574. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Li, F.; Chen, G.; Fu, Q.; Gu, S.; Wu, X. Associations between general and abdominal obesity and incident diabetic neuropathy in participants with type 2 diabetes mellitus. J. Diabetes 2021, 13, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Wentworth, J.M.; Fourlanos, S.; Colman, P.G. Body mass index correlates with ischemic heart disease and albuminuria in long-standing type 2 diabetes. Diabetes Res. Clin. Pract. 2012, 97, 57–62. [Google Scholar] [CrossRef]
- Yang, G.R.; Yuan, M.X.; Wan, G.; Zhang, X.L.; Fu, H.J.; Yuan, S.Y.; Zhu, L.-X.; Xie, R.-R.; Zhang, J.-D.; Li, Y.-L.; et al. Neck circumference and waist circumference associated with cardiovascular events in type 2 diabetes (Beijing Community Diabetes Study 23). Sci. Rep. 2021, 11, 9491. [Google Scholar] [CrossRef]
- Lim, S.; Meigs, J.B. Ectopic fat and cardiometabolic and vascular risk. Int. J. Cardiol. 2013, 169, 166–176. [Google Scholar] [CrossRef]
- Wong, T.Y.; Klein, R.; Islam, F.M.A.; Cotch, M.F.; Folsom, A.R.; Klein, B.E.K.; Sharrett, A.R.; Shea, S.; The Multi-Ethnic Study of Atherosclerosis (MESA). Diabetic retinopathy in a multi-ethnic cohort in the United States. Am. J. Ophthalmol. 2006, 141, 446–455.e1. [Google Scholar] [CrossRef]
- Christensen, D.H.; Knudsen, S.T.; Gylfadottir, S.S.; Christensen, L.B.; Nielsen, J.S.; Beck-Nielsen, H.; Sørensen, H.T.; Andersen, H.; Callaghan, B.C.; Feldman, E.L.; et al. Metabolic factors, lifestyle habits, and possible polyneuropathy in early type 2 diabetes: A nationwide study of 5,249 patients in the Danish centre for strategic research in type 2 diabetes (DD2) cohort. Diabetes Care 2020, 43, 1266–1275. [Google Scholar] [CrossRef]
- Yi, Q.X.; Zhu, L.N.; Ma, J.; Yu, X.J.; Liu, L.; Shen, J. Use of anthropometric measures of obesity to predict diabetic retinopathy in patients with type 2 diabetes in China. Diabetes Metab. Syndr. Obes. 2021, 14, 4089–4095. [Google Scholar] [CrossRef]
- Taşli, H.; Sağir, S. Obezitenin belirlenmesinde kullanılan beden kitle indeksi, bel çevresi, bel-kalça oranı metotlarının karşılaştırılması. Ahi. Evran. Univ. J. Soc. Sci. Inst. 2021, 7, 138–150. [Google Scholar]
- Zheng, C.; Wei, X.; Cao, X. The causal effect of obesity on diabetic retinopathy: A two-sample Mendelian randomization study. Front. Endocrinol. 2023, 14, 1108731. [Google Scholar] [CrossRef]
- Dirani, M.; Xie, J.; Fenwick, E.; Benarous, R.; Rees, G.; Wong, T.Y.; Lamoureux, E.L. Are obesity and anthropometry risk factors for diabetic retinopathy?: The diabetes management project. Investig. Ophthalmol. Vis. Sci. 2011, 52, 4416. [Google Scholar] [CrossRef]
- Verma, A.; Jha, A.; Alagorie, A.R.; Sharma, R. Association of anthropometric parameters as a risk factor for development of diabetic retinopathy in patients with diabetes mellitus. Eye 2023, 37, 303–308. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, S. Development and Validation of a Model That Predicts the Risk of Diabetic Nephropathy in Type 2 Diabetes Mellitus Patients: A Cross-Sectional Study. Int. J. Gen. Med. 2022, 15, 5089–5101. [Google Scholar] [CrossRef] [PubMed]
- Alrawahi, A.H.; Rizvi, S.G.A.; Al-Riyami, D.; Al-Anqoodi, Z. Prevalence and risk factors of diabetic nephropathy in omani type 2 diabetics in Al-dakhiliyah region. Oman Med. J. 2012, 27, 212–216. [Google Scholar] [CrossRef]
- Unnikrishnan, R.; Rema, M.; Pradeepa, R.; Deepa, M.; Shanthirani, C.S.; Deepa, R.; Mohan, V. Prevalence and Risk Factors of Diabetic Nephropathy in an Urban South Indian Population. Diabetes Care 2007, 30, 2019–2024. [Google Scholar] [CrossRef]
- Ibrahim, M.M. Subcutaneous and visceral adipose tissue: Structural and functional differences. Obes. Rev. 2010, 11, 11–18. [Google Scholar] [CrossRef]
- van Greevenbroek, M.M.J.; Schalkwijk, C.G.; Stehouwer, C.D.A. Obesity-associated low-grade inflammation in type 2 diabetes mellitus: Causes and consequences. Neth. J. Med. 2013, 71, 174–187. [Google Scholar]
- Coelho, M.; Oliveira, T.; Fernandes, R. Biochemistry of adipose tissue: An endocrine organ. Arch. Med. Sci. 2013, 9, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Schütten, M.T.; Houben, A.J.; de Leeuw, P.W.; Stehouwer, C.D. The Link Between Adipose Tissue Renin-Angiotensin-Aldosterone System Signaling and Obesity-Associated Hypertension. Physiology 2017, 32, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Sasongko, M.B.; Widyaputri, F.; Sulistyoningrum, D.C.; Wardhana, F.S.; Widayanti, T.W.; Supanji, S.; Widyaningrum, R.; Indrayanti, S.R.; Widhasari, I.A.; Agni, A.N. Estimated resting metabolic rate and body composition measures are strongly associated with diabetic retinopathy in Indonesian adults with type 2 diabetes. Diabetes Care 2018, 41, 2377–2384. [Google Scholar] [CrossRef] [PubMed]
- Oshita, K.; Hikita, A.; Myotsuzono, R.; Ishihara, Y. Relationship between age and various muscle quality indices in Japanese individuals via bioelectrical impedance analysis (BIA). J. Physiol. Anthropol. 2025, 44, 8. [Google Scholar] [CrossRef]
| Variable | Mean ± SD | Median (Min–Max) |
|---|---|---|
| Height (cm) | 154.75 ± 6.32 | 155.0 (131–172) |
| Weight (kg) | 77.34 ± 15.48 | 74.5 (48.1–141.5) |
| Age (years) | 63.07 ± 10.91 | 63.0 (25–88) |
| Duration of diabetes (years) | 17.21 ± 8.37 | 15.0 (5–43) |
| BMI (kg/m2) | 32.31 ± 6.08 | 31.4 (19.3–49.3) |
| Waist circumference (cm) | 105.90 ± 12.74 | 105.0 (74–148) |
| Hip circumference (cm) | 114.88 ± 12.51 | 114.0 (92–159) |
| Waist-to-hip ratio | 0.92 ± 0.06 | 0.92 (0.76–1.05) |
| Triceps SFT (mm) | 23.93 ± 9.23 | 22.5 (5–57) |
| Abdominal SFT (mm) | 35.61 ± 12.93 | 33.0 (10–75) |
| Suprailiac SFT (mm) | 25.53 ± 9.93 | 24.0 (6–66) |
| Mean SFT (mm) | 28.36 ± 9.23 | 27.0 (8.3–61.7) |
| Body fat percentage (%) | 37.86 ± 6.06 | 38.2 (18.6–51.2) |
| Body fat mass (kg) | 30.04 ± 10.36 | 28.6 (9.0–69.5) |
| Fat-free mass (kg) | 47.32 ± 5.97 | 46.6 (36.7–72.0) |
| Trunk fat mass (kg) | 13.09 ± 4.54 | 12.4 (3.3–28.7) |
| Variable | Source of Variance | Sum of Squares | df | F | p |
|---|---|---|---|---|---|
| BMI (kg/m2) | Corrected Model | 4339.234 | 2 | 302.984 | <0.001 |
| Weight | 4065.496 | 1 | 567.741 | <0.001 | |
| Retinopathy | 14.104 | 1 | 1.970 | 0.163 | |
| Waist circumference (cm) | Corrected Model | 17,572.504 | 2 | 210.354 | <0.001 |
| Weight | 15,649.701 | 1 | 374.673 | <0.001 | |
| Retinopathy | 343.616 | 1 | 8.227 | 0.005 | |
| Hip circumference (cm) | Corrected Model | 17,828.743 | 2 | 261.527 | <0.001 |
| Weight | 16,416.162 | 1 | 553.500 | <0.001 | |
| Retinopathy | 139.250 | 1 | 4.085 | 0.045 | |
| Waist-to-hip ratio | Corrected Model | 0.011 | 2 | 1.723 | 0.182 |
| Weight | 0.006 | 1 | 1.799 | 0.182 | |
| Retinopathy | 0.003 | 1 | 0.992 | 0.321 | |
| Triceps SFT (mm) | Corrected Model | 4390.717 | 2 | 39.476 | <0.001 |
| Weight | 4128.519 | 1 | 74.237 | <0.001 | |
| Retinopathy | 10.979 | 1 | 0.197 | 0.657 | |
| Abdominal SFT (mm) | Corrected Model | 4478.861 | 2 | 16.203 | <0.001 |
| Weight | 3945.874 | 1 | 28.550 | <0.001 | |
| Retinopathy | 107.235 | 1 | 0.776 | 0.380 | |
| Suprailiac SFT (mm) | Corrected Model | 3846.022 | 2 | 26.294 | <0.001 |
| Weight | 3521.332 | 1 | 48.148 | <0.001 | |
| Retinopathy | 36.792 | 1 | 0.503 | 0.479 | |
| Mean SFT (mm) | Corrected Model | 4225.771 | 2 | 37.174 | <0.001 |
| Weight | 3860.983 | 1 | 67.930 | <0.001 | |
| Retinopathy | 43.273 | 1 | 0.761 | 0.384 | |
| Body fat percentage (%) | Corrected Model | 3441.802 | 2 | 133.852 | <0.001 |
| Weight | 3381.826 | 1 | 263.039 | <0.001 | |
| Retinopathy | 14.277 | 1 | 1.110 | 0.294 | |
| Body fat mass (kg) | Corrected Model | 14,683.330 | 2 | 1179.027 | <0.001 |
| Weight | 14,200.782 | 1 | 2280.559 | <0.001 | |
| Retinopathy | 3.109 | 1 | 0.499 | 0.481 | |
| Fat-free mass (kg) | Corrected Model | 4292.874 | 2 | 347.030 | <0.001 |
| Weight | 4079.798 | 1 | 659.610 | <0.001 | |
| Retinopathy | 3.324 | 1 | 0.537 | 0.465 | |
| Trunk fat percentage (%) | Corrected Model | 2785.877 | 2 | 56.369 | <0.001 |
| Weight | 2783.771 | 1 | 112.653 | <0.001 | |
| Retinopathy | 79.132 | 1 | 3.202 | 0.076 | |
| Trunk fat mass (kg) | Corrected Model | 2305.411 | 2 | 240.501 | <0.001 |
| Weight | 2282.779 | 1 | 476.279 | <0.001 | |
| Retinopathy | 21.891 | 1 | 4.567 | 0.034 |
| Variable | Source of Variance | Sum of Squares | df | F | p |
|---|---|---|---|---|---|
| BMI (kg/m2) | Corrected Model | 4331.649 | 2 | 300.230 | <0.001 |
| Weight | 4050.581 | 1 | 561.499 | <0.001 | |
| Nephropathy | 6.518 | 1 | 0.904 | 0.343 | |
| Waist circumference (cm) | Corrected Model | 17,671.570 | 2 | 215.107 | <0.001 |
| Weight | 15,268.115 | 1 | 371.703 | <0.001 | |
| Nephropathy | 442.682 | 1 | 10.777 | 0.001 | |
| Hip circumference (cm) | Corrected Model | 17,691.790 | 2 | 252.426 | <0.001 |
| Weight | 16,771.008 | 1 | 478.576 | <0.001 | |
| Nephropathy | 2.297 | 1 | 0.066 | 0.798 | |
| Waist-to-hip ratio | Corrected Model | 0.037 | 2 | 6.159 | 0.003 |
| Weight | 0.002 | 1 | 0.807 | 0.371 | |
| Nephropathy | 0.029 | 1 | 9.717 | 0.002 | |
| Triceps SFT (mm) | Corrected Model | 4392.835 | 2 | 39.505 | <0.001 |
| Weight | 4275.546 | 1 | 76.901 | <0.001 | |
| Nephropathy | 13.097 | 1 | 0.236 | 0.628 | |
| Abdominal SFT (mm) | Corrected Model | 4588.647 | 2 | 16.693 | <0.001 |
| Weight | 3763.242 | 1 | 27.381 | <0.001 | |
| Nephropathy | 217.021 | 1 | 1.579 | 0.211 | |
| Suprailiac SFT (mm) | Corrected Model | 4181.142 | 2 | 29.541 | <0.001 |
| Weight | 3142.385 | 1 | 44.394 | <0.001 | |
| Nephropathy | 372.912 | 1 | 5.268 | 0.023 | |
| Mean SFT (mm) | Corrected Model | 4285.341 | 2 | 37.976 | <0.001 |
| Weight | 3712.458 | 1 | 65.799 | <0.001 | |
| Nephropathy | 102.843 | 1 | 1.823 | 0.179 | |
| Body fat percentage (%) | Corrected Model | 3428.928 | 2 | 132.424 | <0.001 |
| Weight | 3295.532 | 1 | 254.544 | <0.001 | |
| Nephropathy | 1.403 | 1 | 0.108 | 0.743 | |
| Body fat mass (kg) | Corrected Model | 14,686.516 | 2 | 1183.517 | <0.001 |
| Weight | 14,117.883 | 1 | 2275.387 | <0.001 | |
| Nephropathy | 6.295 | 1 | 1.015 | 0.316 | |
| Fat-free mass (kg) | Corrected Model | 4295.278 | 2 | 348.170 | <0.001 |
| Weight | 4021.368 | 1 | 651.934 | <0.001 | |
| Nephropathy | 5.728 | 1 | 0.929 | 0.337 | |
| Trunk fat percentage (%) | Corrected Model | 2711.541 | 2 | 53.735 | <0.001 |
| Weight | 2627.76 | 1 | 104.149 | <0.001 | |
| Nephropathy | 4.797 | 1 | 0.190 | 0.663 | |
| Trunk fat mass (kg) | Corrected Model | 2291.428 | 2 | 234.263 | <0.001 |
| Weight | 2233.276 | 1 | 456.635 | <0.001 | |
| Nephropathy | 7.908 | 1 | 1.617 | 0.206 |
| Variable | Source of Variance | Sum of Squares | df | F | p |
|---|---|---|---|---|---|
| BMI (kg/m2) | Corrected Model | 4328.483 | 2 | 299.093 | <0.001 |
| Weight | 4182.007 | 1 | 577.943 | <0.001 | |
| Neuropathy | 3.352 | 1 | 0.463 | 0.497 | |
| Waist circumference (cm) | Corrected Model | 17,269.657 | 2 | 196.753 | <0.001 |
| Weight | 16,548.597 | 1 | 377.075 | <0.001 | |
| Neuropathy | 40.769 | 1 | 0.929 | 0.337 | |
| Hip circumference (cm) | Corrected Model | 17,694.574 | 2 | 252.606 | <0.001 |
| Weight | 17,163.482 | 1 | 490.048 | <0.001 | |
| Neuropathy | 5.081 | 1 | 0.145 | 0.704 | |
| Waist-to-hip ratio | Corrected Model | 0.009 | 2 | 1.365 | 0.259 |
| Weight | 0.007 | 1 | 2.129 | 0.147 | |
| Neuropathy | 0.001 | 1 | 0.288 | 0.592 | |
| Triceps SFT (mm) | Corrected Model | 4380.911 | 2 | 39.339 | <0.001 |
| Weight | 4250.294 | 1 | 76.333 | <0.001 | |
| Neuropathy | 1.173 | 1 | 0.021 | 0.885 | |
| Abdominal SFT (mm) | Corrected Model | 4443.088 | 2 | 16.045 | <0.001 |
| Weight | 4093.438 | 1 | 29.564 | <0.001 | |
| Neuropathy | 71.462 | 1 | 0.516 | 0.474 | |
| Suprailiac SFT (mm) | Corrected Model | 3848.640 | 2 | 26.318 | <0.001 |
| Weight | 3836.664 | 1 | 52.473 | <0.001 | |
| Neuropathy | 39.410 | 1 | 0.539 | 0.464 | |
| Mean SFT (mm) | Corrected Model | 4183.678 | 2 | 36.614 | <0.001 |
| Weight | 4058.324 | 1 | 71.034 | <0.001 | |
| Neuropathy | 1.180 | 1 | 0.021 | 0.886 | |
| Body fat percentage (%) | Corrected Model | 3448.580 | 2 | 134.612 | <0.001 |
| Weight | 3427.122 | 1 | 267.548 | <0.001 | |
| Neuropathy | 21.054 | 1 | 1.644 | 0.202 | |
| Body fat mass (kg) | Corrected Model | 14,688.321 | 2 | 1186.075 | <0.001 |
| Weight | 14,427.346 | 1 | 23,330.003 | <0.001 | |
| Neuropathy | 8.100 | 1 | 1.308 | 0.255 | |
| Fat-free mass (kg) | Corrected Model | 4298.126 | 2 | 349.529 | <0.001 |
| Weight | 4125.351 | 1 | 670.958 | <0.001 | |
| Neuropathy | 8.576 | 1 | 1.395 | 0.240 | |
| Trunk fat percentage (%) | Corrected Model | 2763.943 | 2 | 55.581 | <0.001 |
| Weight | 2763.489 | 1 | 111.143 | <0.001 | |
| Neuropathy | 57.198 | 1 | 2.300 | 0.132 | |
| Trunk fat mass (kg) | Corrected Model | 2297.113 | 2 | 236.769 | <0.001 |
| Weight | 2282.378 | 1 | 470.500 | <0.001 | |
| Neuropathy | 13.593 | 1 | 2.802 | 0.096 |
| Variable | Source of Variance | Sum of Squares | df | F | p |
|---|---|---|---|---|---|
| BMI (kg/m2) | Corrected Model | 4357.414 | 2 | 309.752 | <0.001 |
| Weight | 4339.368 | 1 | 616.939 | <0.001 | |
| Macrovascular Complications | 32.283 | 1 | 4.590 | 0.034 | |
| Waist circumference (cm) | Corrected Model | 17,590.358 | 2 | 211.199 | <0.001 |
| Weight | 17,589.561 | 1 | 422.379 | <0.001 | |
| Macrovascular Complications | 361.470 | 1 | 8.680 | 0.004 | |
| Hip circumference (cm) | Corrected Model | 17,795.712 | 2 | 259.285 | <0.001 |
| Weight | 17,700.415 | 1 | 515.794 | <0.001 | |
| Macrovascular Complications | 106.219 | 1 | 3.095 | 0.081 | |
| Waist-to-hip ratio | Corrected Model | 0.014 | 2 | 2.180 | 0.117 |
| Weight | 0.010 | 1 | 3.096 | 0.081 | |
| Macrovascular Complications | 0.006 | 1 | 1.890 | 0.171 | |
| Triceps SFT (mm) | Corrected Model | 4474.530 | 2 | 40.658 | <0.001 |
| Weight | 4474.439 | 1 | 81.314 | <0.001 | |
| Macrovascular Complications | 94.792 | 1 | 1.723 | 0.191 | |
| Abdominal SFT (mm) | Corrected Model | 4482.299 | 2 | 16.218 | <0.001 |
| Weight | 4482.066 | 1 | 32.435 | <0.001 | |
| Macrovascular Complications | 110.673 | 1 | 0.801 | 0.372 | |
| Suprailiac SFT (mm) | Corrected Model | 3857.299 | 2 | 26.400 | <0.001 |
| Weight | 3851.522 | 1 | 52.720 | <0.001 | |
| Macrovascular Complications | 48.070 | 1 | 0.658 | 0.419 | |
| Mean SFT (mm) | Corrected Model | 4264.641 | 2 | 37.696 | <0.001 |
| Weight | 4264.092 | 1 | 75.383 | <0.001 | |
| Macrovascular Complications | 82.143 | 1 | 1.452 | 0.230 | |
| Body fat percentage (%) | Corrected Model | 3427.770 | 2 | 132.296 | <0.001 |
| Weight | 3341.816 | 1 | 257.958 | <0.001 | |
| Macrovascular Complications | 0.244 | 1 | 0.019 | 0.891 | |
| Body fat mass (kg) | Corrected Model | 14,680.234 | 2 | 1174.693 | <0.001 |
| Weight | 14,345.788 | 1 | 2295.863 | <0.001 | |
| Macrovascular Complications | 0.013 | 1 | 0.002 | 0.964 | |
| Fat-free mass (kg) | Corrected Model | 4289.566 | 2 | 345.470 | <0.001 |
| Weight | 4195.491 | 1 | 675.787 | <0.001 | |
| Macrovascular Complications | 0.016 | 1 | 0.003 | 0.959 | |
| Trunk fat percentage (%) | Corrected Model | 2730.765 | 2 | 54.406 | <0.001 |
| Weight | 2570.741 | 1 | 102.435 | <0.001 | |
| Macrovascular Complications | 24.020 | 1 | 0.957 | 0.330 | |
| Trunk fat mass (kg) | Corrected Model | 2294.094 | 2 | 195.712 | <0.001 |
| Weight | 2186.279 | 1 | 448.736 | <0.001 | |
| Macrovascular Complications | 0.981 | 1 | 0.375 | 0.143 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akinci, U.N.; Dogan, C.; Tural, E.; Dayan, A. The Relationship Between Body Fat Percentage, Anthropometric Measurements, and Diabetes Complications in Female Patients with Type 2 Diabetes. J. Clin. Med. 2025, 14, 7898. https://doi.org/10.3390/jcm14227898
Akinci UN, Dogan C, Tural E, Dayan A. The Relationship Between Body Fat Percentage, Anthropometric Measurements, and Diabetes Complications in Female Patients with Type 2 Diabetes. Journal of Clinical Medicine. 2025; 14(22):7898. https://doi.org/10.3390/jcm14227898
Chicago/Turabian StyleAkinci, Ummu Nur, Cem Dogan, Egemen Tural, and Akin Dayan. 2025. "The Relationship Between Body Fat Percentage, Anthropometric Measurements, and Diabetes Complications in Female Patients with Type 2 Diabetes" Journal of Clinical Medicine 14, no. 22: 7898. https://doi.org/10.3390/jcm14227898
APA StyleAkinci, U. N., Dogan, C., Tural, E., & Dayan, A. (2025). The Relationship Between Body Fat Percentage, Anthropometric Measurements, and Diabetes Complications in Female Patients with Type 2 Diabetes. Journal of Clinical Medicine, 14(22), 7898. https://doi.org/10.3390/jcm14227898

