AI-Assisted OCT Clinical Phenotypes of Diabetic Macular Edema: A Large Cohort Clustering Study
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Population
3.2. Clustering
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AI | Artificial intelligence |
| AMD | Age-related macular degeneration |
| BCVA | Best corrected visual acuity |
| BIC | Bayesian information criterion |
| CST | Central subfield thickness |
| DM | Diabetes mellitus |
| DME | Diabetic macular edema |
| DR | Diabetic retinopathy |
| ELM | External limiting membrane |
| ERM | Epiretinal membrane |
| ETDRS | Early treatment diabetic research study |
| EZ | Ellipsoid zone |
| HR | High Resolution |
| I-HRF | Inflammatory hyperreflective retinal foci |
| IRF | Intraretinal fluid |
| OCT | Optical coherence tomography |
| IQR | Interquartile range |
| SD | Standard deviation |
| SRF | Subretinal fluid |
| VEGF | Vascular endothelium growth factor |
References
- Teo, Z.L.; Tham, Y.-C.; Yu, M.; Chee, M.L.; Rim, T.H.; Cheung, N.; Bikbov, M.M.; Wang, Y.X.; Tang, Y.; Lu, Y.; et al. Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045: Systematic Review and Meta-analysis. Ophthalmology 2021, 128, 1580–1591. [Google Scholar] [CrossRef]
- International Diabetes Federation (IDF). Available online: https://diabetesatlas.org/ (accessed on 22 August 2025).
- IDF-Italy-Diabetes Country Report 2000–2050. Available online: https://diabetesatlas.org/data-by-location/country/italy/ (accessed on 22 August 2025).
- Midena, E.; Pilotto, E. Emerging Insights into Pathogenesis. Dev. Ophthalmol. 2017, 60, 16–27. [Google Scholar]
- Schmidt-Erfurth, U.; Garcia-Arumi, J.; Bandello, F.; Berg, K.; Chakravarthy, U.; Gerendas, B.S.; Jonas, J.; Larsen, M.; Tadayoni, R.; Loewenstein, A. Guidelines for the Management of Diabetic Macular Edema by the European Society of Retina Specialists (EURETINA). Ophthalmologica 2017, 237, 185–222. [Google Scholar] [CrossRef]
- Tatsumi, T. Current Treatments for Diabetic Macular Edema. Int. J. Mol. Sci. 2023, 24, 9591. [Google Scholar] [CrossRef]
- Parravano, M.; Cennamo, G.; Di Antonio, L.; Grassi, M.O.; Lupidi, M.; Rispoli, M.; Savastano, M.C.; Veritti, D.; Vujosevic, S. Multimodal imaging in diabetic retinopathy and macular edema: An update about biomarkers. Surv. Ophthalmol. 2024, 69, 893–904. [Google Scholar] [CrossRef] [PubMed]
- Midena, E.; Toto, L.; Frizziero, L.; Covello, G.; Torresin, T.; Midena, G.; Danieli, L.; Pilotto, E.; Figus, M.; Mariotti, C.; et al. Validation of an Automated Artificial Intelligence Algorithm for the Quantification of Major OCT Parameters in Diabetic Macular Edema. J. Clin. Med. 2023, 12, 2134. [Google Scholar] [CrossRef]
- Govetto, A.; Lalane, R.A.; Sarraf, D.; Figueroa, M.S.; Hubschman, J.P. Insights into Epiretinal Membranes: Presence of Ectopic Inner Foveal Layers and a New Optical Coherence Tomography Staging Scheme. Am. J. Ophthalmol. 2017, 175, 99–113. [Google Scholar] [CrossRef]
- Scrucca, L.; Fop, M.; Murphy, T.B.; Raftery, A.E. mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models. R. J. 2016, 8, 289. [Google Scholar] [CrossRef]
- Zhang, X.; Zeng, H.; Bao, S.; Wang, N.; Gillies, M.C. Diabetic macular edema: New concepts in patho-physiology and treatment. Cell Biosci. 2014, 4, 27. [Google Scholar] [CrossRef]
- Starace, V.; Battista, M.; Brambati, M.; Cavalleri, M.; Bertuzzi, F.; Amato, A.; Lattanzio, R.; Bandello, F.; Cicinelli, M.V. The role of inflammation and neurodegeneration in diabetic macular edema. Ther. Adv. Ophthalmol. 2021, 13, 25158414211055963. [Google Scholar] [CrossRef]
- Midena, E.; Frizziero, L.; Midena, G.; Pilotto, E. Intraocular fluid biomarkers (liquid biopsy) in human diabetic retinopathy. Graefe’s Arch. Clin. Exp. Ophthalmol. 2021, 259, 3549–3560. [Google Scholar] [CrossRef]
- Bressler, S.B.; Ayala, A.R.; Bressler, N.M.; Melia, M.; Qin, H.; Ferris, F.L.; Flaxel, C.J.; Friedman, S.M.; Glassman, A.R.; Jampol, L.M.; et al. Persistent macular thickening after ranibizumab treatment for diabetic macular edema with vision impairment. JAMA Ophthalmol. 2016, 134, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Yan, A.; Jones, C.; Demirel, S.; Chhablani, J. Diabetic macular edema: Upcoming therapies. Graefe’s Arch. Clin. Exp. Ophthalmol. 2025, 263, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Yu, G.; Deng, Z. Early versus Late Switch to an Intravitreal Dexamethasone Implant after Failed Anti-VEGF Therapy for Diabetic Macular Edema: A Systematic Review and Meta-Analysis. Ophthalmic Res. 2025, 68, 360–371. [Google Scholar] [CrossRef]
- Midena, E.; Polo, C.; Frizziero, L.; Marini, M.G.; Lattanzio, R.; Vadalà, M.; Pilotto, E.; Varano, M. The Narrative Medicine Approach in the Treatment of Diabetic Macular Edema: An Italian Experience. Int. J. Environ. Res. Public Health 2022, 19, 9367. [Google Scholar] [CrossRef]
- Szeto, S.K.; Lai, T.Y.; Vujosevic, S.; Sun, J.K.; Sadda, S.R.; Tan, G.; Sivaprasad, S.; Wong, T.Y.; Cheung, C.Y. Optical coherence tomography in the management of diabetic macular oedema. Prog. Retin. Eye Res. 2024, 98, 101220. [Google Scholar] [CrossRef]
- Hui, V.W.M.; Szeto, S.K.F.; Tang, F.; Yang, D.M.; Chen, H.; Lai, T.Y.M.; Rong, A.; Zhang, S.; Zhao, P.; Ruamviboonsuk, P.; et al. Optical Coherence Tomography Classification Systems for Diabetic Macular Edema and Their Associations with Visual Outcome and Treatment Responses—An Updated Review. Asia-Pac. J. Ophthalmol. 2022, 11, 247–257. [Google Scholar] [CrossRef]
- Costin, H.N.; Fira, M.; Goraș, L. Artificial Intelligence in Ophthalmology: Advantages and Limits. Appl. Sci. 2025, 15, 1913. [Google Scholar] [CrossRef]
- Danieli, L.; Midena, G.; Frizziero, L.; Midena, E. Disorganisation of inner retinal layers in diabetic macular oedema: Is it time to standardise this OCT biomarker? Br. J. Ophthalmol. 2025, 109, 840–842. [Google Scholar] [CrossRef]
- Marques, I.P.; Alves, D.; Santos, T.; Mendes, L.; Santos, A.R.; Lobo, C.; Durbin, M.; Cunha-Vaz, J. Multimodal Imaging of the Initial Stages of Diabetic Retinopathy: Different Disease Pathways in Different Patients. Diabetes 2019, 68, 648–653. [Google Scholar] [CrossRef]
- Pemp, B.; Palkovits, S.; Sacu, S.; Schmidl, D.; Garhöfer, G.; Schmetterer, L.; Schmidt-Erfurth, U. Associations of retinal neurovascular dysfunction with inner retinal layer thickness in non-proliferative diabetic retinopathy. Graefe’s Arch. Clin. Exp. Ophthalmol. 2024, 262, 3761–3771. [Google Scholar] [CrossRef] [PubMed]
- Nian, S.; Lo, A.C.Y.; Mi, Y.; Ren, K.; Yang, D. Neurovascular unit in diabetic retinopathy: Pathophysiological roles and potential therapeutical targets. Eye Vis. 2021, 8, 15. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, J.P.; Uchida, A.; Hu, M.; Figueiredo, N.; Kaiser, P.K.; Heier, J.S.; Brown, D.M.; Boyer, D.S.; Do, D.V.; Gibson, A.; et al. Higher-Order Assessment of OCT in Diabetic Macular Edema from the VISTA Study: Ellipsoid Zone Dynamics and the Retinal Fluid Index. Ophthalmol. Retina 2019, 3, 1056–1066. [Google Scholar] [CrossRef] [PubMed]
- Behar-Cohen, F.; Omri, S.; Omri, B.; Savoldelli, M.; Jonet, L.; Thillaye-Goldenberg, B.; Thuret, G.; Gain, P.; Jeanny, J.C.; Crisanti, P. The outer limiting membrane (OLM) revisited: Clinical implications. Clin. Ophthalmol. 2010, 4, 183–195. [Google Scholar] [CrossRef]
- Shin, H.J.; Lee, S.H.; Chung, H.; Kim, H.C. Association between photoreceptor integrity and visual outcome in diabetic macular edema. Graefe’s Arch. Clin. Exp. Ophthalmol. 2012, 250, 61–70. [Google Scholar] [CrossRef]
| Parameter | |
|---|---|
| Eyes, n | 2355 |
| Patients, n | 1688 |
| Age, years, mean ± SD | 67.7 ± 10.7 |
| Type of diabetes, n (%) | |
| 1 | 181 (10.7) |
| 2 | 1057 (89.3) |
| Diabetes duration, years, mean ± SD | 15.7 ± 10.7 |
| 1 | 25.8 ± 16.0 |
| 2 | 14.5 ± 9.2 |
| DR grade, n (%) | |
| PDR | 678 (28.8) |
| NPDR | 1677 (71.2) |
| Previous treatment, n (%) | |
| No | 404 (17.2) |
| Yes | 1951 (82.8) |
| DME duration, years, mean ± SD | 2.9 ± 3.0 |
| ERM, n (%) | |
| No | 1619 (68.8) |
| Yes | 736 (31.3) |
| IRF, mm3, mean ± SD | 0.799 ± 1.170 |
| IRF distribution, %, mean ± SD | |
| 0–1 | 18.0 ± 20.7 |
| 1–3 | 36.8 ± 19.6 |
| 3–6 | 45.3 ± 29.2 |
| SRF, mm3, mean ± SD | 0.047 ± 0.086 |
| ELM, %, mean ± SD | 39.9 ± 33.9 |
| EZ, %, mean ± SD | 43.7 ± 36.2 |
| I-HRF, n, mean ± SD | 81.4 ± 28.6 |
| Q index, mean ± SD | 30.9 ± 5.3 |
| CST, µm, mean ± SD | 386 ± 123 |
| BCVA, ETDRS score, mean ± SD | 63 ± 18 |
| Parameter | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | p-Value | |
|---|---|---|---|---|---|---|
| Eyes, n (%) | 648 (27.5) | 649 (27.6) | 419 (17.8) | 639 (27.1) | ||
| IRF, mm3 | mean | 0.155 | 0.717 | 0.847 | 1.504 | <0.0001 |
| SD | 0.147 | 0.707 | 1.157 | 1.649 | ||
| median | 0.106 | 0.559 | 0.421 | 0.884 | ||
| IQR | 0.182 | 0.825 | 0.986 | 1.837 | ||
| IRF distribution, % | ||||||
| 0–1 | mean | 34.0 | 5.6 | 22.1 | 11.5 | <0.0001 |
| SD | 23.2 | 5.7 | 23.5 | 12.9 | ||
| median | 30 | 4 | 13 | 7 | ||
| IQR | 34 | 9 | 22 | 13 | ||
| 1–3 | mean | 48.0 | 26.3 | 34.9 | 37.2 | <0.0001 |
| SD | 19.4 | 15.5 | 19.3 | 17.5 | ||
| median | 49 | 26 | 36 | 36 | ||
| IQR | 26 | 23 | 27 | 25 | ||
| 3–6 | mean | 18.0 | 68.1 | 43.0 | 51.3 | <0.0001 |
| SD | 16.6 | 19.5 | 28.3 | 25.2 | ||
| median | 13 | 69 | 44 | 56 | ||
| IQR | 30 | 29 | 45 | 38 | ||
| SRF, mm3 | mean | 0.00 | 0.00 | 0.00 | 0.022 | <0.0001 |
| SD | 0.00 | 0.00 | 0.001 | 0.063 | ||
| median | 0 | 0 | 0 | 0 | ||
| IQR | 0 | 0 | 0 | 0.010 | ||
| ELM, % | mean | 0.00 | 0.00 | 0.04 | 32.2 | <0.0001 |
| SD | 0.00 | 0.00 | 0.22 | 34.3 | ||
| median | 0 | 0 | 0 | 16 | ||
| IQR | 0 | 0 | 0 | 63 | ||
| EZ, % | mean | 0.00 | 0.035 | 29.5 | 41.2 | <0.0001 |
| SD | 0.00 | 0.230 | 31.4 | 39.3 | ||
| median | 0 | 0 | 17 | 29 | ||
| IQR | 0 | 0 | 38 | 82 | ||
| I-HRF, n | mean | 77.1 | 80.7 | 84.8 | 84.2 | 0.0003 |
| SD | 24.4 | 29.0 | 32.2 | 29.1 | ||
| median | 76 | 77 | 81 | 82 | ||
| IQR | 30 | 35 | 37 | 37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Midena, E.; Lupidi, M.; Toto, L.; Covello, G.; Veritti, D.; Pilotto, E.; Cicinelli, M.V.; Lattanzio, R.; Figus, M.; Midena, G.; et al. AI-Assisted OCT Clinical Phenotypes of Diabetic Macular Edema: A Large Cohort Clustering Study. J. Clin. Med. 2025, 14, 7893. https://doi.org/10.3390/jcm14227893
Midena E, Lupidi M, Toto L, Covello G, Veritti D, Pilotto E, Cicinelli MV, Lattanzio R, Figus M, Midena G, et al. AI-Assisted OCT Clinical Phenotypes of Diabetic Macular Edema: A Large Cohort Clustering Study. Journal of Clinical Medicine. 2025; 14(22):7893. https://doi.org/10.3390/jcm14227893
Chicago/Turabian StyleMidena, Edoardo, Marco Lupidi, Lisa Toto, Giuseppe Covello, Daniele Veritti, Elisabetta Pilotto, Maria Vittoria Cicinelli, Rosangela Lattanzio, Michele Figus, Giulia Midena, and et al. 2025. "AI-Assisted OCT Clinical Phenotypes of Diabetic Macular Edema: A Large Cohort Clustering Study" Journal of Clinical Medicine 14, no. 22: 7893. https://doi.org/10.3390/jcm14227893
APA StyleMidena, E., Lupidi, M., Toto, L., Covello, G., Veritti, D., Pilotto, E., Cicinelli, M. V., Lattanzio, R., Figus, M., Midena, G., Danieli, L., Borrelli, E., Reibaldi, M., Tognetto, D., Inferrera, L., Donati, S., Rossi, S., Melillo, P., Lanzetta, P., ... Frizziero, L. (2025). AI-Assisted OCT Clinical Phenotypes of Diabetic Macular Edema: A Large Cohort Clustering Study. Journal of Clinical Medicine, 14(22), 7893. https://doi.org/10.3390/jcm14227893

