The Challenges of Postoperative Tissue Flap Vitality Monitoring in Obese Individuals
Abstract
1. Introduction
2. Most Common Postoperative Complications in Patients with Obesity
3. Obesity-Induced Changes in Human Body Composition and the Selected Properties
3.1. Subcutaneous Adipose Tissue Density and Volume
3.2. Changes in Vessel Structure and Properties
3.3. Blood Pressure Changes
3.4. Blood and Tissue Glucose Levels
3.5. Lactate Levels and Acidosis
3.6. Tissue Perfusion
3.7. Temperature Distribution
4. Monitoring Challenges
4.1. Type of Monitoring Procedure
4.2. Velocity vs. Volumetric Measurements
4.3. Monitoring Period and Time Window
5. Monitoring Techniques
5.1. Direct Techniques
5.1.1. Handheld Doppler Ultrasonography
5.1.2. Implantable Doppler Devices
5.1.3. Flow Coupler
5.1.4. Near-Infrared Spectroscopic Devices
5.1.5. ICG FA
5.2. Indirect
5.2.1. Laser Doppler Flowmetry
5.2.2. Glucose and Lactate Level-Based Devices
5.2.3. Classical/Static Thermography
5.2.4. Whole-Body Thermographic Assessment
5.2.5. Localized Thermographic Studies (e.g., Hands and Feet)
5.2.6. Exercise-Related Thermography
5.2.7. Active Dynamic Thermography
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Phelps, N.H.; Singleton, R.K.; Zhou, B.; Heap, R.A.; Mishra, A.; Bennett, J.E.; Paciorek, C.J.; Lhoste, V.P.; Carrillo-Larco, R.M.; Stevens, G.A.; et al. Worldwide trends in underweight and obesity from 1990 to 2022: A pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet 2024, 403, 1027–1050. [Google Scholar] [CrossRef]
- Gach, H.M.; Mackey, S.L.; Hausman, S.E.; Jackson, D.R.; Benzinger, T.L.; Henke, L.; Murphy, L.A.; Fluchel, J.L.; Cai, B.; Zoberi, J.E.; et al. MRI safety risks in the obese: The case of the disposable lighter stored in the pannus. Radiol. Case Rep. 2019, 14, 634–638. [Google Scholar] [CrossRef]
- Uppot, R.N.; Sahani, D.V.; Hahn, P.F.; Gervais, D.; Mueller, P.R. Impact of obesity on medical imaging and image-guided intervention. Am. J. Roentgenol. 2007, 188, 433–440. [Google Scholar] [CrossRef]
- Ri, M.; Aikou, S.; Seto, Y. Obesity as a surgical risk factor. Ann. Gastroenterol. Surg. 2018, 2, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Jin, R.; Grunkemeier, G.L.; Furnary, A.P.; Handy, J.R., Jr. Is obesity a risk factor for mortality in coronary artery bypass surgery? Circulation 2005, 111, 3359–3365. [Google Scholar] [CrossRef]
- Kassahun, W.T.; Mehdorn, M.; Babel, J. The impact of obesity on surgical outcomes in patients undergoing emergency laparotomy for high-risk abdominal emergencies. BMC Surg. 2022, 22, 15. [Google Scholar] [CrossRef]
- Destounis, S.; Newell, M.; Pinsky, R. Breast imaging and intervention in the overweight and obese patient. Am. J. Roentgenol. 2011, 196, 296–302. [Google Scholar] [CrossRef]
- Kubo, T.; Yano, K.; Hosokawa, K. Management of flaps with compromised venous outflow in head and neck microsurgical reconstruction. Microsurgery 2002, 22, 391–395. [Google Scholar] [CrossRef]
- Lau, D.C.; Douketis, J.D.; Morrison, K.M.; Hramiak, I.M.; Sharma, A.M.; Ur, E.; Obesity Canada Clinical Practice Guidelines Expert Panel. 2006 Canadian clinical practice guidelines on the management and prevention of obesity in adults and children [summary]. CMAJ 2007, 176, S1–S13. [Google Scholar] [CrossRef]
- Seidell, J.C.; Flegal, K.M. Assessing obesity: Classification and epidemiology. Br. Med. Bull. 1997, 53, 238–252. [Google Scholar] [CrossRef]
- Bray, G.A. Contemporary Diagnosis and Management of Obesity; Handbooks in Health Care Co.: Newtown, PA, USA, 2003. [Google Scholar]
- NHLBI Obesity Education Initiative Expert Panel on the Identification, Evaluation, and Treatment of Obesity in Adults (US). Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults: The Evidence Report; Number 98; National Institutes of Health, National Heart, Lung, and Blood Institute: Bethesda, MD, USA, 1998. [Google Scholar]
- WHO. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation; WHO Consultation on Obesity: Geneva, Switzerland, 2000. [Google Scholar]
- WHO. Pysichal status: The use and interpretation of anthropometry. Report of a WHO Expert Committee. World Health Organ. Tech. Rep. Ser. 1995, 854, 1–452. [Google Scholar]
- Gallagher, D.; Visser, M.; Sepulveda, D.; Pierson, R.N.; Harris, T.; Heymsfield, S.B. How useful is body mass index for comparison of body fatness across age, sex, and ethnic groups? Am. J. Epidemiol. 1996, 143, 228–239. [Google Scholar] [CrossRef]
- Hanwright, P.J.; Davila, A.A.; Hirsch, E.M.; Khan, S.A.; Fine, N.A.; Bilimoria, K.Y.; Kim, J.Y. The differential effect of BMI on prosthetic versus autogenous breast reconstruction: A multivariate analysis of 12,986 patients. Breast 2013, 22, 938–945. [Google Scholar] [CrossRef]
- Panayi, A.C.; Agha, R.A.; Sieber, B.A.; Orgill, D.P. Impact of obesity on outcomes in breast reconstruction: A systematic review and meta-analysis. J. Reconstr. Microsurg. 2018, 34, 363–375. [Google Scholar] [CrossRef]
- Fischer, J.P.; Nelson, J.A.; Kovach, S.J.; Serletti, J.M.; Wu, L.C.; Kanchwala, S. Impact of obesity on outcomes in breast reconstruction: Analysis of 15,937 patients from the ACS-NSQIP datasets. J. Am. Coll. Surg. 2013, 217, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Endocrinology, T.L.D. Redefining obesity: Advancing care for better lives. Lancet Diabetes Endocrinol. 2025, 13, 75. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.M.; Kushner, R.F. A proposed clinical staging system for obesity. Int. J. Obes. 2009, 33, 289–295. [Google Scholar] [CrossRef]
- Wellens, R.I.; Roche, A.F.; Khamis, H.J.; Jackson, A.S.; Pollock, M.L.; Siervogel, R.M. Relationships between the body mass index and body composition. Obes. Res. 1996, 4, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, D.; Heymsfield, S.B.; Heo, M.; Jebb, S.A.; Murgatroyd, P.R.; Sakamoto, Y. Healthy percentage body fat ranges: An approach for developing guidelines based on body mass index. Am. J. Clin. Nutr. 2000, 72, 694–701. [Google Scholar] [CrossRef]
- Sharma, A.M.; Campbell-Scherer, D.L. Redefining obesity: Beyond the numbers. Obesity 2017, 25, 660. [Google Scholar] [CrossRef]
- Canning, K.L.; Brown, R.E.; Wharton, S.; Sharma, A.M.; Kuk, J.L. Edmonton Obesity Staging System prevalence and association with weight loss in a publicly funded referral-based obesity clinic. J. Obes. 2015, 2015, 619734. [Google Scholar] [CrossRef]
- Bioletto, F.; Ponzo, V.; Goitre, I.; Stella, B.; Rahimi, F.; Parasiliti-Caprino, M.; Broglio, F.; Ghigo, E.; Bo, S. Complementary Role of BMI and EOSS in Predicting All-Cause and Cause-Specific Mortality in People with Overweight and Obesity. Nutrients 2024, 16, 3433. [Google Scholar] [CrossRef]
- Atlantis, E.; Fahey, P.; Williams, K.; Edwards, S.; Samaras, K.; Dugdale, P.; Shi, Z.; Sharma, A.M. Comparing the predictive ability of the Edmonton obesity staging system with the body mass index for use of health services and pharmacotherapies in Australian adults: A nationally representative cross-sectional study. Clin. Obes. 2020, 10, e12368. [Google Scholar] [CrossRef] [PubMed]
- Chiappetta, S.; Stier, C.; Weiner, R.A.; members of StuDoQ| MBE of Deutsche Gesellschaft für Allgemein-und Viszeralchirurgie/StuDoQ. The Edmonton Obesity Staging System predicts perioperative complications and procedure choice in obesity and metabolic surgery—A German nationwide register-based cohort study (StuDoQ| MBE). Obes. Surg. 2019, 29, 3791–3799. [Google Scholar] [CrossRef]
- Knox, A.D.C.; Ho, A.L.; Leung, L.; Tashakkor, A.Y.; Lennox, P.A.; Van Laeken, N.; Macadam, S.A. Comparison of Outcomes following Autologous Breast Reconstruction Using the DIEP and Pedicled TRAM Flaps. Plast. Reconstr. Surg. 2016, 138, 16–28. [Google Scholar] [CrossRef]
- Seidenstuecker, K.; Munder, B.; Mahajan, A.L.; Richrath, P.; Behrendt, P.; Andree, C. Morbidity of Microsurgical Breast Reconstruction in Patients with Comorbid Conditions. Plast. Reconstr. Surg. 2011, 127, 1086–1092. [Google Scholar] [CrossRef]
- Ochoa, O.; Chrysopoulo, M.; Nastala, C.; Ledoux, P.; Pisano, S. Abdominal Wall Stability and Flap Complications after Deep Inferior Epigastric Perforator Flap Breast Reconstruction. Plast. Reconstr. Surg. 2012, 130, 21e–33e. [Google Scholar] [CrossRef]
- Wilkins, E.G.; Hamill, J.B.; Kim, H.M.; Kim, J.Y.; Greco, R.J.; Qi, J.; Pusic, A.L. Complications in Postmastectomy Breast Reconstruction. Ann. Surg. 2018, 267, 164–170. [Google Scholar] [CrossRef]
- Fischer, J.P.; Nelson, J.A.; Sieber, B.B.; Cleveland, E.B.; Kovach, S.J.; Wu, L.C.; Serletti, J.M.; Kanchwala, S. Free Tissue Transfer in the Obese Patient. Plast. Reconstr. Surg. 2013, 131, 681e–692e. [Google Scholar] [CrossRef]
- Palve, J.S.; Luukkaala, T.H.; Kääriäinen, M.T. Predictive risk factors of complications in different breast reconstruction methods. Breast Cancer Res. Treat. 2020, 182, 345–354. [Google Scholar] [CrossRef]
- Heidekrueger, P.I.; Fritschen, U.; Moellhoff, N.; Germann, G.; Giunta, R.E.; Zeman, F.; Prantl, L. Impact of body mass index on free DIEP flap breast reconstruction: A multicenter cohort study. J. Plast. Reconstr. Aesthetic Surg. 2021, 74, 1718–1724. [Google Scholar] [CrossRef]
- Yoshino, M.; Oda, G.; Nakagawa, T.; Uemura, N.; Mori, H.; Mori, M.; Fujioka, T. Higher body mass index is a more important risk factor than sarcopenia for complications in deep inferior epigastric perforator reconstruction. Asian J. Surg. 2021, 45, 360–366. [Google Scholar] [CrossRef]
- Kim, E.K.; Eom, J.S.; Hwang, C.H.; Ahn, S.H.; Son, B.H.; Lee, T.J. Immediate transverse rectus abdominis musculocutaneous (TRAM) flap breast reconstruction in underweight Asian patients. Breast Cancer 2014, 21, 693–697. [Google Scholar] [CrossRef]
- Boehm, L.M.; Hettinger, P.; LoGiudice, J.; Doren, E.L. Increasing abdominal wall thickness predicts complications in abdominally based breast reconstruction: A review of 106 consecutive patients. J. Plast. Reconstr. Aesthetic Surg. 2020, 73, 1277–1284. [Google Scholar] [CrossRef]
- Barnes, L.L.; Lem, M.; Patterson, A.; Segal, R.; Holland, M.C.; Lentz, R.; Sbitany, H.; Piper, M. Relationship between Body Mass Index and Outcomes in Microvascular Abdominally Based Autologous Breast Reconstruction. Plast. Reconstr. Surg. 2024, 153, 553–566. [Google Scholar] [CrossRef]
- Sudduth, J.D.; Marquez, J.L.; Samlowski, E.E.; Bautista, C.; Eddington, D.; Agarwal, J.P.; Kwok, A.C. The effect of body mass index on free flap breast reconstruction. J. Reconstr. Microsurg. 2024, 40, 132–138. [Google Scholar] [CrossRef]
- Silverstein, M.L.; Sorice-Virk, S.; Wan, D.C.; Momeni, A. Microsurgical Breast Reconstruction can be Performed Safely in Patients with Obesity. J. Reconstr. Microsurg. 2024, 40, 730–742. [Google Scholar] [CrossRef]
- Sun, K.; Kusminski, C.M.; Scherer, P.E. Adipose tissue remodeling and obesity. J. Clin. Investig. 2011, 121, 2094–2101. [Google Scholar] [CrossRef]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J.-Physiol.-Cell Physiol. 2021, 320, C375–C391. [Google Scholar] [CrossRef]
- Benova, A.; Tencerova, M. Obesity-induced changes in bone marrow homeostasis. Front. Endocrinol. 2020, 11, 294. [Google Scholar] [CrossRef]
- Darlenski, R.; Mihaylova, V.; Handjieva-Darlenska, T. The link between obesity and the skin. Front. Nutr. 2022, 9, 855573. [Google Scholar] [CrossRef]
- Choo, J.H.; Vivace, B.J.; Meredith, L.T.; Kachare, S.; Lee, T.J.; Kachare, M.; Wilhelmi, B.J. Obesity and the latissimus dorsi flap: A radiologic study. Plast. Surg. 2023, 31, 132–137. [Google Scholar] [CrossRef]
- Tuluy, Y.; Bali, Z.U.; Ünsal, M.Ö.; Parspancı, A.; Yoleri, L.; Çiçek, Ç.; Filinte, G.T. Comparison of The Thickness of Free Anterolateral Thigh Flap in Different Fascial Planes: Clinical Results of Subfascial and Superficial Fat Flap. Arch. Plast. Surg. 2023, 50, 601–609. [Google Scholar] [CrossRef]
- Rancati, A.; Angrigiani, C.; Hammond, D.; Nava, M.; Gonzalez, E.; Rostagno, R.; Gercovich, G. Preoperative digital mammography imaging in conservative mastectomy and immediate reconstruction. Gland. Surg. 2016, 5, 9. [Google Scholar]
- Lee, J.J.; Pedley, A.; Hoffmann, U.; Massaro, J.M.; Keaney, J.F., Jr.; Vasan, R.S.; Fox, C.S. Cross-sectional associations of computed tomography (CT)-derived adipose tissue density and adipokines: The Framingham heart study. J. Am. Heart Assoc. 2016, 5, e002545. [Google Scholar] [CrossRef]
- Murphy, R.A.; Register, T.C.; Shively, C.A.; Carr, J.J.; Ge, Y.; Heilbrun, M.E.; Cummings, S.R.; Koster, A.; Nevitt, M.C.; Satterfield, S.; et al. Adipose tissue density, a novel biomarker predicting mortality risk in older adults. J. Gerontol. Ser. Biomed. Sci. Med. Sci. 2014, 69, 109–117. [Google Scholar] [CrossRef]
- Yeoh, A.J.; Pedley, A.; Rosenquist, K.J.; Hoffmann, U.; Fox, C.S. The association between subcutaneous fat density and the propensity to store fat viscerally. J. Clin. Endocrinol. Metab. 2015, 100, E1056–E1064. [Google Scholar] [CrossRef]
- Koenen, M.; Hill, M.A.; Cohen, P.; Sowers, J.R. Obesity, adipose tissue and vascular dysfunction. Circ. Res. 2021, 128, 951–968. [Google Scholar] [CrossRef]
- Man, A.W.; Zhou, Y.; Xia, N.; Li, H. Perivascular adipose tissue oxidative stress in obesity. Antioxidants 2023, 12, 1595. [Google Scholar] [CrossRef]
- Frayn, K.N.; Karpe, F. Regulation of human subcutaneous adipose tissue blood flow. Int. J. Obes. 2014, 38, 1019–1026. [Google Scholar] [CrossRef]
- Yoo, H.J.; Choi, K.M. Adipokines as a novel link between obesity and atherosclerosis. World J. Diabetes 2014, 5, 357. [Google Scholar] [CrossRef] [PubMed]
- Crewe, C.; An, Y.A.; Scherer, P.E. The ominous triad of adipose tissue dysfunction: Inflammation, fibrosis, and impaired angiogenesis. J. Clin. Investig. 2017, 127, 74–82. [Google Scholar] [CrossRef]
- Gao, M.; Zhang, P.; Han, J.; Tang, C.; Zhu, Y.; Kan, H.; Li, H.; Han, X.; Ma, X. Small molecule compound M12 reduces vascular permeability in obese mice via blocking endothelial TRPV4–Nox2 interaction. Acta Pharmacol. Sin. 2022, 43, 1430–1440. [Google Scholar] [CrossRef]
- Scott, J.R.; Sullivan, S.R.; Liu, D.; Keys, K.; Isik, F.F.; Said, H.; Mathes, D.W. Patient body mass index and perforator quality in abdomen-based free-tissue transfer for breast reconstruction. J. Reconstr. Microsurg. 2009, 25, 237–241. [Google Scholar] [CrossRef]
- Shayan, R.; Rozen, W.M.; Bernard, S.; Corlett, R.J.; Ashton, M.W.; Taylor, G.I. Perforator dilatation induced by body weight gain is not reversed by subsequent weight loss: Implications for perforator flaps. Plast. Reconstr. Surg. 2008, 122, 1765–1772. [Google Scholar] [CrossRef]
- Sacher, M.; Kapalschinski, R.N.; Wallner, C.; Wagner, J.M.; Dadras, M.; Hirsch, T.; Heute, C.; Nicolas, V.; Lehnhardt, M.; Behr, B. Body mass index and abdominal wall thickness correlate with perforator caliber in free abdominal tissue transfer for breast reconstruction. J. Plast. Reconstr. Aesthetic Surg. 2020, 73, 494–500. [Google Scholar] [CrossRef]
- El-Mrakby, H.H.; Milner, R.H. The vascular anatomy of the lower anterior abdominal wall: A microdissection study on the deep inferior epigastric vessels and the perforator branches. Plast. Reconstr. Surg. 2002, 109, 539–543. [Google Scholar] [CrossRef]
- Shariq, O.A.; McKenzie, T.J. Obesity-related hypertension: A review of pathophysiology, management, and the role of metabolic surgery. Gland. Surg. 2020, 9, 80. [Google Scholar] [CrossRef]
- Das, S. Association of hypertension with overweight and obesity among adults in Rangpur region of Bangladesh: A cross-sectional study. Hum. Nutr. Metab. 2024, 37, 200273. [Google Scholar] [CrossRef]
- Yusni, Y.; Rahman, S.; Naufal, I. Positive correlation between body weight and body mass index with blood pressure in young adults. Narra J. 2024, 4, e533. [Google Scholar] [CrossRef]
- Morris, E.; Jebb, S.A.; Oke, J.; Nickless, A.; Ahern, A.; Boyland, E.; Caterson, I.D.; Halford, J.; Hauner, H.; Aveyard, P. Effect of weight loss on cardiometabolic risk: Observational analysis of two randomised controlled trials of community weight-loss programmes. Br. J. Gen. Pract. 2021, 71, e312–e319. [Google Scholar] [CrossRef] [PubMed]
- Lucini, D.; de Giacomi, G.; Tosi, F.; Malacarne, M.; Respizzi, S.; Pagani, M. Altered cardiovascular autonomic regulation in overweight children engaged in regular physical activity. Heart 2013, 99, 376–381. [Google Scholar] [CrossRef]
- Chandrasekaran, P.; Weiskirchen, R. The role of obesity in type 2 diabetes mellitus—An overview. Int. J. Mol. Sci. 2024, 25, 1882. [Google Scholar] [CrossRef]
- Ansari, S.; Haboubi, H.; Haboubi, N. Adult obesity complications: Challenges and clinical impact. Ther. Adv. Endocrinol. Metab. 2020, 11, 2042018820934955. [Google Scholar] [CrossRef]
- Zhang, X.; Hou, A.; Cao, J.; Liu, Y.; Lou, J.; Li, H.; Ma, Y.; Song, Y.; Mi, W.; Liu, J. Association of diabetes mellitus with postoperative complications and mortality after non-cardiac surgery: A meta-analysis and systematic review. Front. Endocrinol. 2022, 13, 841256. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Shah, S.A.; Eid, T.J.; Shek, A. Differences in glucose levels between left and right arm. J. Diabetes Sci. Technol. 2019, 13, 794–795. [Google Scholar] [CrossRef]
- Lu, W.; Cheng, Z.; Xie, X.; Li, K.; Duan, Y.; Li, M.; Ma, C.; Liu, S.; Qiu, J. An atlas of glucose uptake across the entire human body as measured by the total-body PET/CT scanner: A pilot study. Life Metab. 2022, 1, 190–199. [Google Scholar] [CrossRef]
- Lu, W.; Duan, Y.; Li, K.; Qiu, J.; Cheng, Z. Glucose uptake and distribution across the human skeleton using state-of-the-art total-body PET/CT. Bone Res. 2023, 11, 36. [Google Scholar] [CrossRef] [PubMed]
- Kissebah, A.H.; Vydelingum, N.; Murray, R.; Evans, D.J.; Kalkhoff, R.K.; Adams, P.W. Relation of body fat distribution to metabolic complications of obesity. J. Clin. Endocrinol. Metab. 1982, 54, 254–260. [Google Scholar] [CrossRef]
- Virtanen, K.A.; Lönnroth, P.; Parkkola, R.; Peltoniemi, P.; Asola, M.; Viljanen, T.; Tolvanen, T.; Knuuti, J.; Rönnemaa, T.; Huupponen, R.; et al. Glucose uptake and perfusion in subcutaneous and visceral adipose tissue during insulin stimulation in nonobese and obese humans. J. Clin. Endocrinol. Metab. 2002, 87, 3902–3910. [Google Scholar] [CrossRef]
- Akter, R.; Nessa, A.; Husain, M.; Wahed, F.; Khatun, N.; Yesmin, M.; Nasreen, S.; Tajkia, T. Effect of Obesity on Fasting Blood Sugar. Mymensingh Med. J. MMJ 2017, 26, 7–11. [Google Scholar]
- Gołacki, J.; Matuszek, M.; Matyjaszek-Matuszek, B. Link between insulin resistance and obesity—from diagnosis to treatment. Diagnostics 2022, 12, 1681. [Google Scholar] [CrossRef]
- Freeman, A.; Pennings, N. Insulin Resistance; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- De-Cleva, R.; Cardia, L.; Vieira-Gadducci, A.; Greve, J.M.; Santo, M.A. Lactate can be a marker of metabolic syndrome in severe obesity? ABCD Arq. Bras. Cir. Dig. 2021, 34, e1579. [Google Scholar] [CrossRef]
- Trayhurn, P. Hypoxia and adipocyte physiology: Implications for adipose tissue dysfunction in obesity. Annu. Rev. Nutr. 2014, 34, 207–236. [Google Scholar] [CrossRef]
- Feng, T.; Zhao, X.; Gu, P.; Yang, W.; Wang, C.; Guo, Q.; Long, Q.; Liu, Q.; Cheng, Y.; Li, J.; et al. Adipocyte-derived lactate is a signalling metabolite that potentiates adipose macrophage inflammation via targeting PHD2. Nat. Commun. 2022, 13, 5208. [Google Scholar] [CrossRef]
- Lambert, D.C.; Kane, J.; Slaton, A.; Abramowitz, M.K. Associations of metabolic syndrome and abdominal obesity with anion gap metabolic acidosis among US adults. Kidney360 2022, 3, 1842–1851. [Google Scholar] [CrossRef] [PubMed]
- Lambert, D.C.; Abramowitz, M.K. Obesity, anion accumulation, and anion gap metabolic acidosis: A cohort study. Kidney360 2021, 2, 1706–1715. [Google Scholar] [CrossRef] [PubMed]
- Foucher, C.D.; Tubben, R.E. Lactic acidosis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- DiNicolantonio, J.J.; O’Keefe, J. Low-grade metabolic acidosis as a driver of chronic disease: A 21st century public health crisis. Open Heart 2021, 8, e001730. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S. Metformin: Diverse molecular mechanisms, gastrointestinal effects and overcoming intolerance in type 2 Diabetes Mellitus: A review. Medicine 2024, 103, e40221. [Google Scholar] [CrossRef]
- Sanchez-Rangel, E.; Inzucchi, S.E. Metformin: Clinical use in type 2 diabetes. Diabetologia 2017, 60, 1586–1593. [Google Scholar] [CrossRef]
- Baker, C.; Retzik-Stahr, C.; Singh, V.; Plomondon, R.; Anderson, V.; Rasouli, N. Should metformin remain the first-line therapy for treatment of type 2 diabetes? Ther. Adv. Endocrinol. Metab. 2021, 12, 2042018820980225. [Google Scholar] [CrossRef]
- Davies, M.J.; Aroda, V.R.; Collins, B.S.; Gabbay, R.A.; Green, J.; Maruthur, N.M.; Rosas, S.E.; Del Prato, S.; Mathieu, C.; Mingrone, G.; et al. Management of hyperglycaemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2022, 65, 1925–1966. [Google Scholar] [CrossRef]
- Marshall, S.M. 60 years of metformin use: A glance at the past and a look to the future. Diabetologia 2017, 60, 1561–1565. [Google Scholar] [CrossRef]
- Di Mauro, S.; Filippello, A.; Scamporrino, A.; Purrello, F.; Piro, S.; Malaguarnera, R. Metformin: When should we fear lactic acidosis? Int. J. Mol. Sci. 2022, 23, 8320. [Google Scholar] [CrossRef] [PubMed]
- Woodcock, J.P. Physical properties of blood and their influence on blood-flow measurement. Rep. Prog. Phys. 1976, 39, 65–127. [Google Scholar] [CrossRef]
- Lorenzetti, F.; Suominen, S.; Tukiainen, E.; Kuokkanen, H.; Suominen, E.; Vuola, J.; Asko-Seljavaara, S. Evaluation of blood flow in free microvascular flaps. J. Reconstr. Microsurg. 2001, 17, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Sotornik, R.; Brassard, P.; Martin, E.; Yale, P.; Carpentier, A.C.; Ardilouze, J.L. Update on adipose tissue blood flow regulation. Am. J. Physiol.-Endocrinol. Metab. 2012, 302, E1157–E1170. [Google Scholar] [CrossRef]
- Rodriguez, A.J.; Boonya-Ananta, M.T.; Gonzalez, M.; Le, V.N.D.; Fine, J.; Palacios, C.; McShane, M.J.; Coté, G.L.; Ramella-Roman, J.C. Skin optical properties in the obese and their relation to body mass index: A review. J. Biomed. Opt. 2022, 27, 030902. [Google Scholar] [CrossRef] [PubMed]
- Francischetti, E.A.; Tibirica, E.; da Silva, E.G.; Rodrigues, E.; Celoria, B.M.; de Abreu, V.G. Skin capillary density and microvascular reactivity in obese subjects with and without metabolic syndrome. Microvasc. Res. 2011, 81, 325–330. [Google Scholar] [CrossRef]
- Mori, S.; Shiraishi, A.; Epplen, K.; Butcher, D.; Murase, D.; Yasuda, Y.; Murase, T. Characterization of skin function associated with obesity and specific correlation to local/systemic parameters in American women. Lipids Health Dis. 2017, 16, 1–11. [Google Scholar]
- Kılıç, T.; Bağcı, C.; Göl, M.; Çelik, H.; Kaplan, D.S. Effects of regular physical exercise on skin blood flow and cardiovascular risk factors in overweight and obese subjects. Sci. Medica 2022, 32, e41980. [Google Scholar] [CrossRef]
- Targher, G.; Tilg, H.; Byrne, C.D. Non-alcoholic fatty liver disease: A multisystem disease requiring a multidisciplinary and holistic approach. Lancet Gastroenterol. Hepatol. 2021, 6, 578–588. [Google Scholar] [CrossRef]
- Pimpin, L.; Cortez-Pinto, H.; Negro, F.; Corbould, E.; Lazarus, J.V.; Webber, L.; Sheron, N.; EASL HEPAHEALTH Steering Committee. Burden of liver disease in Europe: Epidemiology and analysis of risk factors to identify prevention policies. J. Hepatol. 2018, 69, 718–735. [Google Scholar] [CrossRef]
- Sberna, A.; Bouillet, B.; Rouland, A.; Brindisi, M.; Nguyen, A.; Mouillot, T.; Duvillard, L.; Denimal, D.; Loffroy, R.; Vergès, B.; et al. European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD) and European Association for the Study of Obesity (EASO) clinical practice recommendations for the management of non-alcoholic fatty liver disease: Evaluation of their application in people with Type 2 diabetes. Diabet. Med. 2018, 35, 368–375. [Google Scholar]
- Ren, Z.; Wesselius, A.; Stehouwer, C.D.; Brouwers, M.C. Cardiovascular implications of metabolic dysfunction-associated fatty liver disease. Endocrinol. Metab. Clin. 2023, 52, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Wree, A.; Kahraman, A.; Gerken, G.; Canbay, A. Obesity affects the liver–the link between adipocytes and hepatocytes. Digestion 2011, 83, 124–133. [Google Scholar] [CrossRef]
- Pafili, K.; Kahl, S.; Mastrototaro, L.; Strassburger, K.; Pesta, D.; Herder, C.; Pützer, J.; Dewidar, B.; Hendlinger, M.; Granata, C.; et al. Mitochondrial respiration is decreased in visceral but not subcutaneous adipose tissue in obese individuals with fatty liver disease. J. Hepatol. 2022, 77, 1504–1514. [Google Scholar] [CrossRef] [PubMed]
- Ring, E.F.J.; Ammer, K. Infrared thermal imaging in medicine. Physiol. Meas. 2012, 33, R33–R46. [Google Scholar] [CrossRef] [PubMed]
- Lahiri, B.B.; Bagavathiappan, S.; Jayakumar, T.; Philip, J. Medical applications of infrared thermography: A review. Infrared Phys. Technol. 2012, 55, 221–235. [Google Scholar] [CrossRef]
- Snekhalatha, U.; Thanaraj, K.P.; Sangamithirai, K. Computer aided diagnosis of obesity based on thermal imaging using various convolutional neural networks. Biomed. Signal Process. Control 2021, 63, 102233. [Google Scholar]
- Speakman, J. Obesity and thermoregulation. Handb. Clin. Neurol. 2018, 156, 431–443. [Google Scholar]
- Jandali, S.; Nelson, J.A.; Sonnad, S.S.; Low, D.W.; Kovach, S.J.; Wu, L.C.; Serletti, J.M. Breast reconstruction with free tissue transfer from the abdomen in the morbidly obese. Plast. Reconstr. Surg. 2011, 127, 2206–2213. [Google Scholar] [CrossRef]
- Alderman, A.K.; Wilkins, E.G.; Kim, H.M.; Lowery, J.C. Complications in postmastectomy breast reconstruction: Two-year results of the Michigan Breast Reconstruction Outcome Study. Plast. Reconstr. Surg. 2002, 109, 2265–2274. [Google Scholar] [CrossRef]
- Chen, C.L.; Shore, A.D.; Johns, R.; Clark, J.M.; Manahan, M.; Makary, M.A. The impact of obesity on breast surgery complications. Plast. Reconstr. Surg. 2011, 128, 395e–402e. [Google Scholar] [CrossRef]
- Garvey, P.B.; Buchel, E.W.; Pockaj, B.A.; Gray, R.J.; Samson, T.D. The deep inferior epigastric perforator flap for breast reconstruction in overweight and obese patients. Plast. Reconstr. Surg. 2005, 115, 447–457. [Google Scholar] [CrossRef]
- Beausang, E.S.; Ang, E.E.; Lipa, J.E.; Irish, J.C.; Brown, D.H.; Gullane, P.J.; Neligan, P.C. Microvascular free tissue transfer in elderly patients: The Toronto experience. Head Neck 2003, 25, 549–553. [Google Scholar] [CrossRef] [PubMed]
- Stevens, M.N.; Freeman, M.H.; Shinn, J.R.; Kloosterman, N.; Carr, S.; Mannion, K.; Rohde, S.L. Preoperative predictors of free flap failure. Otolaryngol.–Head Neck Surg. 2023, 168, 180–187. [Google Scholar] [CrossRef]
- Verkruysse, W.; Svaasand, L.O.; Nelson, J.S. Remote plethysmographic imaging using ambient light. Opt. Express 2008, 16, 21434–21445. [Google Scholar] [CrossRef] [PubMed]
- Zhao, A.X.A. Applying Video Magnification Techniques to the Visualization of Blood flow. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2015. [Google Scholar]
- Dymling, S.O.; Persson, H.W.; Hertz, C.H. Measurement of blood perfusion in tissue using Doppler ultrasound. Ultrasound Med. Biol. 1991, 17, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Nabeel, P.; Joseph, J.; Sivaprakasam, M. A magnetic plethysmograph probe for local pulse wave velocity measurement. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 1065–1076. [Google Scholar] [CrossRef]
- Novakovic, D.; Patel, R.S.; Goldstein, D.P.; Gullane, P.J. Salvage of failed free flaps used in head and neck reconstruction. Head Neck Oncol. 2009, 1, 33. [Google Scholar] [CrossRef]
- Carruthers, K.H.; Tiwari, P.; Yoshida, S.; Kocak, E. Inpatient flap monitoring after deep inferior epigastric artery perforator flap breast reconstruction: How long is long enough? J. Reconstr. Microsurg. 2019, 35, 682–687. [Google Scholar] [CrossRef]
- Ricci, J.A.; Vargas, C.R.; Ho, O.A.; Lin, S.J.; Tobias, A.M.; Lee, B.T. Evaluating the use of tissue oximetry to decrease intensive unit monitoring for free flap breast reconstruction. Ann. Plast. Surg. 2017, 79, 42–46. [Google Scholar] [CrossRef]
- Cornejo, A.; Ivatury, S.; Crane, C.N.; Myers, J.G.; Wang, H.T. Analysis of free flap complications and utilization of intensive care unit monitoring. J. Reconstr. Microsurg. 2013, 29, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Rahmanian-Schwarz, A.; Rothenberger, J.; Amr, A.; Jaminet, P.; Schaller, H.E. A postoperative analysis of perfusion dynamics in deep inferior epigastric perforator flap breast reconstruction: A noninvasive quantitative measurement of flap oxygen saturation and blood flow. Ann. Plast. Surg. 2012, 69, 535–539. [Google Scholar] [CrossRef] [PubMed]
- Ho, B.T.; Weinberg, H.; Zhang, W.X.; Aviv, J.E.; Biller, H.F.; Urken, M.L. Hemodynamics of the rodent abdominal skin flap following primary ischemia. Laryngoscope 1993, 103, 981–984. [Google Scholar] [CrossRef]
- Zahir, K.S.; Syed, S.A.; Zink, J.R.; Restifo, R.J.; Thomson, G.J. Ischemic preconditioning improves the survival of skin and myocutaneous flaps in a rat model. Plast. Reconstr. Surg. 1998, 102, 140–150. [Google Scholar] [CrossRef]
- Babajanian, M.; Zhang, W.X.; Turk, J.B.; Weinberg, H.; Biller, H.F.; Urken, M.L. Temporal factors affecting the secondary critical ischemia of normothermic experimental skin flaps. Arch. Otolaryngol.–Head Neck Surg. 1991, 117, 1360–1364. [Google Scholar] [CrossRef]
- Stack, B.C., Jr.; Futran, N.D.; Zang, B.; Scharf, J.E. Initial Experience with Personal Digital Assistant-Based Reflectance Photoplethysmograph for Free Tissue Transfer Monitoring. Ann. Plast. Surg. 2003, 51, 136–140. [Google Scholar] [CrossRef]
- Hirigoyen, M.B.; Urken, M.L.; Weinberg, H. Free Flap Monitoring: A Review of Current Practice. Microsurgery 1995, 16, 723–726. [Google Scholar] [CrossRef] [PubMed]
- Zoccali, G.; Molina, A.; Farhadi, J. Is long-term post-operative monitoring of microsurgical flaps still necessary? J. Plast. Reconstr. Aesthetic Surg. 2017, 70, 996–1000. [Google Scholar] [CrossRef]
- Spiegel, J.H.; Polat, J.K. Microvascular flap reconstruction by otolaryngologists: Prevalence, postoperative care, and monitoring techniques. Laryngoscope 2007, 117, 485–490. [Google Scholar] [CrossRef]
- Siemionow, M.; Arslan, E. Ischemia/reperfusion injury: A review in relation to free tissue transfers. Microsurg. Off. J. Int. Microsurg. Soc. Eur. Fed. Soc. Microsurg. 2004, 24, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Rogoń, I.; Rogoń, A.; Kaczmarek, M.; Bujnowski, A.; Wtorek, J.; Lachowski, F.; Jankau, J. Flap Monitoring Techniques: A Review. J. Clin. Med. 2024, 13, 5467. [Google Scholar] [CrossRef] [PubMed]
- Rogoń, I.; Brzeziński, J.; Bujnowski, A.; Kaczmarek, M.; Wtorek, J. Diagnostics of the Peripheral Artery Disease with use of Glucose Sensor—A Proof of Concept. In Proceedings of the 2024 16th International Conference on Human System Interaction (HSI), Paris, France, 8–11 July 2024; pp. 1–4. [Google Scholar] [CrossRef]
- Kremkau, F.W. Sonography Principles and Instruments; Elsevier Health Sciences: St. Louis, MO, USA, 2015. [Google Scholar]
- Uppot, R.N. Technical challenges of imaging & image-guided interventions in obese patients. Br. J. Radiol. 2018, 91, 20170931. [Google Scholar] [CrossRef]
- Heimdal, A.; Torp, H. Ultrasound Doppler measurements of low velocity blood flow: Limitations due to clutter signals from vibrating muscles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1997, 44, 873–881. [Google Scholar] [CrossRef]
- Christopher, D.A.; Burns, P.N.; Armstrong, J.; Foster, F.S. A high-frequency continuous-wave Doppler ultrasound system for the detection of blood flow in the microcirculation. Ultrasound Med. Biol. 1996, 22, 1191–1203. [Google Scholar] [CrossRef]
- Christopher, D.A.; Burns, P.N.; Starkoski, B.G.; Foster, F.S. A high-frequency pulsed-wave Doppler ultrasound system for the detection and imaging of blood flow in the microcirculation. Ultrasound Med. Biol. 1997, 23, 997–1015. [Google Scholar] [CrossRef]
- Huang, H.; Chen, P.Y.; Huang, C.C. 40-MHz high-frequency vector Doppler imaging for superficial venous valve flow estimation. Med. Phys. 2020, 47, 4020–4031. [Google Scholar] [CrossRef]
- Urone, P.P.; Hinrichs, R. College Physics; OpenStax: Houston, TX, USA, 2022. [Google Scholar]
- Uppal, T.; Mogra, R. RBC motion and the basis of ultrasound Doppler instrumentation. Australas. J. Ultrasound Med. 2010, 13, 32–34. [Google Scholar] [CrossRef]
- Kim, E.S.; Sharma, A.M.; Scissons, R.; Dawson, D.; Eberhardt, R.T.; Gerhard-Herman, M.; Hughes, J.P.; Knight, S.; Marie Kupinski, A.; Mahe, G.; et al. Interpretation of peripheral arterial and venous Doppler waveforms: A consensus statement from the Society for Vascular Medicine and Society for Vascular Ultrasound. Vasc. Med. 2020, 25, 484–506. [Google Scholar] [CrossRef]
- Revzin, M.V.; Imanzadeh, A.; Menias, C.; Pourjabbar, S.; Mustafa, A.; Nezami, N.; Spektor, M.; Pellerito, J.S. Optimizing image quality when evaluating blood flow at Doppler US: A tutorial. Radiographics 2019, 39, 1501–1523. [Google Scholar] [CrossRef] [PubMed]
- Furnas, H.; Rosen, J.M. Monitoring in microvascular surgery. Ann. Plast. Surg. 1991, 26, 265–272. [Google Scholar] [CrossRef]
- Rubens, D.J.; Bhatt, S.; Nedelka, S.; Cullinan, J. Doppler artifacts and pitfalls. Radiol. Clin. 2006, 44, 805–835. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Magee, D.; Dasgupta, U. Signal Processing Overview of Ultrasound Systems for Medical Imaging; SPRAB12; Texas Instruments: Dallas, TX, USA, 2008; Volume 55. [Google Scholar]
- Chang, T.Y.; Lee, Y.C.; Lin, Y.C.; Wong, S.T.S.; Hsueh, Y.Y.; Kuo, Y.L.; Shieh, S.J.; Lee, J.W. Implantable Doppler probes for postoperatively monitoring free flaps: Efficacy. A systematic review and meta-analysis. Plast. Reconstr. Surg.–Glob. Open 2016, 4, e1099. [Google Scholar] [CrossRef] [PubMed]
- Cannata, J.M.; Chilipka, T.; Yang, H.C.; Han, S.; Ham, S.W.; Rowe, V.L.; Weaver, F.A.; Shung, K.K.; Vilkomerson, D. Development of a flexible implantable sensor for postoperative monitoring of blood flow. J. Ultrasound Med. 2012, 31, 1795–1802. [Google Scholar] [CrossRef]
- Poder, T.; Fortier, P.H. Implantable Doppler in monitoring free flaps: A cost-effectiveness analysis based on a systematic review of the literature. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2013, 130, 79–85. [Google Scholar] [CrossRef]
- Ho, M.; Cassidy, C.; Brown, J.; Shaw, R.; Bekiroglu, F.; Rogers, S. Rationale for the use of the implantable Doppler probe based on 7 years’ experience. Br. J. Oral Maxillofac. Surg. 2014, 52, 530–534. [Google Scholar] [CrossRef]
- Oliver, D.W.; Whitaker, I.S.; Giele, H.; Critchley, P.; Cassell, O. The Cook–Swartz venous Doppler probe for the post-operative monitoring of free tissue transfers in the United Kingdom: A preliminary report. Br. J. Plast. Surg. 2005, 58, 366–370. [Google Scholar] [CrossRef]
- Whitehead, E.J.; Thompson, J.F.; Lewis, D.R. Contamination and decontamination of Doppler probes. Ann. R. Coll. Surg. Engl. 2006, 88, 479–481. [Google Scholar] [CrossRef]
- Kreutz-Rodrigues, L.; Gibreel, W.; Carlsen, B.T.; Frick, M.A.; Mardini, S.; Bakri, K. Clinical and radiological safety of retained implantable Doppler devices used for free flap monitoring. Plast. Surg. 2022, 30, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Synovis Micro Companies Alliance, Inc. GEM FLOW COUPLER DEVICE AND SYSTEM, 2013. Product Brochure or Technical Document. Available online: https://www.synovismicro.com/pdfs/IFUs/Flow_Coupler_Device_IFU_MS-0723404.pdf (accessed on 29 October 2025).
- Shtarbanov, P.; Kodama, H.; Nikkhah, D. Early experience with Synovis Flow Coupler and major pitfalls in its use in 18 microsurgical free flaps. J. Plast. Reconstr. Aesthetic Surg. 2024, 90, 326–329. [Google Scholar] [CrossRef] [PubMed]
- Um, G.T.; Chang, J.; Louie, O.; Colohan, S.M.; Said, H.K.; Neligan, P.C.; Mathes, D.W. Implantable Cook-Swartz Doppler probe versus Synovis Flow Coupler for the post-operative monitoring of free flap breast reconstruction. J. Plast. Reconstr. Aesthetic Surg. 2014, 67, 960–966. [Google Scholar] [CrossRef] [PubMed]
- Paydar, K.Z.; Hansen, S.L.; Chang, D.S.; Hoffman, W.Y.; Leon, P. Implantable venous Doppler monitoring in head and neck free flap reconstruction increases the salvage rate. Plast. Reconstr. Surg. 2010, 125, 1129–1134. [Google Scholar] [CrossRef]
- Stack Jr, B.C.; Futran, N.D.; Shohet, M.J.; Scharf, J.E. Spectral analysis of photoplethysmograms from radial forearm free flaps. Laryngoscope 1998, 108, 1329–1333. [Google Scholar] [CrossRef]
- Wang, J.; Liu, G.; Cham-Fai Leung, K.; Loffroy, R.; Lu, P.X.; Wang, X.J. Opportunities and challenges of fluorescent carbon dots in translational optical imaging. Curr. Pharm. Des. 2015, 21, 5401–5416. [Google Scholar] [CrossRef]
- Teraphongphom, N.; Kong, C.S.; Warram, J.M.; Rosenthal, E.L. Specimen mapping in head and neck cancer using fluorescence imaging. Laryngoscope Investig. Otolaryngol. 2017, 2, 447–452. [Google Scholar] [CrossRef]
- Fuada, S.; Särestöniemi, M.; Katz, M.; Soderi, S.; Hämäläinen, M. Study on Fat as the Propagation Medium in Optical-Based In-Body Communications. In Proceedings of the Nordic Conference on Digital Health and Wireless Solutions, Oulu, Finland, 7–8 May 2024; Springer: Berlin/Heidelberg, Germany, 2024; pp. 467–479. [Google Scholar]
- Kagaya, Y.; Miyamoto, S. A systematic review of near-infrared spectroscopy in flap monitoring: Current basic and clinical evidence and prospects. J. Plast. Reconstr. Aesthetic Surg. 2018, 71, 246–257. [Google Scholar] [CrossRef]
- Ouyang, S.Y.; Cai, Z.G.; Shan, X.F.; Li, Y. Prospective trial of near-infrared spectroscopy for continuous noninvasive monitoring of free fibular flaps. Ann. Plast. Surg. 2021, 87, e29–e36. [Google Scholar] [CrossRef]
- Wang, L.; Jacques, S.L.; Zheng, L. MCML—Monte Carlo modeling of light transport in multi-layered tissues. Comput. Methods Programs Biomed. 1995, 47, 131–146. [Google Scholar] [CrossRef]
- Stadnik, P.; Rogoń, I.; Kaczmarek, M. Monte-Carlo Modeling of Optical Sensors for Postoperative Free Flap Monitoring. In Proceedings of the Polish Conference on Biocybernetics and Biomedical Engineering; Springer: Cham, Switzerland, 2023; pp. 237–251. [Google Scholar]
- Oltulu, P.; Ince, B.; Kokbudak, N.; Findik, S.; Kilinc, F. Measurement of epidermis, dermis, and total skin thicknesses from six different body regions with a new ethical histometric technique. Turk. J. Plast. Surg. 2018, 26, 56–61. [Google Scholar] [CrossRef]
- Kim, S.; Lee, H.R.; Yun, J.H.; Yang, J.; Jang, J.Y.; Shin, Y.S.; Kim, C.H. Preoperative perforator localization in anterolateral thigh free flap using acoustic doppler and computed tomography angiography. Laryngoscope Investig. Otolaryngol. 2022, 7, 1790–1797. [Google Scholar] [CrossRef]
- Lauritzen, E.; Bredgaard, R.; Bonde, C.; Jensen, L.T.; Damsgaard, T.E. Indocyanine green angiography in breast reconstruction: A narrative review. Ann. Breast Surg. 2022, 6. [Google Scholar] [CrossRef]
- Muraleedharan, S.; Tripathy, K. Indocyanine Green (ICG) Angiography; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Wei, R.; Li, Y.; Zheng, Q.; Wang, J.; Wu, C.; Lu, X.; Zong, Z.; Chen, Y. Application of indocyanine green fluorescence angiography in laparoscopic sleeve gastrectomy: Preliminary results. Langenbecks Arch. Surg. 2025, 410, 213. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Lee, S.; Park, J.C.; Jang, D.M.; Ha, S.I.; Kim, J.U.; Ahn, J.S.; Park, W. Anaphylactic shock after indocyanine green video angiography during cerebrovascular surgery. World Neurosurg. 2020, 133, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Hitier, M.; Cracowski, J.L.; Hamou, C.; Righini, C.; Bettega, G. Indocyanine green fluorescence angiography for free flap monitoring: A pilot study. J. Cranio-Maxillofac. Surg. 2016, 44, 1833–1841. [Google Scholar] [CrossRef]
- Adelsberger, R.; Fakin, R.; Mirtschink, S.; Forster, N.; Giovanoli, P.; Lindenblatt, N. Bedside monitoring of free flaps using ICG-fluorescence angiography significantly improves detection of postoperative perfusion impairment#. J. Plast. Surg. Hand Surg. 2019, 53, 149–154. [Google Scholar] [CrossRef]
- Bonner, R.; Clem, T.; Bowen, P.; Bowman, R. Laser-Doppler continuous real-time monitor of pulsatile and mean blood flow in tissue microcirculation. In Scattering Techniques Applied to Supramolecular and Nonequilibrium Systems; Springer: Boston, MA, USA, 1981; pp. 685–701. [Google Scholar]
- Serov, A.N. Novel Instruments for Remote and Direct-Contact Laser DOPPLER Perfusion Imaging and Monitoring. Ph.D. Thesis, University of Twente, Enscod, The Netherlands, 2002. [Google Scholar]
- Hu, C.L.; Lin, Z.S.; Chen, Y.Y.; Lin, Y.H.; Li, M.L. Portable laser Doppler flowmeter for microcirculation detection. Biomed. Eng. Lett. 2013, 3, 109–114. [Google Scholar] [CrossRef]
- Fang, Y.; Cui, J.; Xu, J.; Ma, J.; Liu, Z.; Zhang, H. Research progress and clinical application of laser Doppler blood flow measurement technology. In Proceedings of the 2024 International Conference on Optoelectronic Information and Optical Engineering (OIOE 2024), Wuhan, China, 18–20 October 2024; SPIE: Bellingham, WA, USA, 2024; Volume 13182, pp. 547–557. [Google Scholar]
- Lapitan, D.; Rogatkin, D. Functional studies on blood microcirculation system with laser Doppler flowmetry in clinical medicine: Problems and prospects. Alm. Clin. Med. 2016, 44, 249–259. [Google Scholar] [CrossRef]
- Kulikov, D.; Glazkov, A.; Dreval, A.; Kovaleva, Y.; Rogatkin, D.; Kulikov, A.; Molochkov, A. Approaches to improve the predictive value of laser Doppler flowmetry in detection of microcirculation disorders in diabetes mellitus. Clin. Hemorheol. Microcirc. 2018, 70, 173–179. [Google Scholar] [CrossRef]
- Clough, G.F.; Kuliga, K.Z.; Chipperfield, A.J. Flow motion dynamics of microvascular blood flow and oxygenation: Evidence of adaptive changes in obesity and type 2 diabetes mellitus/insulin resistance. Microcirculation 2017, 24, e12331. [Google Scholar] [CrossRef]
- Dror, N.; Weidling, J.; White, S.; Ortenzio, F.; Shreim, S.; Keating, M.T.; Pham, H.; Radom-Aizik, S.; Botvinick, E. Clinical evaluation of a novel subcutaneous lactate monitor. J. Clin. Monit. Comput. 2022, 36, 537–543. [Google Scholar] [CrossRef]
- Tachi, K.; Nakatsukasa, S.; Nakayama, Y. Monitoring free flap venous congestion using continuous tissue glucose monitoring: A case report. JPRAS Open 2018, 17, 49–53. [Google Scholar] [CrossRef]
- Guillier, D.; Moris, V.; Cristofari, S.; Gerenton, B.; Hallier, A.; Rizzi, P.; Henault, B.; Zwetyenga, N. Monitoring of myocutaneous flaps by measuring capillary glucose and lactate levels: Experimental study. Ann. Plast. Surg. 2018, 80, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Gibney, M.A.; Arce, C.H.; Byron, K.J.; Hirsch, L.J. Skin and subcutaneous adipose layer thickness in adults with diabetes at sites used for insulin injections: Implications for needle length recommendations. Curr. Med. Res. Opin. 2010, 26, 1519–1530. [Google Scholar] [CrossRef] [PubMed]
- Sia, W.K.; Sun, J.A. Pneumothorax suspected secondary to continuous glucose monitor placement in a dog. Can. Vet. J. 2025, 66, 58–63. [Google Scholar] [PubMed]
- Singla, P.; Dixit, P.K.; Kala, P.C.; Katrolia, D.; Karmakar, S.; Humnekar, A.; Singh, A.P. Free Flap Monitoring Using Infrared Thermography: An Objective Adjunct to Clinical Monitoring. Indian J. Plast. Surg. 2024. [Google Scholar] [CrossRef]
- Heikens, M.J.; Gorbach, A.M.; Eden, H.S.; Savastano, D.M.; Chen, K.Y.; Skarulis, M.C.; Yanovski, J.A. Core body temperature in obesity. Am. J. Clin. Nutr. 2011, 93, 963–967. [Google Scholar] [CrossRef]
- Reis, H.H.T.; Brito, C.J.; Sillero-Quintana, M.; da Silva, A.G.; Fernández-Cuevas, I.; Cerqueira, M.S.; Werneck, F.Z.; Marins, J.C.B. Can the body mass index influence the skin temperature of adolescents assessed by infrared thermography? J. Therm. Biol. 2023, 111, 103424. [Google Scholar] [CrossRef]
- Chudecka, M.; Lubkowska, A.; Kempińska-Podhorodecka, A. Body surface temperature distribution in relation to body composition in obese women. J. Therm. Biol. 2014, 43, 1–6. [Google Scholar] [CrossRef]
- Fernandes, A.D.A.; Amorim, P.R.S.; Brito, C.J.; Costa, C.M.A.; Moreira, D.G.; Quintana, M.S.; Marins, J.C.B. Skin temperature behavior after a progressive exercise measured by infrared thermography. J. Phys. Educ. Sport 2018, 18, 1592–1600. [Google Scholar]
- Vainer, B. Application of thermography to medicine. In Infrared Thermography: Recent Advances and Future Trends; Meola, C., Ed.; Bentham Science Publishers Singapore: Singapore, 2012; pp. 61–85. [Google Scholar]
- Mikkonen, R.H.; Kreula, J.; Virkkunen, P. Reproducibility of Doppler ultrasound measurements. Acta Radiol. 1996, 37, 545–550. [Google Scholar] [CrossRef]
- Kenny, J.É.S.; Munding, C.E.; Eibl, J.K.; Eibl, A.M.; Long, B.F.; Boyes, A.; Yin, J.; Verrecchia, P.; Parrotta, M.; Gatzke, R.; et al. A novel, hands-free ultrasound patch for continuous monitoring of quantitative Doppler in the carotid artery. Sci. Rep. 2021, 11, 7780. [Google Scholar] [CrossRef]
- Zhou, S.; Park, G.; Longardner, K.; Lin, M.; Qi, B.; Yang, X.; Gao, X.; Huang, H.; Chen, X.; Bian, Y.; et al. Clinical validation of a wearable ultrasound sensor of blood pressure. Nat. Biomed. Eng. 2024, 9, 865–881. [Google Scholar] [CrossRef]
- Rodrigues, D.; Barbosa, A.I.; Rebelo, R.; Kwon, I.K.; Reis, R.L.; Correlo, V.M. Skin-integrated wearable systems and implantable biosensors: A comprehensive review. Biosensors 2020, 10, 79. [Google Scholar] [CrossRef]
- Wang, Y.; Vaddiraju, S.; Gu, B.; Papadimitrakopoulos, F.; Burgess, D.J. Foreign body reaction to implantable biosensors: Effects of tissue trauma and implant size. J. Diabetes Sci. Technol. 2015, 9, 966–977. [Google Scholar] [CrossRef] [PubMed]
- Klueh, U. Analysis: On the path to overcoming glucose-sensor-induced foreign body reactions. J. Diabetes Sci. Technol. 2013, 7, 452–454. [Google Scholar] [CrossRef]
- Hagström-Toft, E.; Enoksson, S.; Moberg, E.; Bolinder, J.; Arner, P. Absolute concentrations of glycerol and lactate in human skeletal muscle, adipose tissue, and blood. Am. J. Physiol.-Endocrinol. Metab. 1997, 273, E584. [Google Scholar] [CrossRef]
- Matabuena, M.; Pazos-Couselo, M.; Alonso-Sampedro, M.; Fernández-Merino, C.; González-Quintela, A.; Gude, F. Reproducibility of continuous glucose monitoring results under real-life conditions in an adult population: A functional data analysis. Sci. Rep. 2023, 13, 13987. [Google Scholar] [CrossRef] [PubMed]
- Luck, J.C.; Kunselman, A.R.; Herr, M.D.; Blaha, C.A.; Sinoway, L.I.; Cui, J. Multiple laser Doppler flowmetry probes increase the reproducibility of skin blood flow measurements. Front. Physiol. 2022, 13, 876633. [Google Scholar] [CrossRef] [PubMed]
- Khatri, N.; Zhang, S.; Kale, S.S. Current techniques for postoperative monitoring of microvascular free flaps. J. Wound Ostomy Cont. Nurs. 2017, 44, 148–152. [Google Scholar] [CrossRef]
- Cornejo, A.; Rodriguez, T.; Steigelman, M.; Stephenson, S.; Sahar, D.; Cohn, S.M.; Michalek, J.E.; Wang, H.T. The use of visible light spectroscopy to measure tissue oxygenation in free flap reconstruction. J. Reconstr. Microsurg. 2011, 27, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Charlton, P.H.; Paliakaitė, B.; Pilt, K.; Bachler, M.; Zanelli, S.; Kulin, D.; Allen, J.; Hallab, M.; Bianchini, E.; Mayer, C.C.; et al. Assessing hemodynamics from the photoplethysmogram to gain insights into vascular age: A review from VascAgeNet. Am. J. Physiol.-Heart Circ. Physiol. 2022, 322, H493–H522. [Google Scholar] [CrossRef]
- Chaudhry, M.A.; Mercer, J.B.; de Weerd, L. In vivo perforasome perfusion in hemi-DIEP flaps evaluated with indocyanine-green fluorescence angiography and infrared thermography. Plast. Reconstr. Surg.–Glob. Open 2021, 9, e3560. [Google Scholar] [CrossRef]
- Nowakowski, A.Z.; Kaczmarek, M. Artificial Intelligence in IR Thermal Imaging and Sensing for Medical Applications. Sensors 2025, 25, 891. [Google Scholar] [CrossRef] [PubMed]
- Guidelines for Breast Thermology; The American Academy of Thermology: Greenville, SC, USA, 2021.
- Pfeiffer, N. Very Obese Women Presenting for Breast Reconstruction after Mastectomy Should Lose Weight First, Surgeons Advise. Oncol. Times 2006, 28, 54–57. [Google Scholar] [CrossRef]
- Momeni, A.; Ahdoot, M.A.; Kim, R.Y.; Leroux, E.; Galaiya, D.J.; Lee, G.K. Should we continue to consider obesity a relative contraindication for autologous microsurgical breast reconstruction? J. Plast. Reconstr. Aesthetic Surg. 2012, 65, 420–425. [Google Scholar] [CrossRef]
- Chang, D.W.; Wang, B.g.; Robb, G.L.; Reece, G.P.; Miller, M.J.; Evans, G.R.; Langstein, H.N.; Kroll, S.S. Effect of obesity on flap and donor-site complications in free transverse rectus abdominis myocutaneous flap breast reconstruction. Plast. Reconstr. Surg. 2000, 105, 1640–1648. [Google Scholar] [CrossRef]
- Spear, S.L.; Ducic, I.; Cuoco, F.; Taylor, N. Effect of obesity on flap and donor-site complications in pedicled TRAM flap breast reconstruction. Plast. Reconstr. Surg. 2007, 119, 788–795. [Google Scholar] [CrossRef]
- Rossetto, L.A.; Abla, L.E.F.; Vidal, R.; Garcia, E.B.; Gonzalez, R.J.; Gebrim, L.H.; Neto, M.S.; Ferreira, L.M. Factors associated with hernia and bulge formation at the donor site of the pedicled TRAM flap. Eur. J. Plast. Surg. 2010, 33, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Vaccari, S.; Klinger, F.; Sciretta, A.P.; Di Giuli, R.; Bandi, V.; Veronesi, A.; Catania, B.; Klinger, M.; Vinci, V. Implant-based breast reconstruction: Impact of body mass index on postoperative complications and aesthetic results: A 5-year, single-center study. Aesthetic Surg. J. 2023, 43, NP1063–NP1070. [Google Scholar] [CrossRef] [PubMed]
- Banuelos, J.; Abu-Ghname, A.; Vyas, K.; Sharaf, B.; Nguyen, M.D.T.; Harless, C.; Manrique, O.J.; Martinez-Jorge, J.; Tran, N.V. Should obesity be considered a contraindication for prepectoral breast reconstruction? Plast. Reconstr. Surg. 2020, 145, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Browne, J.E.; Watson, A.J.; Hoskins, P.R.; Elliott, A.T. Investigation of the effect of subcutaneous fat on image quality performance of 2D conventional imaging and tissue harmonic imaging. Ultrasound Med. Biol. 2005, 31, 957–964. [Google Scholar] [CrossRef] [PubMed]
- Rogon, I.; Brzezinski, J.; Jaskólski, B.; Mechlinska, P.; Bujnowski, A.; Kaczmarek, M. Diagnostics of Peripheral Artery Disease Using Active Dynamic Thermography: Preliminary Results. In Proceedings of the 2025 17th International Conference on Human System Interaction (HSI), Ulsan, Republic of Korea, 16–19 July 2025; IEEE: New York, NY, USA, 2025; pp. 1–6. [Google Scholar] [CrossRef]




| Classification | BMI (kg/m2) | WHO (1997) | WHO (1995) |
|---|---|---|---|
| Underweight | ≤18.5 | Underweight | – |
| Normal Range | 18.5–24.9 | Normal Range | Normal Range |
| Overweight | 25.0–29.9 | Preobese | Grade I Obese |
| Obese I | 30.0–34.9 | Obese Class I | Grade II Obese |
| Obese II | 35.0–39.9 | Obese Class II | |
| Obese III | ≥40.0 | Obese Class III | Grade III Obese |
| Subjects | n | Equation | R2 | Standard Error | Statistical Significance |
|---|---|---|---|---|---|
| Men | 214 | 0.52 | 5.54 | <0.001 | |
| Women | 290 | 0.56 | 5.75 | <0.001 |
| Stage | Description |
|---|---|
| 0 | No obesity-related risk factors detected; all health indicators are within normal limits. |
| 1 | Obesity-related subclinical risk factors, including borderline hypertension, impaired fasting glucose, and elevated liver enzymes. May present with mild symptoms such as dyspnea during moderate exertion, aches, fatigue, and slight impairment of well-being. |
| 2 | Moderate limitations in daily activities and well-being due to obesity-related chronic diseases (e.g., hypertension, type 2 diabetes, sleep apnea). |
| 3 | Organ damage (e.g., myocardial infarction, heart failure, diabetic complications, incapacitating osteoarthritis); significant psychopathology, functional limitations, or impairment of well-being. |
| 4 | Severe disabilities from obesity-related chronic diseases, disabling psychopathology, major functional limitations, and marked impairment of well-being. |
| Reference (Year) | n (Breasts) | Complications | Average BMI (kg/m2) | BMI Range (kg/m2) | p | Surgery Type | Detection Method | Obesity as a Risk Factor | Country |
|---|---|---|---|---|---|---|---|---|---|
| Seidenstuecker et al. (2011) [29] | 79 | 13 | — | ≥30 | — | DIEP | PE | Yes | Germany |
| 479 | 22 | — | <30 | — | MS TRAM | ||||
| Fischer et al. (2013) [32] | 812 (1258) | 398 | 28.4 | 22.8–47.8 | — | MS TRAM, DIEP, SIEA | PE | Yes | USA |
| Knox et al. (2016) [28] | 130 (183) | 93 | 25.6 ± 3.5 | 18–35 | 0.35 | DIEP | PE | — | Canada |
| 377 (444) | 294 | 25.9 ± 3.8 | 18.8–43.9 | 0.35 | pTRAM | ||||
| Ochoa et al. (2018) [30] | 418 (639) | 152 | 28.30 | 17–42 | — | DIEP | Not disclosed | Yes | USA |
| Wilkins et al. (2018) [31] | 2224 | 263 | 26.6 | 21–32.2 | <0.001 | pTRAM, TRAM, LDF, DIEP, implant | PE | Yes | USA |
| Palve et al. (2020) [33] | 793 | 380 | — | <2 –>30 | <0.001 | DIEP, LD, TMG, implant | Not disclosed | Yes | Finland |
| Heidekrueger et al. (2021) [34] | 3911 | 293 | — | <18.5–34.9 | <0.001 | DIEP | Not disclosed | Yes | Germany |
| Yoshino et al. (2021) [35] | 129 | 67 | 23.72 ± 3.66 | 20.2–27.38 | <0.001 | DIEP | Not disclosed | Yes | Japan |
| Barnes et al. (2024) [38] | 218 (313) | 71 | — | 18.96–30.00 | <0.001 | DIEP, SIEA | Not disclosed | Yes | USA |
| 147 (232) | 76 | — | 30.01–57.68 | <0.001 | MS TRAM, VRAM |
| Integrated ROI | Mean (±SD, °C) | (°C) | |||
|---|---|---|---|---|---|
| Underweight | Healthy Weight | Overweight | Obesity | Max–Min | |
| Frontal view | |||||
| Arms | 33.14 ± 0.55 | 31.35 ± 0.63 | 30.77 ± 0.54 | 30.45 ± 0.75 | 2.69 |
| Trunk | 34.20 ± 0.39 | 32.90 ± 0.43 | 31.90 ± 0.56 | 30.70 ± 0.81 | 3.50 |
| Legs | 33.00 ± 0.82 | 31.28 ± 0.82 | 30.84 ± 0.74 | 30.71 ± 0.95 | 2.29 |
| Rear view | |||||
| Arms | 32.51 ± 0.62 | 30.35 ± 0.73 | 29.81 ± 0.65 | 28.98 ± 0.75 | 3.53 |
| Trunk | 30.41 ± 0.28 | 29.39 ± 0.33 | 28.74 ± 0.56 | 28.05 ± 0.77 | 2.36 |
| Legs | 31.60 ± 0.61 | 30.60 ± 0.74 | 29.20 ± 0.71 | 29.10 ± 0.69 | 2.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jankau, J.; Rogoń, I.; Kaczmarek, M.; Rogoń, A.; Stołyhwo-Gofron, M.; Wtorek, J. The Challenges of Postoperative Tissue Flap Vitality Monitoring in Obese Individuals. J. Clin. Med. 2025, 14, 7777. https://doi.org/10.3390/jcm14217777
Jankau J, Rogoń I, Kaczmarek M, Rogoń A, Stołyhwo-Gofron M, Wtorek J. The Challenges of Postoperative Tissue Flap Vitality Monitoring in Obese Individuals. Journal of Clinical Medicine. 2025; 14(21):7777. https://doi.org/10.3390/jcm14217777
Chicago/Turabian StyleJankau, Jerzy, Ignacy Rogoń, Mariusz Kaczmarek, Agnieszka Rogoń, Monika Stołyhwo-Gofron, and Jerzy Wtorek. 2025. "The Challenges of Postoperative Tissue Flap Vitality Monitoring in Obese Individuals" Journal of Clinical Medicine 14, no. 21: 7777. https://doi.org/10.3390/jcm14217777
APA StyleJankau, J., Rogoń, I., Kaczmarek, M., Rogoń, A., Stołyhwo-Gofron, M., & Wtorek, J. (2025). The Challenges of Postoperative Tissue Flap Vitality Monitoring in Obese Individuals. Journal of Clinical Medicine, 14(21), 7777. https://doi.org/10.3390/jcm14217777

